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Preface

These are the notes from a one-week course on Braid Monodromy of Algebraic Curves
given at the Université de Pau et des Pays de l’Adour during the Première Ecole Franco-
Espagnole: Groupes de tresses et topologie en petite dimension in October 2009.

This is intended to be an introductory survey through which we hope we can briefly outline
the power of the concept monodromy as a common area for group theory, algebraic geometry,
and topology of projective curves.

The main classical results are stated in §2, where the Zariski-Van Kampen method to com-
pute a presentation for the fundamental group of the complement to projective plane curves is
presented. In §1 these results are prefaced with a review of basic concepts like fundamental
groups, locally trivial fibrations, branched and unbranched coverings and a first peek at mon-
odromy. Descriptions of the main motivations that have lead mathematicians to study these
objects are included throughout this first chapter. Finally, additional tools and further results
that are direct applications of braid monodromy will be considered in §3.

While not all proofs are included, we do provide either originals or simplified versions of
those that are relevant in the sense that they exhibit the techniques that are most used in this
context and lead to a better understanding of the main concepts discussed in this survey.

Nothing here is hence original, other than an attempt to bring together different results and
points of view.

It goes without saying that this is not the first, and hopefully not the last, survey on the
topic. For other approaches to braid monodromy we refer to the following beautifully-written
papers [71, 20, 6].

We finally wish to thank the organizers and the referee for their patience and understanding
in the process of writing and correcting these notes.
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CHAPTER 1

Settings and Motivations

For the sake of completeness we will define the main objects and will state the problems
that motivate the study of braid monodromy in connection with algebraic curves.

1. Fundamental Groupoids

Consider X a topological space and Γ(X, x0, y0) the set of continuous paths from x0 to y0,
that is,

Γ(X, x0, y0) := {γ : [0, 1]→ X | γ continuous, γ(0) = x0, γ(1) = y0}.
The set of equivalence classes of Γ(X, x0, y0) under homotopy relative to x0 and y0 will be
denoted by π1(X, x0, y0). In other words:

π1(X, x0, y0) := Γ(X, x0, y0)/ ∼
where γ1 ∼ γ2⇔ ∃h : [0, 1]× [0, 1]→ X continuous such that:

• h(λ, 0) = γ1(λ),
• h(λ, 1) = γ2(λ),
• h(0, µ) = x0,
• h(1, µ) = y0.

γ1

γ2

x0 y0

The category (X, {π1(X, x0, y0)}x0,y0∈X), where X is the set of objects and π1(X, x0, y0)
is the family of morphisms between x0 and y0, has a groupoid structure, that is, it satisfies the
following properties:

• Associative composition law of morphisms:
if γ1 ∈ π1(X, x0, y0) and γ2 ∈ π1(X, y0, z0), then γ1γ2 ∈ π1(X, x0, z0), where

γ1γ2(λ) =

{
γ1(2λ) λ ∈ [0, 1

2
]

γ2(2λ− 1) λ ∈ [1
2
, 1]

Moreover (γ1γ2)γ3 = γ1(γ2γ3) for any three paths γ1 ∈ π1(X, x0, y0), γ2 ∈
π1(X, y0, z0), and γ3 ∈ π1(X, z0, w0).

7
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γ1

γ2

x0 y0 z0

• π1(X, x0) := π1(X, x0, x0) has a group structure (with the composition law):
where 1x0 ≡ x0 ∈ π1(X, x0, x0) and γ−1(λ) = γ(1− λ) ∈ π1(X, y0, x0).

REMARK 1.1. In our paper, X will always have a complex manifold structure and thus any
class of paths has a Piecewise Smooth representative. From now on, all the paths γ will be
considered Piecewise Smooth.

REMARK 1.2. Also note that if x0 and y0 are in the same path-connected component of X ,
then the groups π1(X, x0) and π1(X, y0) are naturally isomorphic by an inner automorphism. In
case X is path connected, such groups are denoted by π1(X) and called the fundamental group
of X .

EXAMPLE 1.3. π1(S1) = Z (see the comment after Theorem 2.3).

EXAMPLE 1.4 (Ordered Configuration Spaces). LetXn := {(z1, ..., zn) ∈ C n | zi 6= zj, i 6=
j}. A path in Xn from x = (x1, ..., xn) to y = (y1, ..., yn) is nothing but a collection of n paths
γi, i = 1, ..., n from xi to yi such that γi(λ) 6= γj(λ) if i 6= j. Then π1(Xn) = Pn, the pure
braid group on n strings (on C ).

EXAMPLE 1.5 (Non-ordered Configuration Spaces). Let Pn := {f(z) ∈ C [z] | deg(f) =
n}, Yn := P(Pn \∆n), where ∆n := {f ∈ Pn | f has multiple roots}. Note that Yn

ϕ∼= Xn/Σn,
where Σn represents the action of the symmetric group of n elements on Xn by permuting the
coordinates, that is, if σ ∈ Σn, then σ(z1, ..., zn) = (zσ(1), ..., zσ(n)) (note that the elements of
Xn/Σn are simply sets of n distinct complex numbers). The homeomorphism ϕ is given as
follows: any polynomial f(z) ∈ Yn can be normalized as f(z) = (z − z1) · · · (z − zn) where
zi 6= zj . Thus ϕ(f) := {z1, ..., zn} ∈ Xn/Σn. Conversely, given a set of n distinct complex
numbers {z1, ..., zn} ∈ Xn/Σn one can obtain f(z) = zn + an−1z

n−1 + · · · + a1z + a0 as
ai = σn−i(z1, ..., zn) = the symmetric polynomial of degree n − i on z1, ..., zn. Therefore, if
γ is a path in Yn from f1 = (z − x1) · · · (z − xn) to f2 = (z − y1) · · · (z − yn), then ϕγ can
be seen as a collection of n disjoint paths γi, i = 1, ..., n from xi to yσ(i) for a certain σ ∈ Σn.
Then π1(Yn) = Bn, the (geometric) braid group on n strings (on C ).

Analogously, if we consider P̄n := {f(s, t) ∈ C [s, t] | f homogeneous deg(f) = n},
Ȳn := P(Pn \ ∆̄n), where ∆̄n := {f ∈ P̄n | f has multiple roots}. Note that π1(Ȳn) = Bn(P1),
the braid group on n strings on P1 ∼= S2.
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In the previous examples fundamental groups are either computed directly or by finding
suitable homomorphisms to other spaces whose fundamental group was easier to compute. The
idea behind it is that the fundamental group is a topological invariant, that is, if X

ϕ∼= Y are
two homeomorphic spaces, then the map π1(X;x0, x1)

ϕ∗→π1(Y ;ϕ(x0), ϕ(x1)) given by the set-
theoretical image by ϕ of paths in X is well defined, it is a bijection for any choice of x0, x1 ∈
X , and it preserves the products, hence it is an isomorphism in the category of groupoids. In
particular, ϕ∗ defines isomorphisms of fundamental groups.

However, homeomorphisms are not the only continuous maps that induce isomorphisms of
fundamental groups. The following result generalizes the map ϕ∗ referred to in the previous
paragraph and it serves as a way to introduce notation. Its proof is straightforward from the
definitions and it is left as a useful exercise for the beginners.

LEMMA 1.6. Any continuous map ϕ : X → Y between two topological spaces induces
morphisms π1(X;x0, x1)

ϕx0,x1→ π1(Y ;ϕ(x0), ϕ(x1)) for any choice of x0, x1 ∈ X .
Moreover, if ϕ : X → Y and ψ : Y → Z, then (ψ ◦ ϕ)x0,x1 = ψx0,x1 ◦ ϕx0,x1 .

To simplify notation, and whenever there is no likely ambiguity, we will simply refer to
ϕx0,x1 as ϕ∗.

EXAMPLE 1.7. Assume that Y ⊂ X and that there is a surjective continuous map ϕ : X →
Y such that Y i→X ϕ→Y is the identity on Y . Then ϕ∗ is an epimorphism, since ϕ∗ ◦ i∗ = (IdY )∗
(see 1.6) which is an isomorphism. Such a map is called a retraction of X onto Y .

The following is a very common way to find maps that induce equivalent morphisms of
fundamental groups.

DEFINITION 1.8. Let f, g : X → Y two continuous maps. We say that f and g are two
homotopic maps if there exists H : X × [0, 1]→ Y a continuous map such that, if x ∈ X then
H(x, 0) = f(x) and H(x, 1) = g(x). The map H is called a homotopy from f to g and it is
denoted as f H∼ g.

Two topological spaces X and Y are called homotopy equivalent if there exist maps f :
X → Y and g : Y → X such that f ◦ g ∼ IdY and g ◦ f ∼ IdX

EXAMPLE 1.9. If two topological spaces X and Y are homotopy equivalent, then their
groupoid fundamental groups are isomorphic.

Note, in particular, that a homotopy equivalence ϕ : X → Y induces isomorphisms of
fundamental groups π1(X;x)

ϕ∗→π1(Y ;ϕ(x)). Moreover, if both spaces are connected, then one
can simply say that π1(X)

ϕ∗→π1(Y ) is an isomorphism.

EXAMPLE 1.10. Assume the hypothesis of Example 1.7 and also assume that the retraction
ϕ is homotopic to the identity in X . Then X and Y are homotopy equivalent and the retraction
ϕ is an equivalence of homotopies. Such retractions are called deformation retract.

EXAMPLE 1.11. π1(C \ {0}) = Z is a consequence of Examples 1.3 and 1.10, since the
normalization map C \ {0} → S1 given by z 7→ z

|z| is a deformation retract.



10 1. SETTINGS AND MOTIVATIONS

2. The Seifert-Van Kampen Theorem

One of the basic tools to compute fundamental groups (and fundamental groupoids) is the
Seifert-Van Kampen Theorem. This was first proved by H. Seifert [68] and later on, and inde-
pendently, by E.R. Van Kampen [73]. Originally Van Kampen wrote this paper in an attempt
to prove that the construction O. Zariski [76] built in order to compute the fundamental group
(aka Poincaré group) of the complement of a plane curve in P2 was correct.

In order to state this result we will need to define the amalgamated product of two groups.

DEFINITION 2.1. Let G12
i1→G1 and G12

i2→G2 be two group homomorphisms. The amalga-
mated free product of G1 and G2 w.r.t. G12 is a group G that fits in a commutative diagram

(1)
G12

i1→ G1

↓ i2 ↓ j1G

G2
j2G→ G

and has the following universal property: for any other such G′ there exists a homomorphism
G

ϕ→G′ that commutes with both diagrams, that is, ϕj1G = j1G′ and ϕj2G = j2G′ .
This can also be described by saying that the diagram (1) is a pushout (in the category of

groups).

In more down-to-earth terms, if G12, G1, and G2 are groups is as in the previous definition
with morphisms i1, i2 respectively, then the amalgamated free product of G1 and G2 w.r.t. G12,
commonly denoted by G1 ∗G12 G2, can be described as the quotient

(G1 ∗G2)/N,

where N is the smallest normal subgroup of the free product G1 ∗G2 generated by i1(γ)i2(γ)−1

for all γ ∈ G12.

EXAMPLE 2.2. For instance, if Gi, G12 admit presentations 〈x̄i : R̄i(x̄i)〉 and 〈ȳ : R̄12(ȳ)〉,
then

G1 ∗G12 G2 = 〈x̄1, x̄2 : R̄1(x̄1), R̄2(x̄2), i1(y) = i2(y), y ∈ ȳ〉.

Therefore, if Gi, are finitely presented, and G12 is finitely generated, then G1 ∗G12 G2 is
finitely presented.

We will give the following version of the main theorem.

THEOREM 2.3 (Seifert-Van Kampen Theorem). Let U1 and U2 path-connected open subsets
of X such that:

• U1 ∪ U2 = X and
• U12 := U1 ∩ U2 is also path-connected.

Then

π1(X) = π1(U1) ∗π1(U12) π1(U2).
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In other words, the commutative diagram given by the inclusions:

π1(U12)
i1→ π1(U1)

↓ i2 ↓ j1
π1(U2)

j2→ π1(X)

is a pushout.

Originally Van Kampen considered the general case scenario, where the open sets U1, U2

and U12 are not necessarily path-connected. In this case, the result above generalizes claiming
that π1(X, x0, y0) is a pushout of π1(U1, x0, y0) and π1(U2, x0, y0) in the category of groupoids
(see [13, 6.7.2]).

This theorem gives a very simple proof of Example 1.3 (see [13, 6.7.5]).

EXAMPLE 2.4. Consider X and Y two path connected topological spaces, and x ∈ X ,
y ∈ Y points on them. One can define X ∨ Y , the bouquet of X and Y as the quotient space
X t Y/{x, y} of the disjoint union of X and Y by {x, y}. Note that, since X and Y are path
connected, the homotopy type of the space X ∨ Y does not depend on the choice of x and y.

In order to compute S1∨S1 one can consider U1 := (S1\{x})∨S1 and U2 := S1∨(S1\{y}).
If {x, y} is not the set of points chosen to quotient by, then U1 and U2 are open subsets of S1∨S1.
Moreover, U12 = (S1 \ {x}) ∨ (S1 \ {y}) is contractible and hence π1(S1 ∨ S1) = F2 the free
product of rank 2.

By induction, if
∨n S1 := S1 ∨ ... ∨ S1 is the bouquet of n spheres, then π1(

∨n S1) = Fn.

EXAMPLE 2.5. Let z1, ..., zn ∈ C , Zn := {z1, ..., zn}. Then π1(C \ Zn) = Fn. The case
n = 1 is shown in Example 1.11. The case n = 2 is given in Figure 1 by describing S1 ∨ S1 as
a deformation retract of C \ {±1}. In general, one can describe

∨n S1 as a deformation retract
of C \ Zn, and hence the result will follow from Examples 1.10 and 2.4.

FIGURE 1. Deformation retract from C \ {±1} to S1 ∨ S1.

EXAMPLE 2.6. Let z1, ..., zn ∈ P1, Zn := {z1, ..., zn}. Then π1(P1 \ Zn) = 〈γ1, . . . , γn :
γn · · · γ1 = 1〉 = Fn−1. Since P1 \ {z1} ∼= C and applying Example 4.1.
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3. Locally Trivial Fibrations

DEFINITION 3.1. A surjective smooth map π : X → M of smooth manifolds is a lo-
cally trivial fibration if there is an open cover U of M and diffeomorphisms ϕU : π−1(U) →
U × π−1(pU), with pU ∈ U , such that ϕU is fiber-preserving, that is pr1 ◦ ϕU = π. The diffeo-
morphisms ϕU are called trivializations of π. The submanifold π−1(p) ⊂ X is called the fiber
of π at p and usually denoted by Fp.

Two fibrations π : X → M , π′ : X ′ → M are said to be equivalent if there exists a
diffeomorphism ϕ : X → X ′ such that

Xyπ ↘ ϕ

X ′

↙ π′

M

is a commutative diagram.

REMARK 3.2. Note that, if U is a trivialization open set, then π−1(p1) ∼ π−1(p2) for any
two points p1, p2 ∈ U , simply considering ϕU |−1

π−1(p1) ◦ ϕU |π−1(p1). Therefore, the existence of
the points pU ∈ U in Definition 3.1, might be replaced by the same property at any point of
U . Hence all the fibers of a locally trivial fibration are all diffeomorphic to Fp as long as X is
connected.

EXAMPLE 3.3. Any product X := M × F produces a locally trivial fibration just by pro-
jecting onto a component, say π : X = M × F → M , where π(x, y) = x. The open cover of
M that trivializes the fibration is given simply by the total space M . The fiber of this fibration
at any point is isomorphic to F . Such a fibration is called a trivial fibration.

One of the main properties of locally trivial fibrations, which will be extensively used here,
is the fact that homotopies on the base can be lifted. A precise statement is the following (cf. [75,
p. 45]):

THEOREM 3.4 (Homotopy Lifting Property). Let π : X →M be a locally trivial fibration,
consider:

(1) γ : [0, 1]→M a continuous map,
(2) γ̃ : [0, 1]→ X a lifting of γ (that is, a continuous map such that γ = π ◦ γ̃), and
(3) h : [0, 1]× [0, 1]→M a homotopy from γ (that is h(λ, 0) = γ(λ)).

Then h can be lifted to a homotopy h̃ : [0, 1]× [0, 1]→ X from γ̃.
Moreover, if two paths ω1, ω2 : [0, 1] → X are given such that π ◦ ω1(µ) = h(0, µ) and

π ◦ ω2(µ) = h(1, µ), then h̃ can be found such that h̃(0, µ) = ω1(µ) and h̃(1, µ) = ω2(µ).

EXAMPLE 3.5. Note that any locally trivial fibration π : X → [0, 1] has a section s :
[0, 1]→ X such that s(0) = x0 for any x0 ∈ π−1(0) ⊂ X . Consider the constant map γ(λ) = 0
and fix a lifting γ̃(λ) = x0. The retraction h : [0, 1] × [0, 1] → [0, 1], h(λ, µ) = λµ can be
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lifted using the Homotopy Lifting Property 3.4. Then s(λ) = h̃(λ, 1) is a section such that
s(0) = h̃(0, 1) = γ̃(0) = x0.

EXAMPLE 3.6. Any locally trivial fibration π : X → [0, 1] is in fact a trivial fibration.
In order to prove this, note that one can patch trivializations as follows. Suppose that ϕ1 :
π−1([a, b]) → [a, b] × F and ϕ2 : π−1([b, c]) → [b, c] × F are trivializations of π (resp.) on
U1 ⊃ [a, b] and U2 ⊃ [b, c] restricted to [a, b] ⊂ [0, 1] and [b, c] ⊂ [0, 1] (resp.). Note that
ψa := ϕ1 ◦ ϕ−1

2 |{b}×F is an automorphism of F . One can build the following isomorphism
ϕ : π−1([a, c])→ [a, c]× F such that:

ϕ(x) :=

{
ϕ1(x) if x ∈ π−1([a, b])

(ϕ2,1(x), ψa ◦ ϕ2,2(x)) if x ∈ π−1([b, c]).

Consider a finite covering U := {U1 = [α1 = 0, β1), U2 = (α2, β2), ..., Un = (αn, βn = 1]},
where the fibration trivializes and define a0 = 0, βi < ai < αi+1, (i = 2, . . . , n − 1), an = 1.
Using the paragraph above, one can patch the trivializations to obtain the trivialization ϕ :
π−1([0, 1]) = X → [0, 1]× F .

Even though it is true that every locally trivial fibration has homeomorphic fibers, the con-
verse is not true, as we will see later. In general, proving that a certain map with homeomorphic
fibers is a locally trivial fibration is not an easy task. The main tool in our context is the follow-
ing fundamental result (cf. [28, 47]).

THEOREM 3.7 (Ehresmann’s Fibration Theorem). Any proper submersion π : X → M is
a locally trivial fibration. Moreover, if B ⊂ X is a closed submanifold such that π|B is still a
proper submersion, then π|X\B is also a locally trivial fibration.

4. Unbranched Coverings, Branched Coverings, and Monodromy

We will briefly discuss the notion of unbranched and branched coverings as both, a moti-
vation and a first approximation to braid monodromy. Conditions for the existence of branched
coverings of smooth lines and surfaces ramified along a given locus has been a classical problem
that becomes a common place for (low dimensional) Topology, Algebraic Geometry, (inverse)
Galois Theory, and Geometry. The main results of this section can be found in much more
detailed in [57].

4.1. Unbranched Coverings.

DEFINITION 4.2. An unbranched covering is a locally trivial fibration whose fiber is a
discrete subset.

EXAMPLE 4.3. The map π : B∗ → B∗, defined as π(z) = ze from the punctured disc to
itself is a finite unbranched covering whose fiber is a finite set of e elements. In particular,
π−1(ze) = {ξiez | i = 0, ..., e− 1}, where ξ := exp

(
2π
√
−1
e

)
.

Analogously, the map π : Bn−1 × B∗ → Bn−1 × B∗ defined as π(z1, ..., zn−1, zn) =
(z1, ..., zn−1, z

e
n) is also an unbranched covering whose fiber is a finite set of e elements.
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The following result classifies unbranched coverings.

THEOREM 4.4. Let M be a locally contractible topological space. Then the following
holds:

(1) For any unbranched covering π : X → M , the induced morphism π∗ : π1(X, x0) →
π1(M,π(x0)) is a monomorphism.

(2) Conversely, for any subgroup G < π1(M) there exists a covering π : X → M such
that G = π∗(π1(X)).

(3) Two coverings π : X →M , π′ : X ′ →M are equivalent if and only if π∗(π1(X, x0)) <
π1(M, q0) and π′∗(π1(X ′, x′0)) < π1(M, q0) are conjugate of each other (for some
x0 ∈ X and x′0 ∈ X ′ such that q0 = π(x0) = π′(x′0)).

(for a proof of Theorem 4.4 see any basic textbook on Algebraic Topology, for instance
see [75]).

EXAMPLE 4.5. Note that Example 4.3 induces the following:

π1(B \ {0}) = Zγ π∗
↪→ = π1(B \ {0}) = Zγ,

where the map is given by π∗(γ) = eγ. This corresponds to the inclusion Ze < Z.
Analogously, the map π : Bn−1×B∗ → Bn−1×B∗ defined as π(z1, . . . , zn) = (z1, . . . , zn−1, z

e
n)

induces the following:

π1(Bn−1 × B∗) = Zγ π∗
↪→ = π1(Bn−1 × B∗) = Zγ,

where the map is also given by π∗(γ) = eγ. This corresponds to the inclusion Ze < Z as shown
below.

(z1, . . . , zn−1, zn)

7→

(z1, . . . , zn−1, z
e
n)

zn = 0

γ
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4.6. Monodromy of Unbranched Coverings. Any unbranched covering π : X → M is,
by definition, a locally trivial fibration whose fiber is a discrete set S := π−1(q0). There is a
monodromy action of π1(M, q0) on S as follows.

Let γ : [0, 1]→M be a closed path in π1(M, q0). One has the following diagram

π−1(γ) = X̃ ↪→ X

↓ π̃ ↓ π
[0, 1]

γ−→ M

According to Example 3.6, π̃ is a trivial fibration. The trivialization of π̃ defines a bijection
γ : S → S. In other words, for any given x0 ∈ S one can construct a section sx0 : [0, 1] → X̃
such that sx0(0) = x0 (see Example 3.5), then π̃(x0) = sx0(1) ∈ S.

EXAMPLE 4.7. Finally, in order to understand the monodromy of the map given in Exam-
ples 4.3 and 4.5 consider the path γ(λ) := ze exp(2π

√
−1λ) ∈ π(B∗, ze) which generates this

fundamental group. Note that sz(λ) = z exp
(

2π
√
−1λ
e

)
is the section constructed above and

hence sz(1) = z exp
(

2π
√
−1
e

)
= ξz is the image of z by the monodromy of γ. Analogously,

note that sξiz(λ) = ξiz exp
(

2π
√
−1λ
e

)
and hence

γ : S = {ξiz | i = 0, ..., e− 1} → S

ξiz 7→ ξi+1z

defines the monodromy of γ on S, which is just a cyclic transformation of order e.

4.8. Branched Coverings. In this section we will focus on the study of branched coverings
of complex manifolds.

DEFINITION 4.9. Let M be an m-dimensional (connected) complex manifold. A branched
covering of M is an m-dimensional irreducible normal complex space X together with a sur-
jective holomorphic map π : X →M such that:

• every fiber of π is discrete in X ,
• the set Rπ := {x ∈ X | π∗ : Oπ(x),M → Ox,X is not an isomorphism} called the

ramification locus, and Bπ = π(Rπ) called the branched locus, are hypersurfaces of
X and M , respectively,
• the map π| : X \ π−1(Bπ)→M \Bπ is an unramified (topological) covering, and
• for any q ∈ M there is a connected open neighborhood W q ⊂ M such that for every

connected component U of π−1(W ):
(1) π−1(q) ∩ U has only one element, and
(2) π|U : U → W is surjective and proper.

A branched cover π : X →M will be called Galois, (resp. finite) if π∗(π1(X \ π−1(Bπ)) is
a normal (resp. finite index) subgroup of π1(M \Bπ).

EXAMPLE 4.10. The map π : B→ B defined by π(z) = ze is a branched covering ramified
at Bπ = {0}.
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Analogously, the map π : Bn → Bn defined by π(z1, . . . , zn) = (z1, . . . , zn−1, z
e
n) is a

branched covering ramified at Bπ = {zn = 0}.

REMARK 4.11. In the context of complex manifolds, Example 4.10 is the only local situa-
tion that one can encounter (cf. [57, Theorem 1.1.8]).

The purpose of this section is to study Theorem 4.4(2) for branched coverings, that is,
what are the conditions, in terms of the monodromy or in terms of fundamental groups for the
existence of branched coverings ramified along a given divisor. In order to do so, let us develop
the key concept of meridian.

4.12. Meridians. Let M be a complex manifold, B′ an irreducible component of a hy-
persurface B ⊂ M , and b ∈ B′ a smooth point on B. By definition, this means that there
exists an open neighborhood U of b in M and a holomorphic function f on U such that
B ∩ U = {z ∈ U | f(z) = 0}. As a simple application of the Implicit Function Theorem
on f and U , there exists a change of coordinates such that U can be chosen to be V × B where
V is a polydisk and B ∩ U = V × {0}. Hence the point b ∈ B ∩ U will have coordinates
b = (b0, 0). Let γb = {b0} × {exp(2π

√
−1λ)} be a closed path centered at b̃ = (b0, 1).

DEFINITION 4.13. Under the above conditions, a closed path in π1(M \ B, q0) is called
a meridian of B′ if there is a representative γ in its homotopy class that can be written as
γ = α · γb · α−1 where α ∈ π1(M \B, q0, b̃) for a certain b ∈ B′ as above (see Figure 2).

zn = 0

γb

b̃

b

q0

α

FIGURE 2. Meridian

PROPOSITION 4.14. Any two meridians, say γ1, γ2 ∈ π1(M \B, q0), of the same irreducible
component B′ are conjugated, that is, γ2 = ωγ1ω

−1 for a certain ω ∈ π1(M \B, q0).
Moreover, the conjugacy class of a meridian coincides with the set of homotopy classes of

meridians around the same irreducible component.

PROOF. The main ingredient of this proof is that B′ \ Sing(B) is a path connected space
as long as B′ is irreducible since Sing(B) has real codimension 2 in B. Therefore consider δ
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a path in B′ from b̃2 to b̃1, where γi = αi · γbi · α−1
i , i = 1, 2 and γi are paths around bi ∈ B.

One can deform δ along the normal bundle so that δ connects b̃2 and b̃1. This way, note that
γ2 = ωγ1ω

−1 where ω = α2 · δ · α−1
1 (see Figure 3).

γb1 γb2

b̃1 b̃2

b1 b2

δ

q0

α1
α2

FIGURE 3. Conjugate meridians

The moreover part is obvious by definition of meridian. If γ = α · γb · α−1 is a meridian
decomposed as in Definition 4.13, and ω ∈ π1(M \ B, q0) then (ω · α) · γb · (ω · α)−1 also
satisfies the conditions of Definition 4.13, and hence it is a meridian of M around B′. �

4.15. Existence and construction of branched coverings: smooth case. Consider B a
non-singular hypersurface, B = D1 ∪ ... ∪ Dr its decomposition in irreducible components,
choose ē := (e1, ..., er) ∈ Nr, ei > 1 and denote D =

∑
niDi a divisor on M . Let q0 ∈M \B

base point.
Let γ1, . . . , γr ∈ π1(M \ B, q0) be meridians of the irreducible components of B. The

elements γe11 , ..., γ
er
r ∈ π1(M \B, q0) normally generate a subgroup

Jē := N(γe11 , ..., γ
er
r ) / π1(M \B, q0).

According to Proposition 4.14, Jē does not depend on the choice of the meridians.

DEFINITION 4.16. Under the above notation, π is said to ramify (resp. ramify at most)
along D if B is the ramification locus of π and ei coincides with (resp. is a multiple of) the
ramification index of π at Di.

A branched cover π ramified along D is said to be maximal if it factors through any other
branched cover π′ ramified at most alongD, that is, there exists a holomorphic map ϕ : X → X ′

such that:
Xyπ ↘ ϕ

X ′

↙ π′

M
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is a commutative diagram.

REMARK 4.17. Note that if π : X → M is a branched covering ramified along D, then
γei
i can be lifted to a meridian of π−1(Di) (see Remark 4.11 and Example 4.5). Therefore
Jē / π1(X \ π−1(B), q0).

CONDITION 4.18. We say thatK < π1(M\B) satisfies this condition if, given any meridian
γi of Di, one has that γdi ∈ K implies d ≡ 0 (mod ei) ∀ 1 ≤ i ≤ r.

The following result can be found in [57, Theorem 1.2.7]. It characterizes the branched cov-
ers of a complex manifold ramified along a smooth hypersurface with prescribed ramification
indices and it is a partial equivalent of Theorem 4.42.

THEOREM 4.19. There is a natural one-to-one correspondence between

(2)
{
K

f.i

/ π1(M \B) | K ⊃ Jē
satisfying (4.18)

}
↔
{
π : X →M

Galois, finite,
ramified along D

}/
∼ .

Moreover, there is a maximal Galois covering XD of M ramified along D iff

Kπ =
⋂

Kas in (2)

K
f.i

/ π1(M \B)

satisfies (4.18).

Note that we use K
f.i

/ π1(M \ B) for finite index normal subgroup. As a consequence
of Theorem 4.19 one has the following classical result, for compact complex manifolds of
dimension 1, part of which is known as the Riemann Existence Theorem. Consider M g a
compact complex manifold of dimension 1, that is, a Riemann surface and Zn ⊂M g a finite set
of n points in M g.

THEOREM 4.20. Any monodromy action π1(M g \Zn)→ Σs can be realized by a branched
covering of the Riemann surface M g.

PROOF. Let K = ker (π1(M g \ Zn)
µ→Σs). For any meridian γz of an element of z ∈ Zn,

consider µ(γz) ∈ Σs. Since Σs is finite, the order of µ(γz), say ez, is also finite. Define
B = {z ∈ Zn | ez > 1} and D =

∑
z∈B ezz. Note that K

f.i

/ π1(M \ B) and K ⊃ Jē
by construction. All one needs to check is condition (4.18), but this is also immediate. If
γdz ∈ K, then µ(γz)

d = 1. Therefore ez|d, since ez is the order of µ(γz). Finally, one can apply
Theorem 4.19, since B is a smooth hypersurface. �

4.21. Existence and construction of branched coverings: general case. We will follow
the notation introduced in the previous item. Consider B a (possibly singular) hypersurface,
B = D1 ∪ ... ∪Dr its decomposition in irreducible components, choose ē := (e1, ..., er) ∈ Nr,
ei > 1 and denote D =

∑
niDi a divisor on M . Let q0 ∈M \B base point.

Let γ1, . . . , γr ∈ π1(M \B) be meridians of the irreducible components of B and define Jē
as above.

In addition, for any q ∈ SingB one can consider the inclusion of a local neighborhood of
q in B, say iq : W q \ B ↪→ M \ B. By the special structure of analytic singularities (see [53,
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Theorem 2.10]), it turns out that iq does not depend on W q for a small enough neighborhood.
Therefore, given any subgroup K < π1(M \B) one can define Kq := i−1

q (K).

CONDITION 4.22. We sayK/π1(M\B) satisfies this condition if, for any point q ∈ SingB,
Kq

f.i

/ π1(W \B).

It is reasonable, but not so obvious anymore, that given a branched cover π : X → M
ramified along D, then K = π∗(π1(X \π−1(B))) satisfies 4.22 (see [57, Theorem 1.3.8] or [37,
p.340] for a proof).

THEOREM 4.23. There is a one-to-one correspondence:
(3){

K
f.i

/ π1(M \B) | K ⊃ Jē satisfying
(4.18) and (4.22)

}
↔
{
π : X →M

Galois, finite,
ramified along D

}/
∼ .

Moreover, there is a maximal Galois covering XD of M ramified along D iff

Kπ =
⋂

Kas in (3)

K
f.i

/ π1(M \B)

satisfies (4.18) and (4.22).

This will allow for a general study of branched covers of P2 ramified along plane curves,
which is the classical problem, already stated by Enriques [29], Zariski [76, 77], and many
others, known as the multiple plane problem. The original problem was stated as follows:

PROBLEM 4.24. Enriques-Zariski Problem [76] Does an algebraic function z of x and y
exist, possessing a preassigned curve f as branched curve?

EXAMPLE 4.25. Consider M = P2, D1 = {ZY 2 = X3}, D2 = {Z = 0}. Let us study the
possible Galois covers of P2 ramified along D = e1D1 + e2D2.

In order to do so, one needs to compute the fundamental group π1(P2 \ (D1 ∪ D2)). This
will be presented in a more systematic way in Chapter §2. You can go ahead read it and come
back, or just bare with me a couple of calculations and hopefully everything will be understood
later.

The space P2 \ (D1 ∪D2) is nothing but C 2 \ {y2 = x3}, where C 2 = P2 \D2 is one of the
standard affine charts of P2. The identification is given as (x, y) 7→ [X : Y : 1], whose inverse
is [X : Y : Z] 7→

(
X
Z
, Y
Z

)
.

Avoiding tangencies at infinity will make our life easier in this case, so one can change the
affine coordinate system and simply work with the curve C := {27y2 = 4(x − y)3}. Since
this transformation is continuous. The fundamental group is not affected by that. First of all
note that C has only one singular point at (0, 0). Consider the projection (x, y) 7→ x, and note
that, when restricted to C, it produces a cover of C branched along x = 0 (the projection of the
singular point) and x = 1 (the tangency shown by the blue line). Precisely the non existence of
vertical asymptotes will allow us to take big disks Dx, Dy such that (C 2, D1) is a deformation
retract of (Dx × Dy, D ∩ (Dx × Dy)). On the other hand, consider the disk D := {1

2
} × Dy

shown below.
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y2 = x3 27y2 = 4(x− y)3

γ̃2

γ2

γ1

Note that D1 ∩ D = {p1 := (1
2
,−5

2
+ 3

√
3

2
), p2 := (1

2
,−5

2
− 3

√
3

2
), p̃2 := (1

2
,−1

4
)}. Consider

γ1, γ2, γ̃2 meridians around p1, p2, and p̃2 respectively. One can check that these meridians
satisfy the following relations as closed paths in the total space C 2 \D1:

γ̃2 = γ2

γ2γ1γ2 = γ1γ2γ1

Moreover,

π1(P2 \ (D1 ∪D2)) = 〈γ1, γ2, γ∞ : γ2γ1γ2 = γ1γ2γ1 = γ∞〉,

where γ∞ is a meridian of D2, the line at infinity of P2.
According to Theorem 4.23 we need to study subgroups Jē normally generated by γe11 , γe12 ,

and γe2∞ for ē = (e1, e2) ∈ N2. Equivalently, one can study quotients of π1(P2 \ (D1 ∪D2)) of
the form

Gē = 〈γ1, γ2, γ∞ : γ2γ1γ2 = γ1γ2γ1 = γ∞, γ
e1
1 = γe12 = γe2∞ = 1〉.

Such subgroups are well known (c.f. [23]) andGē is finite if and only if ē = (2, 2), (3, 4), (4, 8),
(5, 20) or (6, 2). In which cases one has the following result (c.f. [57, Propositions 1.3.27 and
1.3.29]):
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THEOREM 4.26. In the following cases there is a maximal Galois covering of P2 ramified
along D:

(e1, e2) G = π1(P2 \D)/Jē |G|

(2, 2) Σ3 6

(3, 4) SL(2,Z/3Z) 24

(4, 8) Σ4 n Z/4Z 96

(5, 20) SL(2,Z/5Z)× Z/5Z 600

However, there is no maximal Galois cover of P2 ramified along D = 6D1 + 2D2.

Analogously to the Riemann Existence Theorem 4.20, one has the following result on the
existence of branched covers ramified along divisors with prescribed ramification index.

THEOREM 4.27. Let B = D1 ∪ ... ∪Dn be a projective manifold. Then any representation
of π1(M \ B) on a linear group GL(r,C ) such that the image of a meridian γi has order ei,
gives rise to a Galois cover of M branched along D = e1D1 + ...+ enDn.

The proof of this result is similar to the one presented here for Theorem 4.20 and it relies on
the fact that π1(M \ B) is finitely generated, which is a consequence of the Zariski Theorems
of Lefschetz Type (see §1.7) and §2.

4.28. Chisini Problem. In this context, another interesting motivation is the following
problem:

PROBLEM 4.29. Chisini Problem [19] Let S be a non-singular compact complex surface,
let π : S → P2 be a finite morphism having simple branching, and let B be the branch curve;
then “to what extent does the pair (P2, B) determine π”?

Partial results have been given to this problem for generic coverings [55, 44, 43, 58], or
special types of singularities [42, 52], but a global answer to this is yet to be determined. Certain
restrictions, like the fact that the degree of the covering has to be ≥ 5, are also known [54, 15].

5. Monodromy Action on Fundamental Groups

Probably the first appearance in the literature of this fact is due to O.Chisini [18], and has
been implicitly used by V.Kampen [74] and O.Zariski [76] in the context of computing the
fundamental group of plane projective curve complements. The first systematic approach for
the case of plane curves is given by B.Moishezon [55] with the purpose of studying the Chisini
Conjecture.

In order to give a general definition in our setting let us recall the notion of section.

DEFINITION 5.1. Let π : X → M be a locally trivial fibration. We say that a morphism
s : M → X is a section if π ◦ s = 1M .
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Associated with a locally trivial fibration π : X → M and a section s : M → X there
is a right action of the groupoid {π1(M, p1, p2)} on the groups {π1(F, q0)}, called monodromy
action of M on F . More specifically, given a path γ ∈ π1(M, p1, p2) (s(p1) = (p1, q1), s(p2) =
(p2, q2)) and a closed path α ∈ π1(F, q1), one obtains another closed path αγ ∈ π1(F, q2).

In addition, if γ1 ∈ π1(M, p1, p2) and γ2 ∈ π1(M, p2, p3), with s(pi) = (pi, qi), then

α(γ1γ2) = (αγ1)γ2 .

5.2. Construction of the monodromy. Consider γ an open path representing an element
in π1(M, p1, p2). The following diagram comes from restriction:

π−1(γ) = X̃ ↪→ X

↓ π̃ ↓ π
[0, 1]

γ−→ M

Note the following:

(1) The map π̃ is a fibration which, by Example 3.6, is trivial, and hence consider a trivi-
alization [0, 1]× F ϕ−→X̃ and a section s̃ := ϕ−1 ◦ s ◦ γ : [0, 1]→ [0, 1]× F (see (4)).

(2) Any path α ∈ π1(F, q1) can be regarded as a path α : [0, 1] → {0} × F , based at
s(p1) = (p1, q1), and it is a lifting of 0 : [0, 1]→ [0, 1] the 0 constant path (see (4)).

(3) By the Homotopy Lifting Property 3.4, the homotopy h : [0, 1]×[0, 1]→ [0, 1] given by
h(λ, µ) = µ, which takes the constant zero path 0 to the constant path 1 can be lifted to
h̃ : [0, 1]× [0, 1]→ [0, 1]×F such that h̃(λ, 0) = α(λ) and h̃(0, µ) = h̃(1, µ) = s̃(µ).

(4)
[0, 1]× F ϕ−→ X̃ ↪→ X

α↗ ↓ pr1 ↓ π̃ ↓ π
[0, 1]

0−→ [0, 1] = [0, 1]
γ−→ M

DEFINITION 5.3. The closed path αγ(λ) := ϕ ◦ h̃(λ, 1) ∈ π1(F, q2) constructed above is
called the monodromy action of γ over α.

REMARK 5.4. Intuitively, α is being pushed fiberwise along γ and keeping the base point
along the section s.

One needs to check that the previous construction is independent of ϕ, the choice of repre-
sentative of γ and α. This is all a consequence of the Homotopy Lifting Property.

Note that, according to our discussion, αγ = s(γ)−1αs(γ) (see Figure 4)

The following example will clarify the previous construction.

EXAMPLE 5.5. The trivial case occurs when q0 := q1 = q2, the fibration π is trivial, and
the section s : M → M × F is given by s(p) = (p, q0). In this case, the monodromy action is
trivial.
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α αγ

s(γ)

s(γ)

h(λ, µ)

FIGURE 4.

EXAMPLE 5.6. The simplest non-trivial case arises when q0 := q1 = q2, the fibration
π is trivial, but the section is not constant on the second coordinate. For instance, consider
[0, 1]× F pr1→ [0, 1], where F = D \ {(0, 1

2
), (0,−1

2
)}, (see Figure 5)

F

FIGURE 5. Fiber F

If γ represents the identity on the base, p1 = 0, p2 = 1, q0 = (0, 1), and s(λ) =
exp(2π

√
−1λ) is a section, then Figure 6 describes this monodromy action on two closed paths

α1, α2.

EXAMPLE 5.7. Consider F as before, defineX = S1×F with a non-trivial section s : S1 →
X given by s(λ) := (λ, λ) (note that S1 ⊂ F ). Note that ϕ can be given as the exponential map.
In particular, the trivialization ϕ along γ is not trivial (see Figure 7).

where s̃ is just the section ϕ−1 ◦ s ◦ γ : I → I × F .
In this case, the closed paths α1, α2 shown in the previous example are transformed as

shown in Figure 8,

that is, αγ1 = α2, αγ2 = α2α1α
−1
2 .
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M × F
α1

αγ1α2

αγ2

M
γ

s(γ(1
2
))

s(γ(0)) s(γ(1))

FIGURE 6. Monodromy Action

F

FIGURE 7. Trivialization

α1

α2

αγ2

αγ1

FIGURE 8. Monodromy Action

6. Mapping Class Groups and Braid Action

The group of oriented isomorphisms of a compact orientable surface S of genus g fixing a
set of n points up to homotopy relative to its boundary is called the mapping class group of Sgn,
and will be denoted by M(Sgn).
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A classical interpretation of the geometric braid group on n-strings (see Example 1.5) is the
following.

THEOREM 6.1 ([12]). There is an isomorphism between the geometric group of braids on
n-strings and the mapping class group of the disk D fixing a set of n points, that is,

M(Dn) = π0(Diff+(Dn, ∂D)) ∼= π1(Yn) = Bn.

This allows one to interpret the action of the braid group on free groups as a monodromy
action.

REMARK 6.2. The proof of Theorem 6.1 usually involves proving another interesting result:
Diff+(Dn, ∂D) is contractible, namely, any diffeomorphism in Diff+(Dn, ∂D) is isotopic to the
identity map 11D.

The previous Remark implies the following.

PROPOSITION 6.3. The set Diff+(Dn, ∂D) is naturally in bijection with the set of trivializa-
tions along [0, 1] of locally trivial fibrations of fiber D \ Zn.

Note that the trivializations are nothing but the isotopy that joins a diffeomorphism and the
identity.

Using Proposition 6.3 and Theorem 6.1 one can consider the action, via monodromy, of a
braid in Bn on π1(D \ Zn) = Fn = Zg1 ∗ ... ∗ Zgn.

It is an interesting exercise to convince oneself that the monodromy action of a standard
basis σ1, . . . , σn−1 on g1 . . . , gn is given as follows:

(5) gσi
j =


gi+1 j = i

gi+1gig
−1
i+1 j = i+ 1

gi otherwise.

This is basically a consequence of Example 5.7 and Figure 8.

REMARK 6.4. Since (gn · ... · g1) = ∂D, note that one obtains (gn · ... · g1)σ = (gn · ... · g1).

EXAMPLE 6.5. Consider π : X = D∗ × D \ {y2 − xk = 0} → M = D∗, where D is the
disk centered at 0 of radius 2, defined by (x, y) 7→ x. Note that π is a proper submersion, and
hence a locally trivial fibration by the Ehresmann Fibration Theorem 3.7.

Since π1(M) = Z (Example 2.5), in order to calculate the monodromy action of the
base, it is enough to compute the braid produced by the path γ(λ) = exp(2π

√
−1λ), which

generates π1(M, 1). Note that π−1(γ(λ)) = {(exp(2π
√
−1λ), exp(π

√
−1λk))}. The braid

(exp(π
√
−1λk), λ) is depicted in Figure 9 and it can be described as σk1 .

Therefore,

gγ1 = g
σk
1

1 =

{
(g2g1)

k
2 g1(g2g1)−

k
2 if k even

(g2g1)
k−1
2 g2(g2g1)−

k−1
2 if k odd,
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1

√
−1

γ

λ = 1
k

λ = 0

λ = 1

FIGURE 9. Braid monodromy of {y2 − xk = 0}

and
gγ2 = g

σk
1

2 = g
σk+1
1

1 .

EXAMPLE 6.6. Another interesting example is the monodromy of the fibration π : X =
D∗ × D \ {yk = x} →M = D∗. Following Example 6.5 one obtains

which corresponds to the braid σ := σ1σ2 · · ·σk−1. Note that

(6) gi = gσi =

{
gk i = 1

g−1
k gi−1gk i 6= 1.

EXAMPLE 6.7. Based on Example 6.6 one can generalize this construction to study the
monodromy of the fibration π : X = D∗×D\{yq = xp} →M = D∗. It is easy to see that such
monodromy is nothing but p times the monodromy of π : X = D∗×D\{yq = x} →M = D∗,
which corresponds to the braid (σ1σ2 · · ·σq−1)p. In particular, one can recuperate the result
given in Example 6.5 for q = 2, p = k.

7. Zariski Theorem of Lefschetz Type

From the previous sections one fact seems to be worth stressing:
In order to understand coverings of M ramified along D one needs to study
π1(M \B).
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How to compute the fundamental group π1(M \ B) of a quasi-projective variety? The
following crucial result, known as the Zariski Theorem of Lefschetz Type (cf. [38, 33]) states
that it is enough to understand complements of curves on surfaces.

THEOREM 7.1 (Hamm, Goreski-MacPherson). Let M ⊂ Pn be a closed subvariety which
is locally a complete intersection of dimension m. Let A be a Whitney stratification of M and
consider B ⊂ Pn another subvariety such that B ∩M is a union of strata of A. Consider H a
hyperplane transversal to A in M \B, then the inclusion

(M \B) ∩H ↪→M \B
is an (m− 1)-homotopy equivalence.

For this reason, we will be mostly concerned about complements of projective curves in the
complex plane P2. However, it is important to stress that the general problem of computing
homotopy groups of complements to singular varieties and relating them to other invariants of
the complement is a very interesting question in and of its own (see [64, 49, 50]).





CHAPTER 2

Zariski-Van Kampen Method

Originally sketched by O. Zariski [76] and later completed by E.R.Van Kampen [74]. Later
on, D. Chéniot [16] gave a modern approach to this method. The Zariski-Van Kampen method
allow one to give a finite presentation for the fundamental group of the complement to a pro-
jective plane curve. It is hence a constructive method and in some cases it is even effective, i.e.
it has been implemented in the case of line arrangements, curves with easy singularities and
equations on the Gaussian integers Z[

√
−1] (see [14, 11]). A very nice approach to this method

can be found in the unpublished notes written by I.Shimada in [71].
We will put together several ingredients, among which, the Van Kampen Theorem is key.

1. Fundamental Group of the Total Space of a Locally Trivial Fibration

Let π : X →M be a locally trivial fibration with section s : M → X . Consider p ∈M and
x0 ∈ Fp.

THEOREM 1.1. π1(X, x0) = π1(Fp, x0) o π1(M, p), where the action of π1(M, p) on
π1(Fp, x0) is given by the monodromy of π.

PROOF. First of all note that the existence of a section implies that

π∗ ◦ s∗ : πi(M)
s∗→ πi(X)

π∗→ πi(M)

is the identity, and hence πi(M)
s∗→ πi(X) is surjective. Therefore, the homotopy exact sequence

of the fibration becomes:

1→ πi(Fp)
i∗→ πi(X)

s∗x→
π∗
πi(M)→ 1

for any i ∈ N. In particular, we are interested in i = 1. Since πi(X)
π∗→ πi(M) splits, πi(X)

endows a semi-direct product structure, that is, π1(M) = {(γ, α) | γ ∈ πi(M), α ∈ πi(Fp)} as
a set (where (γ, α) is nothing but s∗(γ)i∗(α)) and the product structure is given by

(γ1, α1) · (γ2, α2) = s∗(γ1)i∗(α1)s∗(γ2)i∗(α2) =

= s∗(γ1)s∗(γ2)s∗(γ2)−1i∗(α1)s∗(γ2)i∗(α2) =

= (γ1γ2, s∗(γ2)−1α1s∗(γ2)α2).

By Remark 5.4, s∗(γ2)−1α1s∗(γ2) = αγ21 , thus

(γ1, α1) · (γ2, α2) = (γ1γ2, α
γ2
1 α2)

is given by the monodromy action of π1(M) on π1(Fp). �

Besides Proposition 4.14, we need another basic result on meridians.
29
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PROPOSITION 1.2. Let B ⊂ M be an irreducible hypersurface in M , then the inclusion
M \ B ↪→ M induces a surjective morphism π1(M \ B) → π1(M), whose kernel is 〈γ〉, the
normal subgroup of π1(M \B) generated by a meridian of B.

PROOF. Basically, if α ∈ π1(M \ B) is such that i∗(α) = 1, then α is the boundary of a
disk, say D, in M . Since B is a hypersurface and D is compact, then (after pushing D in general
position) the intersection D ∩B is a finite number of points b1, . . . , bn (see Figure 1).

q0

B

γ̃ = ∂D

αi

γ′i bi

b′i

FIGURE 1. Kernel

Note that n ≥ 1 or else D ⊂M \B and hence γ̃ = 1 in π1(M \B). Consider disks D1, . . . ,Dn

on D such that Di ∩ B = {bi} and paths αi from q0 to b′i ∈ ∂D = γi (i = 1, . . . , n) such that
γ =

∏n
i=1 αi · γ

εi
i · α−1, where εi = ±1. Note that γ′i = αi · γi · α−1 is a meridian around B,

and hence, by Proposition 4.14 γ′i ∈ 〈γ〉, which implies γ̃ ∈ 〈γ〉. �

2. Zariski-Van Kampen Theorem

Let C ⊂ P2 be a projective plane curve given as the zeroes of a reduced homogeneous
polynomial f ∈ C [X, Y, Z] of degree d. After a suitable change of coordinates one can assume
P = [0 : 1 : 0] ∈ P2 \ C and thus one can consider the projection π : P2 \ {P} → P1 from
P . Note that, for any point z = [x0 : z0] the preimage π|C consists of a finite number of points,
precisely the roots of the one-variable polynomial f(x0, t, z0).

LEMMA 2.1. If P /∈ C, then f(x0, t, z0) ∈ C [t] has degree exactly d.

PROOF. One can write f(X, Y, Z) = aY d+Xf1(X, Y, Z)+Zf2(X, Y, Z), where degY fi <
d, i = 1, 2. By hypothesis, f(P ) = f(0, 1, 0) = a 6= 0, therefore f(x0, t, z0) = atd +
x0f1(x0, t, z0) + z0f2(x0, t, z0) has degree d as a polynomial in C [t]. �

This implies that π|C is a branched cover of P1 of degree d ramified on ∆ := {[x0 : z0] ∈
P1 | ∂tf(x0, t, z0) = f(x0, t, z0) = 0}, that is, ∆ = {DiscrimY (f) = 0}. In other words,
π|C ramifies along those points of P1 whose vertical lines above them intersect C in less than d
distinct points (see Figure 2).
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qn qn−1 · · · q2 q1

Ln Ln−1 · · · L2 L1

FIGURE 2. The projection from P

Let L := L1 ∪ · · · ∪Ln be the union of the non-generic vertical lines, that is, L := π−1(∆).
Even though π is a locally trivial fibration, there are two problems: first of all it is not so
obvious since all the fibers are very close to P and second of all, the fiber is NOT π−1([x0 :
z0]) ∼= P1 \ {P}. We would like to separate the fibers. In order to do so one can construct
another complex space X from P2 by replacing P by the P1 of lines passing through P . In
other words, each line Lq := π−1([x0 : z0]) will be compactified not by adding P , but by adding
a point Pq. Algebraically this can be done as follows. Consider UY = {[X : Y : Z] | Y 6= 0}
an affine chart of P2 containing P and define the following map ε : ŨY → UY , where ŨY =
{[X : Y : Z]× [u : v] ∈ UY ×P1 | uZ = vX}, given by the projection onto the first component
ε([X : Y : Z], [u : v]) = [X : Y : Z]. Note that

(7) ε−1([x0 : 1 : z0]) =

{
([x0 : 1 : z0], [z0 : x0]) if x0z0 6= 0

([0 : 1 : 0], [u : v]) =: E ∼= P1 if x0 = z0 = 0.

and hence ŨY \ E ∼= UY \ {P}. Since the other standard affine charts of P2 do not contain P ,
namely P /∈ UX := {[X : Y : Z] | X 6= 0}, P /∈ UZ := {[X : Y : Z] | Z 6= 0}, one can glue
the charts ŨY , UX , and UZ using the same transition functions as for UY , UX , and UZ . This way
one defines the manifold X .

Now π̃ = π ◦ ε can be extended to X as follows

π̃(P̃ ) =

{
[v : u] if P̃ = ([X : Y : Z], [u : v]) ∈ ŨY
[x0 : z0] if P = [x0 : 0 : z0].

According to (7) one can check that π̃|X\E = π|P2\{P}. Moreover, if L̃q := π̃−1([x0 : z0]),
q = [x0, z0], then

L̃q ∩ ŨY = {([tx0 : s : tz0], [z0 : x0]) | [t : s] ∈ P1, s 6= 0}
L̃q ∩ UX = L̃q ∩ UZ = {[tx0 : s : tz0] | [t : s] ∈ P1, t 6= 0}
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Hence Lq ∪ {P̃q := ([0 : 1 : 0], [z0 : x0])} and L̃q ∼= P1.
Define C̃ := ε−1(C), L̃ := ε−1(L) the preimages of C and L, respectively, by the blow-up.

Note that C̃ ∼= C by the above discussion, since P /∈ C. Also, note that π̃|C̃ is a branched cover
and π̃|(C̃∪L̃) is an unbranched cover.

Finally, π̃ is a proper submersion, and hence (by the Ehresmann’s Fibration Theorem 3.7)
a locally trivial fibration of fiber L̃q ∼= P1. Moreover, since C̃ is compact, using once again
Theorem 3.7, π̃|X\(C̃∪L̃) is also a locally trivial fibration of fiber P1 \ Zd, where Zd is a union of
d distinct points.

Summarizing:

PROPOSITION 2.2. The map π̃ : X \ (C̃ ∪ L̃)→ P1 \∆ is a locally trivial fibration of fiber
F := P1 \ Zd. Moreover, π1(X \ (C̃ ∪ L̃)) = π1(P2 \ (C ∪ L)).

PROOF. The first part is a consequence of the discussion above. For the second part, note
that the map ε induces a morphism π1(X \ (C̃ ∪ L̃))

ε∗→ π1(P2 \ (C ∪ L)). Let us show that ε∗
is an isomorphism. Note that any class in π1(P2 \ (C ∪ L)) can be described by a closed path γ
avoiding P (since we can restrict ourselves to piecewise smooth representatives as mentioned
in Remark 1.1) as shown in Figure 3.

P P

γ γ

FIGURE 3. Avoiding a zero dimensional subset

Since X \ (E ∪ C̃ ∪ L̃)
ε∼= P2 \ ({P} ∪ C ∪L), there exists γ̃ ∈ π1(X \ (E ∪ C̃ ∪ L̃)) such that

ε∗(γ̃) = γ, which shows that ε∗ is surjective. Analogously, ε∗(γ̃) is trivial in π1(P2 \ (C ∪ L))
for some γ̃ ∈ π1(X \ (C̃ ∪ L̃)) if ε∗(γ̃) = ∂D for a certain disk in P2 \ (C ∪ L). As above, if D
intersects P , one can find a homotopic representative avoiding P , that is, D ⊂ P2\({P}∪C∪L).
Again, since X \ (E ∪ C̃ ∪ L̃)

ε∼= P2 \ ({P} ∪ C ∪ L), there exists D̃ ⊂ X \ (E ∪ C̃ ∪ L̃) such
that ε(D̃) = D and ∂D̃ = γ̃, which shows that γ̃ is trivial in π1(X \ (E ∪ C̃ ∪ L̃)) and hence in
π1(X \ (C̃ ∪ L̃)). This shows that ε∗ is injective. �

As shown in Figure 4, one can choose g1, . . . , gd ∈ π1(F ) meridians around Zd such that
gd · · · g1 = 1, that is,

π1(F ) = 〈g1, . . . , gd : gd · · · g1 = 1〉
(see Example 2.6). Analogously, let us denote by γ1, . . . , γn ∈ π1(P1 \∆) meridians around ∆
such that γn · · · γ1 = 1, that is,

π1(P1 \∆) = 〈γ1, . . . , γn : γn · · · γ1 = 1〉 = 〈γ1, . . . , γn−1〉.
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γn γn−1 · · · γ2 γ1

x0

z0

g1

...
g2

gd

FIGURE 4. Choices of meridians

Under these conditions one has the following.

PROPOSITION 2.3.

〈g1, . . . , gd, γ1, . . . , γn : γn · · · γ1 = 1, gd · · · g1 = 1, g
γj

i = γ−1
j giγj, j = 1, . . . , n− 1〉

is a finite presentation of π1(P2 \ (C ∪ L)).

PROOF. It is an immediate consequence of Theorem 1.1 and Proposition 2.2. For the sake
of simplicity, note that we have replaced s∗(γj) simply by γj . The relations coming from the
monodromy should read gγj

i = s∗(γj)
−1gis∗(γj) to be precise. �

Finally, one can give a presentation of π1(P2 \ C) as follows.

THEOREM 2.4 (Zariski-Van Kampen Theorem). Let C ⊂ P2 be a curve and gi, γj meridians
as constructed above. Then

〈g1, . . . , gd : gd · · · g1 = 1, g
γj

i = gi, j = 1, . . . , n− 1〉
is a finite presentation of π1(P2 \ C).

PROOF. After using Proposition 1.2 for each irreducible component of L, one obtains the
following

π1(P2 \ C) = 〈g1, . . . , gd, γ1, . . . , γn−1 : gd · · · g1 = 1, g
γj

i = γ−1
j giγj〉/〈γ1, . . . , γn−1〉 =

= 〈g1, . . . , gd : gd · · · g1 = 1, g
γj

i = gi〉.
�

REMARK 2.5. This is a first approach to a very fruitful combination of methods, which
appears in several instances in singularity theory. For instance, a similar idea can be applied to
higher homotopy groups as nicely presented by Chéniot-Libgober in [17].

As an immediate application of this Theorem one has the following.
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COROLLARY 2.6. Let C = C1∪...∪Cr the decomposition of C in its irreducible components,
then

H1(P2 \ C) = Zr−1 ⊕ Z/τ,
where di := deg C and τ is the greatest common divisor of d1, . . . , dr.

PROOF. We will use the fact that H1(X) = π1(X)/[π1(X), π1(X)], that is, the first ho-
mology group H1(X) of a topological space X is the abelianization of π1(X) its fundamental
group (see for instance [56, Lemma 11.69.3]).

First of all, by Proposition 4.14, we know thatH1(P2\C) is a quotient of Zr, since π1(P2\C)
is generated by meridians of the irreducible components of C and any two meridians of the same
irreducible component are conjugated.

Finally, and this is the key here, Theorem 2.4 specifies that the quotient of Zr mentioned
above comes from abelianizing the relations gd · · · g1 = 1, gγj

i = gi, j = 1, . . . , n − 1. By
construction of the monodromy, the element gγj

i is a meridian around the same irreducible
component as gi, hence these relations are trivial in H1. The only relation left is gd · · · g1 = 1.
Note that in the set {g1, . . . , gd} there are exactly di meridians of the component Ci, hence, after
abelianizing, gd · · · g1 = 1 becomes

(8) d1m1 + · · ·+ drmr = 0,

where m1, . . . ,mr represent cycles around the component C1, . . . , Cr respectively. Therefore

H1(P2 \ C) =
Zm1 ⊕ · · · ⊕ Zmr

d1m1 + · · ·+ drmr

,

which has rank r − 1 and non-trivial torsion τ if and only if τ = (d1, ..., dr) > 1. �

REMARK 2.7. The projection π used for the Zariski-Van Kampen method as presented here
is only required to be performed from a point P /∈ C. Originally, π was asked to be generic in
the following sense:

(1) Any line L through P contains at most one singular point of C or one tangency,
(2) no lines through P are higher order tangents at a smooth point of C, and
(3) any line L through P that intersects C at a singular point Q satisfies that multQ(C) =

multQ(L, C).
Geometrically, this means that the following cases are avoided in the locally trivial fibration π:

Obviously, one can always chose P so that π is generic, since the set of higher order tangencies
at C, lines containing more that one singular point, bitangencies, and lines in the tangent cone
of a singularity of C is finite, so P can be chosen outside this set and C.

The following, very natural, result assures that if two curves can be joint by a smooth path
of equisingular curves, then their fundamental groups are isomorphic (for a proof see [14]).

PROPOSITION 2.8. All curves in the same connected family of equisingular curves are iso-
topic.
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FIGURE 5. Non-generic projections

One also has results on how the fundamental group of a family of equisingular curves
changes when degenerating onto other curves outside the equisingular locus.

PROPOSITION 2.9 ([25]). Let {Ct}t∈(0,1] be a continuous family of equisingular curves de-
generating onto the reduced curve C0. Then there is a natural epimorphism

π1(P2 \ C0)→ π1(P2 \ Ct).

In particular,

COROLLARY 2.10. If C can be continuously degenerated onto a curve with abelian funda-
mental group, then π1(P2 \ C) is abelian as well.

Other interesting degeneration results can be found in [5].

3. Basic examples

3.1. The fundamental group of smooth and nodal curves. First, we will compute the
fundamental group of the curve C := {F (X, Y, Z) = Xd + Y d − Zd = 0} using the Zariski-
Van Kampen method described above.

(1) Choose a point P = [0 : 1 : 0] /∈ C and project from P .
(2) The projection π : P2 \ C → P1 ramifies along ∆ := {F = Xd + Y d − Zd = FY =

dY d−1 = 0} = {[ξid : 0 : 1] | ξ = exp
(

2π
√
−1
d

)
}. After blowing up, the projection

π̃|π̃−1(P1\∆) is a locally trivial fibration of fiber P1 \ Zd. Note that this projection is
highly not generic, since each non-generic fiber, say L̃i = π̃−1([ξid : 1]), intersects C̃
only at [ξid : 0 : 1], that is, L̃i is a tangent of C̃ of order d.

(3) Fix a base point on the base, say [0 : 1]
(4) π1(P1 \∆) = 〈γ1, . . . , γd : γd · · · γ1 = 1〉, where γi is a meridian of ξid based at 0.

ξid
0γi

(5) Choose a basis on the fiber L0 := π̃−1([0 : 1])
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(6) In order to compute the monodromy along γi, one can decompose γi = αi · γ′i · α−1
i

where αi is the straight path joining 0 and a point close to ξid and γ′i is a loop around
ξid. Note that the monodromy along αi only produces a contraction of the points on the
fiber.

(7) The monodromy along γ′i is given in Example 6.6 as σ1 · · ·σd−1 (independently of i).
(8) From (6) one obtains:

gi = g
(σ1σ2···σd−1)
i =

{
gd i = 1

g−1
d gi−1gd i 6= 1,

hence g2 = g−1
d g1gd = g1, and by induction g1 = ... = gd = g. Finally, g1 · · · gd = 1

becomes gd = 1. Therefore,

(9) π1(P2 \ C) = 〈g : gd = 1〉 = Z/dZ.

Note that all necessary relations are obtained by the monodromy action of any meridian γi.
This can be further improved.

THEOREM 3.2. If C is an irreducible curve with a maximal order tangent, that is, if there
exists a line L such that L ∩ C = {Q}, then π1(P2 \ C) is abelian.

PROOF. Consider P ∈ L, P 6= Q and project from P . Since L becomes a non-generic fiber
of the projection, one can fix a base point x0 on P1 sufficiently close to the projection of L, say
z1. The monodromy around z1 is given as in Example 6.6. The computation above shows that
the relations obtained from this monodromy are enough to verify that π1(P2 \ C) is abelian. �

Another application of the computations above.

THEOREM 3.3. If C is a smooth curve of degree d, then π1(P2 \ C) = Z/dZ.



3. BASIC EXAMPLES 37

PROOF. The family of smooth curves of degree d is a quasi-projective variety in the projec-
tive space PN of dimension N =

(
d−2

2

)
, where N + 1 is the number of coefficients of a generic

homogeneous polynomial of degree d in C [X, Y, Z]. Therefore it is path connected, and, by
Proposition 2.8, it is enough to compute the fundamental group of a particular smooth curve of
degree d. The curve C defined above is smooth since

Sing C = {[X : Y : Z] ∈ P2 | FX = FY = FZ = 0} =

= {[X : Y : Z] ∈ P2 | Xd−1 = Y d−1 = Zd−1 = 0} =

= {[X : Y : Z] ∈ P2 | X = Y = Z = 0} = ∅.
Hence (9) gives the required fundamental group. �

The simplest singularities a curve can have are nodes (aka. ordinary double points), that is,
singular points that admit local equations of the form x2 + y2, where x and y are generators of
the local ring OP2,P . Note that x2 + y2 is equivalent to x2 − y2 = (x− y)(x+ y) by a complex
change of coordinates. In other words, a node locally looks like a product of smooth transversal
branches (locally meaning inside a neighborhood of the point, as shown below).

A more general result regarding nodal curves was already given by Zariski [76, Theorem 7].

THEOREM 3.4 (Zariski, Fulton, Deligne, Salvetti). Any nodal curve has an abelian funda-
mental group.

REMARK 3.5. As in our proof of Theorem 3.3 Zariski’s proof of Theorem 3.4 depended on
the irreducibility of the moduli spaces of nodal curves (there are different strata depending on
the number and degrees of irreducible components). Such result had been claimed by Severi [70,
Anhang F], and hence the proof given by Zariski was completed. However, later on, a gap
was found in Severi’s proof and hence Zariski’s result was not complete anymore. Severi’s
assertion became Severi’s problem and the original result by Zariski turned into the Zariski
conjecture on nodal curves and they remained open until 1980, when Fulton [32] first and then
Deligne [24] proved the Zariski conjecture on nodal curves (giving algebraic and topological
proofs respectively) without using Severi’s result. Finally, in 1986, J. Harris [39] solve the
Severi problem. For a further study of such problems see [61, 72, 34, 35, 36] among others.

One can also find more recent proofs of this result by means of monodromy computations
(see M.Salvetti [66]).

Also, generalizations of this result have been proved by M.V.Nori in [59].

The same ideas in Deligne’s proof lead to the following result.

PROPOSITION 3.6. If C1 and C2 are two curves intersecting transversally (only in ordinary
double points), then

π1(P2 \ (L ∪ C1 ∪ C2)) = π1(P2 \ (L ∪ C1))⊕ π1(P2 \ (L ∪ C2)),
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where L is a line tranversal C1 ∪ C2.

3.7. Further examples. By the previous sections we know how to compute fundamental
groups of all curves of degrees one, two, and three:

(1) Degree one: π1(P2 \ L) = {1} (since L is smooth and of degree one)
(2) Degree two:

(a) π1(P2 \ (L1 ∪ L2)) = Z, where Li is a line (L1L2 is a nodal curve union of two
smooth curves of degree one).

(b) π1(P2 \ Q) = Z2, where Q is a conic (smooth curve of degree two).
(3) Degree three:

(a) π1(P2 \ (L1 ∪ L2 ∪ L3)) = Z2, where Li, i = 1, 2, 3, are lines in general position
(L1L2L3 is a nodal curve union of three smooth curves of degree one).

(b) π1(P2 \ (L1 ∪ L2 ∪ L3)) = Z ∗ Z, where Li, i = 1, 2, 3, are concurrent lines.

PROOF. Projecting from a point outside the lines one realizes that there is
only one special fiber. Since Theorem 2.4 involves the monodromy action of all
meridians but one, then there are no relations coming from monodromy, that is,
π1(P2 \ (L1 ∪ L2 ∪ L3)) = 〈g1, g2, g3 : g3g2g1 = 1〉 = Z ∗ Z. �

(c) π1(P2 \ (Q∪ L)) = Z, where Q is a conic and L is a line transversal to Q.
(d) π1(P2 \ (Q∪ L)) = Z, where Q is a conic and L is a tangent line to Q.

PROOF. Projecting from a point P on L one realizes that there are two special
fibers: L and L′ both tangent lines toQ through P . Consider γ a meridian around
the projection of L. Note that the monodromy induced by γ is the only necessary
to obtain the required presentation. By Proposition 2.3 one obtains the following
π1(P2 \ (Q ∪ L)) = 〈g1, g2, γ : g2g1 = 1, gγ1 = γ−1g1γ, g

γ
2 = γ−1g2γ〉. Since

gγ1 = g2, g2 = g2g1g
−1
2 by Example 6.6, one obtains the required result. �

(e) π1(P2 \ C3) = Z3, where C3 is a smooth, nodal, or cuspidal cubic.

PROOF. Since C3 has an inflection point, one simply applies Theorem 3.2. �

Probably the easiest example of non-abelian fundamental group of an irreducible quartic
(i.e. a curve of degree four) is the three-cuspidal quartic. Zariski [78] showed this in a more
general setting using a brilliant argument. Let us sketch the proof.

THEOREM 3.8. Let C be a (rational) curve of degree 2d, with 2(d − 1)(d − 2) nodes and
3(d− 1) cusps. Then π1(P2 \ C) = Bd+1(P1) (see Example 1.5).

PROOF. Such curves are generic plane sections of the space ∆̄d+1 of homogeneous poly-
nomials of degree d + 1 in two variables with multiple roots, described in Example 1.5. The
reason is the following: a plane in the space Ȳd+1 of homogeneous polynomials of degree d+ 1
in two variables is nothing but a family of polynomials E := {λ0f0 + λ1f1 + λ2f2 | [λ0 :
λ1 : λ2] ∈ P2}. Note that a polynomial λ0f0 + λ1f1 + λ2f2 ∈ E has multiple roots if the line
λ0X+λ1Y +λ2Z = 0 intersects the parametrized curve F := [f0(s, t) : f1(s, t) : f2(s, t)] ⊂ P2

at a tangent. Note that F has degree d + 1. In fact it is a (rational) curve with d(d−1)
2

nodes.
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ThereforeE∩∆̄d+1 is exactly the dual of F , say F̌ , which has to have degree 2d, 2(d−1)(d−2)
nodes and 3(d− 1) cusps.

Hence, using Zariski Theorem of Lefschetz Type 7.1, π1(E\F̌ ) = π1(Ȳn) = Bd+1(P1). �

COROLLARY 3.9 (Zariski [78]). Let C be an irreducible tricuspidal quartic. Then

π1(P2 \ C) = 〈g1, g2 : g1g2g1 = g2g1g2, g2g
2
1g1 = 1〉.

This type of result has been generalized to the study of complements of discriminant vari-
eties by Dolgachev-Libgober in [26].

4. Braid monodromy of curves: local versus global

When computing the monodromy action of the locally trivial fibration π : X → P1 \ ∆
constructed in the Zariski-Van Kampen method one needs a collection of meridians around the
points in ∆. We recall that a meridian γ around z ∈ ∆ can be decomposed as γ = ω · γz · ω−1,
where ω is a path joining the base point z0 and a point z′ near z, and γz is the boundary of a
disk centered at z (see Definition 4.13).

The action of γ on π1(F, s∗(x0)) will also be decomposed as the action of γz on π1(F, s∗(z
′))

and the action of ω on π1(F, s∗(x0), s∗(z
′)). The first one will be called the local monodromy

at z and the second one will be called the global monodromy at z.
The local monodromy is completely determined by the local topological type of the curve

on the points on the fiber (see Examples 6.5, 6.7, and 6.6). For instance, the Puiseux expansion
at each singular point on the fiber determines the local monodromy.

However, the global monodromy depends on the position of singularities and, in general, it
depends on the global geometry of the curve. Whether or not there is a finite set of global data
on the curve that determines the global monodromy is still unknown.

In the previous sections only examples were presented where the local monodromy infor-
mation was enough to give the monodromy action, but this is far from being the case in general.
The following example will hopefully depict the general situation.

EXAMPLE 4.1. Consider the following quartic, which is a union of two smooth conics
intersecting at one point:

When projecting from [0 : 1 : 0] there are five special fibers
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After choosing a base point we can start computing the braid monodromy as follows:

The tangency and the high order tacnode can basically be obtained directly from the local
monodromy, since the global monodromy is trivial (the base point is close enough to both
special fibers)

The tangency can be computed directly from Example 6.6 as σ2 and the tacnode, whose local
equation is y2 = x8, that is two smooth branches with multiplicity of intersection 4, can be
obtained from Example 6.5 as σ8

1 .
However, the remaining braids depend on global monodromy for two different reasons:

• the left-most tangency depends on global monodromy basically due to the fact that
the branches from the small conic become complex conjugated and intertwine with
the branches of the big conic as one approaches the tangency obtaining the following
braid.
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that is, σ−1
3 σ−1

1 σ2σ1σ3.
• the tangent immediately to the right of the tacnode also depends on global monodromy,

even though all the branches remain real. The reason in this case is that the approaching
path ω consists of half a turn around the tacnode. The braid becomes σ4

1 · σ2 · σ−4
1 .

• the right-most tangent also depends on global monodromy for both reasons, one has to
avoid the branching values by performing half turns and also the real branches become
complex conjugated at some point. However, since one only needs to compute all the
monodromy actions but one, this one can be disregarded.

Finally, straightforward computations give the following:
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(10)
(r1) g1 = g

σ8
1

1 = (g2g1)4g1(g2g1)−4 ⇒ [(g2g1)4, g1] = 1

g2 = g
σ8
1

2 = (g2g1)4g2(g2g1)−4 ⇒ [(g2g1)4, g2] = 1

g3 = g
σ8
1

3 = g3

g4 = g
σ8
1

4 = g4

g1 = gσ2
1 = g1

(r2) g2 = gσ2
2 = g3 ⇒ g2 = g3

g3 = gσ2
3 = g3g2g

−1
3 ⇒ g2 = g3

g4 = gσ2
4 = g4

(r3) g1 = g
(σ−1

3 σ−1
1 σ2σ1σ3)

1 = g−1
2 g4g2 ⇒ g4 = g2g1g

−1
2

g2 = g
(σ−1

3 σ−1
1 σ2σ1σ3)

2 = g2

g3 = g
(σ−1

3 σ−1
1 σ2σ1σ3)

3 = g3

g4 = g
(σ−1

3 σ−1
1 σ2σ1σ3)

4 = g4g2g1g
−1
2 g−1

4 ⇒ g4 = g2g1g
−1
2

(r5) g1 = g
(σ4

1σ2σ
−4
1 )

1 = (g3(g2g1)−2(g1g2)2g1g3(g2g1)−2) ∗ g1

(r6) g2 = g
(σ4

1σ2σ
−4
1 )

2 = (g3(g2g1)−2(g1g2)2g1g3(g2g1)−2(g1g2)2g1) ∗ g3

(r7) g3 = g
(σ4

1σ2σ
−4
1 )

3 = g−1
1 g−1

2 g−1
1 g2g1g2g1

g4 = g
σ4
1σ2σ

−4
1

4 = g4,

where w ∗ gi = wgiw
−1. Also one needs to add the relation g4g3g2g1 = 1, which, after using

(r2) and (r3) becomes (r8) ≡ (g2g1g
−1
2 )g2g2g1 = (g2g1)2 = 1.

Finally, using (r2), (r3), and (r8) one can easily check that (r1), (r5), (r6), and (r7) become
trivial. Therefore, according to the Zariski-Van Kampen Theorem 2.4

π1(P2 \ C) = 〈g1, g2 : (g2g1)2 = 1〉 = Z ∗ Z2,

which is the biggest group whose abelianized is Z⊕ Z2. This result can also be obtained from
the fact that both conics generate a very special pencil with a reduced member, the tangent line
to both conics at the tacnode, but that would be another story and it is left to the interested
reader.



CHAPTER 3

Braid Monodromy Tools

1. Definitions and First Properties

Let C̄ = C0 ∪ C1 ∪ ... ∪ Cr, be the decomposition in irreducible components of a projective
plane curve C̄. Let us denote by di the degree of Ci and assume C0 is a transversal line. An
alternative construction similar to the Zariski-Van Kampen method occurs when studying C 2 :=
P2 \ C0, C := C̄ ∩ C 2. The space C 2 \ C retracts into a compact polydisk minus C as in the
Figure 1.

FIGURE 1. Affine projection

The projection onto the first coordinate outside the special fibers (see notation from §2.2)
π : Dx × Dy \ (C ∪ L) → Dx \ Zn is a locally trivial fibration outside the fibers L whose
intersection with C has less than d points.

DEFINITION 1.1. A set of meridians γ1, γ2, . . . , γn of a finite set on a disk D is called a
geometric basis if γnγn−1 · · · γ1 = ∂D with the positive (counterclockwise) orientation.

z0
z2 z1· · ·zn

γ1

γ2
γn

D

REMARK 1.2. A classical result by Artin [7] states that the set of geometric bases is in
bijection with Diff+(D \ Zn, ∂D) ∼= Bn.

DEFINITION 1.3. Consider µ the braid monodromy action of the fundamental group of the
base of π relative to the section s∗(x) := (x, q0) where q0 ∈ ∂Dy:

µ : π1(Dx \ Zn, z0) −→ Diff+(Fz0)
∼= Bd

43



44 3. BRAID MONODROMY TOOLS

and fix Γ := (γ1, ..., γn) a geometric basis of π1(Dx\Zn, z0). The list of braids (µ(γ1), ..., µ(γn)) ∈
Bn
d is called the Braid Monodromy Representation of C relative to (π,Γ, z0, s∗).

REMARK 1.4. Due to the fact that any projective plane curve (outside its singular points)
is an oriented Riemann surface, the braids obtained in any braid monodromy representation
are quasi-positive, that is, they are conjugate of positive braids (braids that can be written as
products of positive powers of the standard generators σi).

Moreover, the braids that appear in any braid monodromy representation are called alge-
braic braids because they can be realized as local monodromy of an algebraic function.

Our purpose is to construct an invariant of the projection π. In order to do so, we need to
understand the different braid monodromy representations of C relative to (π,Γ, z0, s∗) for the
different choices of Γ, z0, and s∗.

(1) Choice of geometric basis of Dx \Zn. Let Γ = (γ1, . . . , γn) and Γ′ = (γ′1, . . . , γ
′
n) two

geometric bases. By Remark 1.2, there exists a braid β ∈ Bn such that Γ′ = Γβ . This
action is given as shown in (5), that is,

(γ1, . . . , γi−1, γi, γi+1, . . . , γn)σi = (γ1, . . . , γi−1, γ
−1
i γi+1γi, γi, . . . , γn).

Therefore, the action of Bn on Γ naturally turns into an action on the monodromy
representations associated with Γ.

(2) Choice of section, or analogously, choice of base point q0 ∈ {z0} × Dy = Fz0 . This
produces, as mentioned in Remark 1.2, an inner automorphism, that is, a conjugation
by a braid β ∈ Bd. Hence, there is another action:

(µγ1, . . . , µγn)β = (β−1µγ1β, . . . , β
−1µγnβ).

It is a mere exercise to check that the action of Bn and Bd on the set of geometric bases
commute. This means that there is an right action of Bn × Bd on the set of monodromy repre-
sentations, which takes care of all the possible choices of Γ, base points, and sections. Such an
action is called the Hurwitz moves of a monodromy representation. Summarizing

THEOREM 1.5. Given a monodromy representation µ of C with respect to (π,Γ, z0). There
is a one-to-one map between

{Monodromy representations of C with respect to π} ↔ { Hurwitz class of µ}
DEFINITION 1.6. Two monodromy representations of C are called (Hurwitz) equivalent if

they belong to the same orbit by the Hurwitz moves described above. That is, if there exists
(σ, β) ∈ Bn × Bd such that µΓ′ = µΓ(σ,β).

The orbit of a braid monodromy representation by the action of Hurwitz moves will be
called the braid monodromy class of a curve.

REMARK 1.7. Note that µ(γn)µ(γn−1) · · ·µ(γ2)µ(γ1) = µ(∂Dx), Since ∂D can be seen as
a meridian of the point at infinity of C , that is, the projection of the line C0. The condition that
C0 is transversal to C implies that µ∂D = ∆2

d = (σ1 · · ·σd−1)d, the Garside element of Bd, gen-
erator of its center. Thus, µ(γn)µ(γn−1) · · ·µ(γ2)µ(γ1) = ∆2

d = (σ1 · · ·σd−1)d. This is another
way to present a monodromy representation. This is usually known as a Braid Monodromy
Factorization.
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Many questions are still open regarding braid monodromy factorizations of algebraic curves.
We mention just a few:

QUESTION 1.8. Which (algebraic) factorizations are realizable in the algebraic category?
This problem was solved in a bigger category called Hurwitz category by B. Moishezon [54].

The braid monodromy factorization of a smooth curve is a product of conjugates of the
standard generators σi. Any two such products (realizable or not) are Hurwitz equivalent [10],
therefore, by Theorem 1.5 the realization problem is solved for the smooth case.

One can also find interesting local versions of the realization problem [60].
So far we have proved (Zariski-Van Kampen Theorem 2.4) that the braid monodromy rep-

resentation of a curve determines the fundamental group of its complement. In fact it is much
stronger than that, as shows the following result, which has been proved by Kulikov-Teicher
in [46] for cuspidal curves and by Carmona [14] in full generality.

THEOREM 1.9. The braid monodromy class of C fully determines the topology of the pair
(P2, C). In other words, if two curves C1 and C2 have the same braid monodromy class, then
there is a homeomorphism ϕ : P2 → P2 such that ϕ(C1) = C2.

The converse is not known in general, basically because the homeomorphism ϕ : P2 → P2

may not send lines to lines. Therefore, the pencil of lines through P , which determines the braid
monodromy of C1 is not preserved by ϕ. There are some partial positive converses:

THEOREM 1.10 (Carmona [14]). The pair (P2, C) fully determines the braid monodromy
class of C with respect to a projection.

Another partial result in this direction is the following. Let C1 and C2 be two curves and L1,
L2 be lines such that the affine curves Ci ∪ L1 ⊂ C 2 := P2 \ Li have no vertical asymptotes.
Consider L1 and L2 the union of vertical lines as described in §22 and ϕ : (P2, C1,L1, L1) →
(P2, C2,L2, L2) a homeomorphism, then one has the following:

THEOREM 1.11 (Artal, Carmona,- [2]). The braid monodromy factorization of C1 from a
point P ∈ L1 is Hurwitz equivalent to the braid monodromy representation of C2 from ϕ(P ) ∈
L2.

In a different direction, there is also a negative converse to Theorem 1.9.

THEOREM 1.12 (Kharlamov-Kulikov [41]). There are two sequences of plane irreducible
cuspidal curves, Cm,1 and Cm,2, m ≥ 5, such that the pairs (C 2, Cm,1) and (C 2, Cm,2) are
diffeomorphic, but Cm,1 and Cm,2 are not isotopic and have different braid monodromy classes.

Obviously, the diffeomorphisms cannot be extended to P2, otherwise the hypothesis in The-
orem 1.11 would hold and the braid monodromy representations would be equivalent.

2. The Homotopy Type of (C 2, C)

Let us consider the affine curve scenario as described at the beginning of §3.1, that is,
C̄ = C0 ∪ C1 ∪ ... ∪ Cr, where C0 is a transversal line, di = deg Ci, and d := deg C − 1.
C 2 := P2 \ C0, C := C̄ ∩ C 2. Consider π : Dx × Dy \ C → Dx \ Zn generic, where Dx is big
enough to contain all the critical values Zn of the projection from C.
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γi

x0

z0

xi
...

gik(i)

gi1

FIGURE 2.

Let us take a closer look at the relations (10) in Example 4.1. Note that, the relations
derived from the tacnode σ8

1 (involving branches 1 and 2), are trivial for the generators g3 and g4.
Analogously, the braid σ2 coming from the first tangency (involving branches 2 and 3) preserves
generators g1 and g4. This is a general result. To be more precise, let γi = ω · γ′i · ω−1 be a
meridian around zi ∈ Zn and let gi1 , . . . , gik denote the meridians that approach the singular
point xi over zi (see Figure 2) when running along ω. The following result is well known,
see [48, 55].

PROPOSITION 2.1. Under the above hypothesis gγi

j = gj for any j /∈ {i1, . . . , ik}.
Moreover, the relations gγi

j = gj , j = i1, . . . , ik − 1 imply gγi

ik
= gik .

Therefore, one has the following.

THEOREM 2.2 (Zariski-Van Kampen Theorem revisited).

〈g1, ..., gd : g
γj

i = γ−1
j giγj, i = 1, ..., d, j = 1, ..., ik(i) − 1〉

is a presentation of π1(C 2 \ C).

This presentation will be called Zariski presentation.
Associated with a (finite) group presentation

G = 〈g1, . . . , gd : r1(ḡ) = r2(ḡ) = · · · = rn(ḡ) =〉,
one can construct a (finite) connected 2-dimensional CW-complex K as follows.

(1) the 0-dimensional skeleton of the complex will be given by only one 0-cell,K0 = {e0},
(2) the 1-dimensional skeleton of the complex will be in bijection with the set of genera-

tors, say K1 = {e1
1, . . . , e

1
d}, whose boundary will be glued to e0, and

(3) the 1-dimensional skeleton of the complex will be in bijection with the set of relators,
say K2 = {e2

1, . . . , e
2
n}. The identification morphism is so that ∂e2

i is glued to the
1-cell ri(ē1).
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REMARK 2.3. Note that the 2-dimensional CW-complex is associated with a presentation,
not with the group. However, certain transformations in the presentation are allowed keeping
the homotopy type. Such transformations are called Tietze transformations of type (I) and (II)
(cf. [27]):

(I) Adding (deleting) a generator gi and a relation of the type gi = w(g1, . . . , gi−1, gi+1, . . . , gd).
(II) Replacing a relation r = 1 by a relation r = wsw−1, where w is any word and s = 1

is another relation.
(III) Adding (deleting) the relation 1 = 1.

Tietze transformations of type (III) change the homotopy type of the complex since it means
attaching (resp. detaching) a 2-dimensional sphere and this increases (resp. decreases) the Euler
characteristic of the complex by one.

THEOREM 2.4 (Libgober [48]). The 2-dimensional complex associated with the Zariski
presentation has the homotopy type of C 2 \ C.

PROOF. The proof of this result is based on two local results.

LEMMA 2.5. The 2-dimensional complex associated with the Wirtinger presentation of a
link K ⊂ S3 has the homotopy type of S3 \K.

LEMMA 2.6. The 2-dimensional complex associated with the Artin presentation of a link
K ⊂ S3 has the homotopy type of S3 \K.

�

EXAMPLE 2.7. Let us consider the affine version of Example 4.1.

The following is a Zariski presentation (see (10)):

π1(C 2 \ C) = 〈g1, g2, g3, g4 : [(g2g1)4, g1] = 1,
g2 = g3,

g2 = g3,

g4 = g2g1g
−1
2 ,

g4 = g2g1g
−1
2

〉 ≡

≡ 〈g1, g2 : [(g2g1)4, g1] = 1, 1 = 1, 1 = 1〉
Hence, according to Theorem 2.4, C 2 \ C has the same homotopy type than (S3 \K2,8) ∨

S2 ∨ S2.
Note that both spaces obviously have the same fundamental group and the same Euler char-

acteristic. It is easy to check that χ(C0 ∪ C) = 1, and hence χ(C 2 \ (C0 ∪ C)) = 2. Note that
χ(S3 \K2,8) = 0.

The following is an open problem.
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QUESTION 2.8. Does the fundamental group and the Euler characteristic determine the
homotopy structure of complements to affine curves? That is, given two affine curves C1 and
C2 with isomorphic fundamental groups and same Euler characteristic, are necessarily their
homotopy types the same?

Note that Question 2.8 has a negative answer in the general case of 2-dimensional com-
plexes [27].

QUESTION 2.9. Does Theorem 2.4 also hold for projective curves for some preferred pre-
sentation?

3. Line Arrangements

Very interesting examples of curves are line arrangements. For line arrangements there are
algorithms to construct complexes that share the same homotopy type as the line complement,
without resorting to the Zariski-Van Kampen method. Basically the idea is that singularities of
line arrangements are all of type yk = xk and can be all found as solutions of linear equations.

Very extensive literature has been written on this topic (see [62, 63, 8, 9, 67, 66, 31, 22, 21,
40, 30, 20] among others).

Note that, even though some of the topology of complements to line arrangements depends
on the combinatorial information of the arrangement (that is, the way lines intersect each other).
Combinatorics are not enough to determine fundamental groups as stated by Rybnikov [65] (see
also [4]).

Our focus of attention in this survey will be to describe a simple method to obtain a braid
monodromy representation of complexified real arrangements, which will be later extended to
other real curves and general line arrangements.

3.1. Wiring Diagrams.

DEFINITION 3.2. A line arrangement L = L1 ∪ · · · ∪ Ld is called a real line arrangement
if there is a projective system of coordinates such that L admits a real equation. If in addition,
L1, . . . ,Ld admit real equations, then L is called a strongly real line arrangement.

REMARK 3.3. Definitions of real and strongly real are not consistent throughout the litera-
ture, so doublecheck the definitions before reading a result on real arrangements.

Note that both concepts are not equivalent, since MacLane arrangement (see [51]) is real,
but not strongly real.

The following result is immediate, but it is worth mentioning for clarity.

LEMMA 3.4. Consider the affine situation of a strongly real line arrangement and the ver-
tical projection (onto the first coordinate) as in §31. The following properties hold:

(1) The set of singularities of the arrangement have real coordinates,
(2) the plane R2 ⊂ C 2 is such that R2 ∩ L is isomorphic to a graph Γ with the following

structure (see Figure 3).
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−N N

d

...
2

1

d

...
2

1

FIGURE 3. Wiring Diagram

(a) There exists a certain N > 0 such that Γ ∩ (−∞,−N ]× R and Γ ∩ [N,∞)× R
are given by d parallel rays and Γ ∩ [−N,N ] is a union of segments and stars
given as a union of segments (the intersection point is called a singularity of Γ),

ik i1

ik−1 i2
...

...

i2 ik−1

i1 ik

FIGURE 4.

(b) there are d broken lines of segments (as many as affine lines), and
(c) each pair of broken lines intersect exactly once.

Associated with any wiring diagram Γ one can construct a finite list of braids in Bd as
follows.

Let (x1, y1), . . . , (xn, yn) denote the singular points of Γ ordered such that x1 > · · · > xn.
Denote by δ̄i := δi1, . . . , δ

i
ki

the segments intersecting at (xi, yi). One defines βi ∈ Bd as

βi :=

(
i−1∏
j=1

∆δ̄j

)
∗∆2

δ̄i

where locally ∆(1,...,k) = (σ1 . . . σk−1)(σ1 · · ·σk−2)(σ1σ2)σ1 is a halftwist of the strings (1, . . . , k).
Globally, one needs to keep track of the position of the segments δ1, . . . , δk.

EXAMPLE 3.5. The braid monodromy of the wiring diagram of Figure 3 is given as follows:

(11)

β1 = σ2
2

β2 = (σ2) ∗ σ2
1

β3 = ((σ2)(σ1)) ∗ (σ2σ3)3

β4 = ((σ2)(σ1)(σ3σ2σ3)) ∗ σ2
1
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One can prove the following result.

THEOREM 3.6. The braid monodromy representation associated to the wiring diagram of a
line arrangement coincides with the braid monodromy representation of the line arrangement.

This gives one a simple algorithmic method to compute braid monodromy representations
of complexified strongly real line arrangements.

Finally, note that, despite the simplicity of the method, braid monodromy representations of
strongly real arrangements are not determined by the combinatorics. In [3] the authors present
two strongly real arrangements of lines with the same combinatorics but whose braid mon-
odromies are not Hurwitz equivalent (see § 3.4).

This diagram has two possible generalizations: braided wiring diagrams for complex line
arrangements and decorated wiring diagrams for complexified strongly real curves, which will
be treated separately.

3.7. Braided Wiring Diagrams. Consider a line arrangement L in the affine situation as
in §31. We recall that the projection π|L has a finite set of critical values denoted by Zn ⊂ Dx.

Choose a piecewise linear path starting at a base point on ∂Dy with no self-intersections and
joining all the points in Zn such that the segment is not broken at the points in Zn. For instance,
one can follow the lexicographic order in the complex numbers as in Figure 5:

z = x+ y
√
−1 > z′ = x′ + y′

√
−1⇔

{
x > x′, or
x = x′, y > y′.

FIGURE 5.

The preimage of each segment will be an open braid and not a planar graph as for wiring
diagrams. The rest is analogous to the wiring case: when crossing a point in Zn, where the lines
δ̄ = (δ1, . . . , δk) converge, a braid of local type ∆δ̄ will be generated and when ending at a point
in Zn a braid of local type ∆2

δ̄
will appear.

EXAMPLE 3.8. Consider the Hesse arrangement:

H := {`1`2`3 · · · `12 = 0},
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where

`1 = {y = 0}, `2 = {(x+ ω2y + ω2z) = 0}, `3 = {(x+ ωy + ωz) = 0},
`4 = {(x+ ω2y + ωz) = 0}, `5 = {(x+ ωy + ω2z) = 0}, `6 = {(x+ ω2y + z) = 0},
`7 = {(x+ ωy + z) = 0}, `8 = {x = 0}, `9 = {(x+ y + z) = 0},

`10 = {z = 0}, `11 = {(x+ y + ωz) = 0}, `12 = {(x+ y + ω2z) = 0},

where ω is a root of z2 + z + 1 = 0. Assume `10 is the line at infinity and project from the
quadruple point P := [1 : −1 : 0]. The lines `9, `11, and `12 become vertical. Figure 6
represents the non-generic braided wiring diagram for the Hesse arrangement and this particular
projection:

`10 `11 `12

`1

`2

`3

`4

`5

`6

`7

`8

FIGURE 6. Hesse Wiring Diagram

Recall that f1 := `4`5`9 and f2 := `1`8`10 generate a pencil of cubics containing f3 :=
`2`7`11 and f4 := `3`6`12 as members of the pencil. Note that each reducible cubic f1, . . . , f4

consists of three lines in general position (three lines joining all the inflexion points of a smooth
cubic, each one containing three of them). Using the results in [45] on braid factorizations,
one can prove that the Hesse arrangement cannot degenerate onto a pseudoholomorphic Hesse
arrangement, where the cubics fi become three concurrent lines.

3.9. Decorated Wiring Diagrams.

DEFINITION 3.10. A plane curve C = C1 · · · Cr is called real if there is a projective system
of coordinates such that C admits real equations.

If, in addition, C1, . . . , Cr admit real equations, the singular points and vertical tangencies
have real coordinates, and the tangent cone at each singularity is a strongly real line arrange-
ment, we call C a strongly real curve.

Consider the affine situation of a strongly real curve of degree d and the vertical projection
(onto the first coordinate) as in §31. One can write a diagram with solid lines and dashed lines,
where:
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(1) There exists a certain N > 0 such that Γ ∩ (−∞,−N ] × R and Γ ∩ [N,∞) × R are
given by d− 2k parallel rays and Γ ∩ [−N,N ] is a union of solid and dashed paths,

(2) the solid paths are isomorphic to C ∩ R2,
(3) the dashed paths represent the real parts of non-real (conjugated) branches,
(4) every time two dashed paths intersect, one of them overcrosses if their imaginary parts

are larger (dashed paths always overcross solid paths).

EXAMPLE 3.11. The following is the wiring of the quartic from Example 4.1

FIGURE 7.

Note, for example, notice the braids generated at the local picture:

FIGURE 8.

and compare with the monodromy obtained in Example 4.1.

4. Conjugated Curves

One last application of braid monodromies is the study of the different Galois embeddings
of a curve given by equations in a number field in the spirit of [69, 1]. More precisely, let C be
a plane curve whose equation can be defined on the ring of polynomials with coefficients on a
number field K ⊃ Q. Any Galois transformation σ of the number field will produce another
curve Cσ, whose equation is again defined on K[X, Y, Z], with the same number and degrees of
irreducible components, same type of singularities,... that is same combinatorial type.

However, since σ cannot necessarily be extended to a homeomorphism of the total space
(think of the automorphism

√
2 7→ −

√
2) the question arises whether or not (P2, C) and (P2, Cσ)

are topologically equivalent.
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Also note that any such example cannot be detected by means of algebraic invariants such
as the algebraic fundamental group (that is, the profinite completion of the fundamental group),
Alexander polynomials, or any kind of invariant related with finite coverings.

Consider the arrangements C + and C − given by the following equations (see Figure 9).

M±
1 : z = 0, M±

2 : x = 0, M±
3 : x = z,

M±
4 : x = −(γ + 1)z, M±

5 : x = (γ + 2)z,

L±1 : y = x, L±2 : y = γ(x− z), L±3 : y = γx+ z,

L±4 : y = z, L±5 : y = 0, N± : γ±x+ (γ± + 1)y + z = 0,

where γ± are the roots of X2 +X − 1 = 0.

L+
4

L+
5

L+
3

L+
1 L+

2

M+
4 M+

2

M+
3 M+

5

N+

L−4

L−5

L−3

L−1

L−2

M−
4

M−
2

M−
3

M−
5

N−

FIGURE 9.

First, one can compute the braid monodromy of the horizontal (= non-vertical) lines
⋃
L±i . In

order to show that they are not Hurwitz equivalent, representations of the braid group onto finite
groups can be used. Once such a representation is fixed, the Hurwitz action only produces a
finite number of elements, and hence the problem becomes effectively solvable.

In our particular example, one can use the Burau representation of B5 into GL(5; Z[t±1]).
Replacing t by 2 mod 5 one obtains a representation β : B5 → GL(5; Z/5Z) such that the
braid monodromy representations produce different orbits after the Hurwitz action.

Therefore, using Theorem 1.11 one obtains the following.

THEOREM 4.1 ([3]). There is no homeomorphism between (P2,C +) and (P2,C −).

REMARK 4.2. Still, the question whether or not the fundamental groupsG+ := π1(P2\C +)
and G− := π1(P2 \ C −) are isomorphic remains open. As mentioned above, the reader should
notice that

πalg
1 (P2 \ C +) ∼= πalg

1 (P2 \ C −).
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In other words, G+ and G− have the same profinite completion (that is, the same structure of
finite index subgroups).

This is a paradigmatic example in the sense that it shows the power of the braid monodromy
representation of a curve in and of itself and not as a mere instrument to obtain fundamental
groups.
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