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Three Approaches to One Problem

C CP?

X :=P2\C
Three approaches:
m Topological: Braid Monodromy, Fundamental Group, Alexander Polynomial.
m Geometric: Morphisms onto curves (De Franchis).
m Algebraic: Existence of pencils containing C.
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A New Look at a Classical Example

Consider C := {F := h3 + h2 = 0} C P? a sextic.

| 7T1(X):ZQ*Z;3 and Ac(t) = t2*t+1.
m X — Py \{[1:—1]}, givenby [x : y : Z] — [h3, h2].
m F belongs to the pencil generated by (h3, h2).
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C=CyUCiU...UCr, d =degC;
Cop transversal line.
C2:=P2\(Cy,C:=CNC?
m:C2\C—P'\ Z,

D a big enough disk containing Z,

Definition

Geometric basis:

YnYn—1 -1 = OD
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Braid Monodromy Representation

Definition

Consider the braid monodromy action:
p:m1(D\ Zn, 20) — Difft(Fz,) = By.
I := (71, ..., yn) geometric basis of 71 (D \ Zn, 2p).

(715 - p¥n) € By

is the Braid Monodromy Representation of C relative to (, T, zp).
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Braid Monodromy Representation

m p(vn)p(vn—1) - p(r2)p(n) = A = (o1 ---34_1)?
Braid Monodromy Factorization.

m Choice of base point, choice of section (By).

B (B, Bn) = (BB1BT, ... BBB")

m Choice of different geometric bases (Bp).

(Bt s By Bists s Bn) + 05 = (Bt o0 BT Bi1 Bis B ---» Bn)

m Both actions commute (B, x By). Hurwitz Moves.
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Zariski-Van Kampen Method

Obtain a presentation for the fundamental group of the complement of a plane
projective curve in P2,

We will put together several ingredients, among which, the Van Kampen Theorem is
key.
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Let 7 : X — M be a locally trivial fibration with section s : M — X. Consider p € M and
Xy € Fp.

(X, X0) = 71 (Fp, Xo) % w1 (M, p), where the action of 1 (M, p) on w1 (Fp, Xo) is given
by the monodromy of .

Proposition

Meridians around the same irreducible components of B are conjugate in wy (M \ B).
Moreover, the conjugacy class of a meridian coincides with the set of homotopy
classes of meridians around the same irreducible component.

Proposition

The inclusion M\ B — M induces a surjective morphism, whose kernel is given by the
smallest normal subgroup of 1(M \ B) containing meridians of all the irreducible
components of B.

| A\
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Zariski-Van Kampen Theorem

Let C C P2 be a projective plane curve. Consider P = [0: 1: 0] € P? \ C. Project
7 P2\ {P} — P! from P

Ln L4 e Ly Ly

\

T
>
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Zariski-Van Kampen Theorem

Ln Ln_1 e Ly Ly

N
_—

L J J
Zn Zn—1 T 22 Z

Let X = P2\ (CU L), then wr|x : X — P!\ Z, is a locally trivial fibration. \




Zariski-Van Kampen Theorem

Ln Ly + . L Ly Lo

N
_—

Zn Zn—1 T 22 Z 2o

Let X = P2\ (CU L), then 7|x : X — P!\ Z, is a locally trivial fibration. Moreover, its
fiber is P! \ Zy, where d := degC.




Zariski-Van Kampen Theorem

) /

By (2.3), m1(X, Xo) = 71(Fzy, Xo) X m1(P" \ Zn, ). Action is given by the monodromy
of w1 (' \ Zn, Zp) on 74 (Fzy, Xo) as follows €.




Zariski-Van Kampen Theorem

Xo
\\ 91
> %
9a
&g & ;
Yn Yn—1 T Y2 M 20

Note that 71 (Fz, Xo) = (91, ---,9d : GaGd—1--- g4 = 1) and
T (P'\ Zn, 20) = (v, oy vn i 0 = 1).




Zariski-Van Kampen Theorem

X0
\\ 91
> o
9a
&g & ;
Yn Yn—1 T Y2 M 20

1 (X, Xo) admits the following presentation:

(G153 9ds V15 Y 9d9d—1 "Gt = Yn- "Y1 = 1,9,7j = ’Yj_1gi’7j>




Zariski-Van Kampen Theorem

X0
\\ 91
> %
9a
&g & ;
Yn Yn—1 s Y2 M 20

71 (P? \ C) admits the following presentation:

(91,94 9a9d—1 g1 = 1,9, = gi)
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m LetC = Cq U ... UC, the decomposition of C in its irreducible components, then

Hi(PP\C)=Z"""az/(di,...,d),

where d; := degC.

m |t two curves are in a connected family of equisingular curves, then they are
isotopic
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Alexander Polynomials of a curve

We shall consider reducible, not necessarily reduced curves in P2.

C:i=CiU---UCr

(g1,-..,¢er), i € Z multiplicities.

m Let Cy be aline transversal to C.
m Recall that H; (P> \ CqUC) = Z'.
m Let ¢ be the epimorphism

e: G:=m(PP\CUC) — H{(PP\CuC) — Z

Vi — [l = &

m Let Q[Z] = Q[t, t—'] denote the group ring over Q.
]

K. :=kere and K!:=I[K., K]

m K./K! can be viewed as a module over the group ring Z[Z].

Definition ([5])

The Alexander polynomial A¢ .(t) of G relative to surjection € : G — Z is the order of
the torsion of the Q[Z] = Q][t, t~']-module K- /K. ® Q.
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Alexander Polynomials of a curve

Theorem ([6],-)

The Alexander polynomial of C w.r.t. € is the first invariant of the colored Burau
representation matrix of the braid monodromy of C w.r.t. € divided by (1 — t;" - - - 7).

Colored Burau Representation:

1 0
0 0
-t 1.0 0 0 1
0 1 0 0 1 0 0
o1 — 0 0 1 0 oj— 0 II-E" —tf" 1 0
0 1
0 0o 0 .. f 1 .. 0
0 0
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is 1 outside a finite number of points. A point P € S for which m(P) > 1 is called an
orbifold point.




Orbifolds and Orbifold Fundamental Groups

Definition (Orbifold)

An orbifold curve Sy is a Riemann surface S with a function m : S — N whose value
is 1 outside a finite number of points. A point P € S for which m(P) > 1 is called an
orbifold point.

Definition (Orbifold Fundamental Group)

For an orbifold Sg, let Py, ..., Pn be the orbifold points, m; := m(FP;) > 1. Then, the
orbifold fundamental group of Sz, is

w3®(Sm) 1= (S\ {Pr, -, Pa}) /(] = 1),

where p; is a meridian of P;. We will denote Sy simply by Sm, ... m,.
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all P € S, the divisor ¢*(P) is a m(P)-multiple.




Orbifold Morphisms

A dominant algebraic morphism ¢ : X — S defines an orbifold morphism X — S, if for
all P € S, the divisor ¢*(P) is a m(P)-multiple.

<

Proposition ([1, Proposition 1.5])

Letp : X — S define an orbifold morphism X — Sg. Then ¢ induces a morphism
w1 1 (X) = 79°(Sr).
Moreover, if the generic fiber is connected, then .. is surjective.

A\




The Classical Example

Example
Suppose F fits in a functional equation of type

Foh + F3hf + F =0, (1)

Then (1) induces a pencil map ¢ : P2 -5 P! given by o([x : y : 7)) = [hs: hg]. Since
aplpz\c has two multiple fibers (over [0 : 1], [1 : 0]) one has an orbifold morphism

w23 : P2\ C — P} .\ {[1: —1]}. In particular, if the quasi-toric relation is primitive,
then by Proposition 3.4, there is an epimorphism

pag:m(PP\C) = m{P(Rh 5 \ {[1: —1]}) = Zs * Zs.




The Classical Example

Example
Suppose F fits in a functional equation of type

Foh + F3hf + F =0, (1)

Then (1) induces a pencil map ¢ : P2 -5 P! given by o([x : y : 7)) = [hs: hg]. Since
aplpz\c has two multiple fibers (over [0 : 1], [1 : 0]) one has an orbifold morphism

w23 : P2\ C — P} .\ {[1: —1]}. In particular, if the quasi-toric relation is primitive,
then by Proposition 3.4, there is an epimorphism

pog: m(PP\C) = m® (P g \ {[1: —1]}) = Zp * Zs.

P I




Another Application

The number of multiple members in a pencil of plane curves (with no base
components) is at most two.




Functional Relation Fih} + Fahd + Fahfy =

Definition

A curve C := {F = 0} satisfies a quasi-toric relation of type (p, q, r) if there exist
homogeneous polynomials hy, ho, hs € C [x, y, z] such that

hfF1 +th2 +h§F3 =0,

where Fy, Fo, F3 are homogeneous polynomials and {F1F2F3 =0} = C.
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Main Theorem

Theorem ([3])

LetC = {F = 0} be a (possibly non-reduced) curve.
Then the following statements are equivalent:

The Alexander polynomial A (t) has a primitive root £ of order 3 (resp. 6) as a
zero.

There exists an orbifold morphism ¢ : X — P} 3,3 (resp. ¢ : X — P} 5 6)-
The polynomial F fits in a quasi-toric relation of type (3, 3, 3) (resp. (2,3,6)).

Moreover, the set of quasi-toric relations of type (3,3, 3) (resp. (2, 3,6)) has a group
structure, whose rank is twice the multiplicity of ¢ as a root of A¢ < (t).
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Since the 6-cuspidal sextic Ce ¢ from Example 4 is such that: Ac, ¢ () = (P —t+1),
the decomposition F = f23 + f32 is essentially unique.

Example

F=(y®—28%)(z% — x®)(x® — y3), C := {F = 0}, then Ac(t) = (1? + t + 1)%(t — 1)8.
By Theorem 4.2, F fits in a quasi-toric relation of elliptic type (3,3, 3):

| A,

B -2 +y3P - + P -4 =0, @

However, there should exist another relation independent from (2), namely

BF +8FR+65F =0, (3)
where ) ; )
Fi=(y —wh2)(z — f ) (x —wi?y), i=1,2,3,
wg is a third-root of unity, and
f1=(w3—w§ 3—w§)}/+(w§—1)27
Ly = (w3 —wg z+ (ws —w%)x—i-(w 1)y,

QJI\)GJ

l3 = (w3 —w3)y + (w3 — w5)Z + (

—1)x.
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