On the Connection Between Braid Monodromies, Fundamental Groups, and Special Pencils of Plane Curves

> José Ignacio COGOLLUDO-AGUSTÍN

Departamento de Matemáticas
Universidad de Zaragoza

TRENZAS: Jornada Temática Interdisciplinar de la RET

Contents

1 Settings and Motivations

Contents

1 Settings and Motivations
■ Three Approaches to One Problem

Contents

1 Settings and Motivations

- Three Approaches to One Problem
- A New Look at a Classical Example

Contents

1 Settings and Motivations

- Three Approaches to One Problem
- A New Look at a Classical Example

2 Braid Monodromies and the Zariski-Van Kampen Method

Contents

1 Settings and Motivations

- Three Approaches to One Problem
- A New Look at a Classical Example

2 Braid Monodromies and the Zariski-Van Kampen Method

- Braid Monodromy Representations

Contents

1 Settings and Motivations

- Three Approaches to One Problem
- A New Look at a Classical Example

2 Braid Monodromies and the Zariski-Van Kampen Method

- Braid Monodromy Representations

■ Fundamental Group of the Total Space of a Locally Trivial Fibration

Contents

1 Settings and Motivations

- Three Approaches to One Problem
- A New Look at a Classical Example

2 Braid Monodromies and the Zariski-Van Kampen Method

- Braid Monodromy Representations
- Fundamental Group of the Total Space of a Locally Trivial Fibration

■ Zariski-Van Kampen Theorem

Contents

1 Settings and Motivations

- Three Approaches to One Problem
- A New Look at a Classical Example

2 Braid Monodromies and the Zariski-Van Kampen Method

- Braid Monodromy Representations
- Fundamental Group of the Total Space of a Locally Trivial Fibration
- Zariski-Van Kampen Theorem
- Alexander Polynomials of a curve

Contents

1 Settings and Motivations

- Three Approaches to One Problem
- A New Look at a Classical Example

2 Braid Monodromies and the Zariski-Van Kampen Method

- Braid Monodromy Representations
- Fundamental Group of the Total Space of a Locally Trivial Fibration
- Zariski-Van Kampen Theorem
- Alexander Polynomials of a curve

3 Morphisms onto surfaces (after De Franchis)

Contents

1 Settings and Motivations

- Three Approaches to One Problem
- A New Look at a Classical Example

2 Braid Monodromies and the Zariski-Van Kampen Method

- Braid Monodromy Representations

■ Fundamental Group of the Total Space of a Locally Trivial Fibration

- Zariski-Van Kampen Theorem
- Alexander Polynomials of a curve

3 Morphisms onto surfaces (after De Franchis)

- Orbifold Surfaces

Contents

1 Settings and Motivations

- Three Approaches to One Problem
- A New Look at a Classical Example

2 Braid Monodromies and the Zariski-Van Kampen Method

- Braid Monodromy Representations
- Fundamental Group of the Total Space of a Locally Trivial Fibration
- Zariski-Van Kampen Theorem
- Alexander Polynomials of a curve

3 Morphisms onto surfaces (after De Franchis)

- Orbifold Surfaces
- A Factorization Theorem

Contents

1 Settings and Motivations

- Three Approaches to One Problem
- A New Look at a Classical Example

2 Braid Monodromies and the Zariski-Van Kampen Method

- Braid Monodromy Representations

■ Fundamental Group of the Total Space of a Locally Trivial Fibration

- Zariski-Van Kampen Theorem
- Alexander Polynomials of a curve

3 Morphisms onto surfaces (after De Franchis)

- Orbifold Surfaces
- A Factorization Theorem

4 Pencils and Quasi-toric relations

Contents

1 Settings and Motivations

- Three Approaches to One Problem
- A New Look at a Classical Example

2 Braid Monodromies and the Zariski-Van Kampen Method

- Braid Monodromy Representations

■ Fundamental Group of the Total Space of a Locally Trivial Fibration

- Zariski-Van Kampen Theorem
- Alexander Polynomials of a curve

3 Morphisms onto surfaces (after De Franchis)

- Orbifold Surfaces
- A Factorization Theorem

4 Pencils and Quasi-toric relations
■ Functional Relation $F_{1} h_{1}^{p}+F_{2} h_{2}^{q}+F_{3} h_{3}^{r}=0$

Contents

1 Settings and Motivations

- Three Approaches to One Problem
- A New Look at a Classical Example

2 Braid Monodromies and the Zariski-Van Kampen Method

- Braid Monodromy Representations

■ Fundamental Group of the Total Space of a Locally Trivial Fibration

- Zariski-Van Kampen Theorem
- Alexander Polynomials of a curve

3 Morphisms onto surfaces (after De Franchis)

- Orbifold Surfaces
- A Factorization Theorem

4 Pencils and Quasi-toric relations

- Functional Relation $F_{1} h_{1}^{p}+F_{2} h_{2}^{q}+F_{3} h_{3}^{r}=0$
- Main Theorem

Contents

1 Settings and Motivations

- Three Approaches to One Problem
- A New Look at a Classical Example

2 Braid Monodromies and the Zariski-Van Kampen Method

- Braid Monodromy Representations

■ Fundamental Group of the Total Space of a Locally Trivial Fibration

- Zariski-Van Kampen Theorem
- Alexander Polynomials of a curve

3 Morphisms onto surfaces (after De Franchis)

- Orbifold Surfaces
- A Factorization Theorem

4 Pencils and Quasi-toric relations

- Functional Relation $F_{1} h_{1}^{p}+F_{2} h_{2}^{q}+F_{3} h_{3}^{r}=0$
- Main Theorem
- Examples
$\mathcal{C} \subset \mathbb{P}^{2}$

$$
\begin{gathered}
\mathcal{C} \subset \mathbb{P}^{2} \\
X:=\mathbb{P}^{2} \backslash \mathcal{C}
\end{gathered}
$$

$$
\begin{gathered}
\mathcal{C} \subset \mathbb{P}^{2} \\
X:=\mathbb{P}^{2} \backslash \mathcal{C}
\end{gathered}
$$

Three approaches:

$$
\begin{gathered}
\mathcal{C} \subset \mathbb{P}^{2} \\
X:=\mathbb{P}^{2} \backslash \mathcal{C}
\end{gathered}
$$

Three approaches:
■ Topological: Braid Monodromy, Fundamental Group, Alexander Polynomial.

$$
\begin{gathered}
\mathcal{C} \subset \mathbb{P}^{2} \\
X:=\mathbb{P}^{2} \backslash \mathcal{C}
\end{gathered}
$$

Three approaches:
■ Topological: Braid Monodromy, Fundamental Group, Alexander Polynomial.
■ Geometric: Morphisms onto curves (De Franchis).

$$
\begin{gathered}
\mathcal{C} \subset \mathbb{P}^{2} \\
X:=\mathbb{P}^{2} \backslash \mathcal{C}
\end{gathered}
$$

Three approaches:
■ Topological: Braid Monodromy, Fundamental Group, Alexander Polynomial.
■ Geometric: Morphisms onto curves (De Franchis).

- Algebraic: Existence of pencils containing \mathcal{C}.

A New Look at a Classical Example

Consider $\mathcal{C}:=\left\{F:=h_{2}^{3}+h_{3}^{2}=0\right\} \subset \mathbb{P}^{2}$ a sextic.

A New Look at a Classical Example

Consider $\mathcal{C}:=\left\{F:=h_{2}^{3}+h_{3}^{2}=0\right\} \subset \mathbb{P}^{2}$ a sextic.

A New Look at a Classical Example

$$
\text { Consider } \mathcal{C}:=\left\{F:=h_{2}^{3}+h_{3}^{2}=0\right\} \subset \mathbb{P}^{2} \text { a sextic. }
$$

A New Look at a Classical Example

$$
\text { Consider } \mathcal{C}:=\left\{F:=h_{2}^{3}+h_{3}^{2}=0\right\} \subset \mathbb{P}^{2} \text { a sextic. }
$$

A New Look at a Classical Example

$$
\text { Consider } \mathcal{C}:=\left\{F:=h_{2}^{3}+h_{3}^{2}=0\right\} \subset \mathbb{P}^{2} \text { a sextic. }
$$

A New Look at a Classical Example

$$
\text { Consider } \mathcal{C}:=\left\{F:=h_{2}^{3}+h_{3}^{2}=0\right\} \subset \mathbb{P}^{2} \text { a sextic. }
$$

$\square \pi_{1}(X)=\mathbb{Z}_{2} * \mathbb{Z}_{3}$ and $\Delta_{\mathcal{C}}(t)=t^{2}-t+1$.

A New Look at a Classical Example

$$
\text { Consider } \mathcal{C}:=\left\{F:=h_{2}^{3}+h_{3}^{2}=0\right\} \subset \mathbb{P}^{2} \text { a sextic. }
$$

$\square \pi_{1}(X)=\mathbb{Z}_{2} * \mathbb{Z}_{3}$ and $\Delta_{\mathcal{C}}(t)=t^{2}-t+1$.
■ $X \rightarrow \mathbb{P}_{2,3}^{1} \backslash\{[1:-1]\}$, given by $[x: y: z] \mapsto\left[h_{2}^{3}, h_{3}^{2}\right]$.

A New Look at a Classical Example

$$
\text { Consider } \mathcal{C}:=\left\{F:=h_{2}^{3}+h_{3}^{2}=0\right\} \subset \mathbb{P}^{2} \text { a sextic. }
$$

$\square \pi_{1}(X)=\mathbb{Z}_{2} * \mathbb{Z}_{3}$ and $\Delta_{\mathcal{C}}(t)=t^{2}-t+1$.
■ $X \rightarrow \mathbb{P}_{2,3}^{1} \backslash\{[1:-1]\}$, given by $[x: y: z] \mapsto\left[h_{2}^{3}, h_{3}^{2}\right]$.
■ F belongs to the pencil generated by $\left(h_{2}^{3}, h_{3}^{2}\right)$.

Geometric basis

$$
\begin{aligned}
& \overline{\mathcal{C}}=\mathcal{C}_{0} \cup \mathcal{C}_{1} \cup \ldots \cup \mathcal{C}_{r}, d_{i}=\operatorname{deg} \mathcal{C}_{i} \\
& \mathcal{C}_{0} \text { transversal line. } \\
& \mathbb{C}^{2}:=\mathbb{P}^{2} \backslash \mathcal{C}_{0}, \mathcal{C}:=\overline{\mathcal{C}} \cap \mathbb{C}^{2} \\
& \pi: \mathbb{C}^{2} \backslash \mathcal{C} \rightarrow \mathbb{P}^{1} \backslash Z_{n} \\
& \mathbb{D} \text { a big enough disk containing } Z_{n}
\end{aligned}
$$

Geometric basis

$\overline{\mathcal{C}}=\mathcal{C}_{0} \cup \mathcal{C}_{1} \cup \ldots \cup \mathcal{C}_{r}, d_{i}=\operatorname{deg} \mathcal{C}_{i}$
\mathcal{C}_{0} transversal line.
$\mathbb{C}^{2}:=\mathbb{P}^{2} \backslash \mathcal{C}_{0}, \mathcal{C}:=\overline{\mathcal{C}} \cap \mathbb{C}^{2}$
$\pi: \mathbb{C}^{2} \backslash \mathcal{C} \rightarrow \mathbb{P}^{1} \backslash Z_{n}$
\mathbb{D} a big enough disk containing Z_{n}

Definition

Geometric basis:

$$
\gamma_{n} \gamma_{n-1} \cdots \gamma_{1}=\partial \mathbb{D}
$$

Braid Monodromy Representation

Definition

Consider the braid monodromy action:

$$
\rho: \pi_{1}\left(\mathbb{D} \backslash Z_{n}, z_{0}\right) \longrightarrow \operatorname{Diff}^{+}\left(F_{z_{0}}\right) \cong \mathbb{B}_{d}
$$

Definition

Consider the braid monodromy action:

$$
\rho: \pi_{1}\left(\mathbb{D} \backslash Z_{n}, z_{0}\right) \longrightarrow \operatorname{Diff}^{+}\left(F_{z_{0}}\right) \cong \mathbb{B}_{d}
$$

$\Gamma:=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ geometric basis of $\pi_{1}\left(\mathbb{D} \backslash Z_{n}, z_{0}\right)$.

Definition

Consider the braid monodromy action:

$$
\rho: \pi_{1}\left(\mathbb{D} \backslash Z_{n}, z_{0}\right) \longrightarrow \operatorname{Diff}^{+}\left(F_{z_{0}}\right) \cong \mathbb{B}_{d}
$$

$\Gamma:=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ geometric basis of $\pi_{1}\left(\mathbb{D} \backslash Z_{n}, z_{0}\right)$.

$$
\left(\rho \gamma_{1}, \ldots, \rho \gamma_{n}\right) \in \mathbb{B}_{d}^{n}
$$

is the Braid Monodromy Representation of \mathcal{C} relative to $\left(\pi, \Gamma, z_{0}\right)$.

Braid Monodromy Representation

Remark

- $\rho\left(\gamma_{n}\right) \rho\left(\gamma_{n-1}\right) \cdots \rho\left(\gamma_{2}\right) \rho\left(\gamma_{1}\right)=\Delta_{d}^{2}=\left(\sigma_{1} \cdots \sigma_{d-1}\right)^{d}$

Braid Monodromy Factorization.

Remark

- $\rho\left(\gamma_{n}\right) \rho\left(\gamma_{n-1}\right) \cdots \rho\left(\gamma_{2}\right) \rho\left(\gamma_{1}\right)=\Delta_{d}^{2}=\left(\sigma_{1} \cdots \sigma_{d-1}\right)^{d}$

Braid Monodromy Factorization.
$■$ Choice of base point, choice of section $\left(\mathbb{B}_{d}\right)$.

Remark

- $\rho\left(\gamma_{n}\right) \rho\left(\gamma_{n-1}\right) \cdots \rho\left(\gamma_{2}\right) \rho\left(\gamma_{1}\right)=\Delta_{d}^{2}=\left(\sigma_{1} \cdots \sigma_{d-1}\right)^{d}$

Braid Monodromy Factorization.
■ Choice of base point, choice of section $\left(\mathbb{B}_{d}\right)$.

$$
\beta \cdot\left(\beta_{1}, \ldots, \beta_{n}\right)=\left(\beta \beta_{1} \beta^{-1}, \ldots, \beta \beta_{n} \beta^{-1}\right)
$$

Remark

- $\rho\left(\gamma_{n}\right) \rho\left(\gamma_{n-1}\right) \cdots \rho\left(\gamma_{2}\right) \rho\left(\gamma_{1}\right)=\Delta_{d}^{2}=\left(\sigma_{1} \cdots \sigma_{d-1}\right)^{d}$

Braid Monodromy Factorization.
■ Choice of base point, choice of section $\left(\mathbb{B}_{d}\right)$.

$$
\beta \cdot\left(\beta_{1}, \ldots, \beta_{n}\right)=\left(\beta \beta_{1} \beta^{-1}, \ldots, \beta \beta_{n} \beta^{-1}\right)
$$

■ Choice of different geometric bases $\left(\mathbb{B}_{n}\right)$.

Remark

■ $\rho\left(\gamma_{n}\right) \rho\left(\gamma_{n-1}\right) \cdots \rho\left(\gamma_{2}\right) \rho\left(\gamma_{1}\right)=\Delta_{d}^{2}=\left(\sigma_{1} \cdots \sigma_{d-1}\right)^{d}$
Braid Monodromy Factorization.
■ Choice of base point, choice of section $\left(\mathbb{B}_{d}\right)$.

$$
\beta \cdot\left(\beta_{1}, \ldots, \beta_{n}\right)=\left(\beta \beta_{1} \beta^{-1}, \ldots, \beta \beta_{n} \beta^{-1}\right)
$$

- Choice of different geometric bases $\left(\mathbb{B}_{n}\right)$.

$$
\left(\beta_{1}, \ldots, \beta_{i}, \beta_{i+1}, \ldots, \beta_{n}\right) \cdot \sigma_{i}=\left(\beta_{1}, \ldots, \beta_{i}^{-1} \beta_{i+1} \beta_{i}, \beta_{i}, \ldots, \beta_{n}\right)
$$

Remark

■ $\rho\left(\gamma_{n}\right) \rho\left(\gamma_{n-1}\right) \cdots \rho\left(\gamma_{2}\right) \rho\left(\gamma_{1}\right)=\Delta_{d}^{2}=\left(\sigma_{1} \cdots \sigma_{d-1}\right)^{d}$
Braid Monodromy Factorization.
■ Choice of base point, choice of section $\left(\mathbb{B}_{d}\right)$.

$$
\beta \cdot\left(\beta_{1}, \ldots, \beta_{n}\right)=\left(\beta \beta_{1} \beta^{-1}, \ldots, \beta \beta_{n} \beta^{-1}\right)
$$

■ Choice of different geometric bases $\left(\mathbb{B}_{n}\right)$.

$$
\left(\beta_{1}, \ldots, \beta_{i}, \beta_{i+1}, \ldots, \beta_{n}\right) \cdot \sigma_{i}=\left(\beta_{1}, \ldots, \beta_{i}^{-1} \beta_{i+1} \beta_{i}, \beta_{i}, \ldots, \beta_{n}\right)
$$

■ Both actions commute $\left(\mathbb{B}_{n} \times \mathbb{B}_{d}\right)$. Hurwitz Moves.

Zariski-Van Kampen Method

Goal

Obtain a presentation for the fundamental group of the complement of a plane projective curve in \mathbb{P}^{2}.

Zariski-Van Kampen Method

Goal

Obtain a presentation for the fundamental group of the complement of a plane projective curve in \mathbb{P}^{2}.

We will put together several ingredients, among which, the Van Kampen Theorem is key.

Let $\pi: X \rightarrow M$ be a locally trivial fibration with section $s: M \rightarrow X$. Consider $p \in M$ and $x_{0} \in F_{p}$.

Let $\pi: X \rightarrow M$ be a locally trivial fibration with section $s: M \rightarrow X$. Consider $p \in M$ and $x_{0} \in F_{p}$.

Theorem

$\pi_{1}\left(X, x_{0}\right)=\pi_{1}\left(F_{p}, x_{0}\right) \rtimes \pi_{1}(M, p)$, where the action of $\pi_{1}(M, p)$ on $\pi_{1}\left(F_{p}, x_{0}\right)$ is given by the monodromy of π.

Let $\pi: X \rightarrow M$ be a locally trivial fibration with section $s: M \rightarrow X$. Consider $p \in M$ and $x_{0} \in F_{p}$.

Theorem

$\pi_{1}\left(X, x_{0}\right)=\pi_{1}\left(F_{p}, x_{0}\right) \rtimes \pi_{1}(M, p)$, where the action of $\pi_{1}(M, p)$ on $\pi_{1}\left(F_{p}, x_{0}\right)$ is given by the monodromy of π.

Proposition

Meridians around the same irreducible components of B are conjugate in $\pi_{1}(M \backslash B)$. Moreover, the conjugacy class of a meridian coincides with the set of homotopy classes of meridians around the same irreducible component.

Let $\pi: X \rightarrow M$ be a locally trivial fibration with section $s: M \rightarrow X$. Consider $p \in M$ and $x_{0} \in F_{p}$.

Theorem

$\pi_{1}\left(X, x_{0}\right)=\pi_{1}\left(F_{p}, x_{0}\right) \rtimes \pi_{1}(M, p)$, where the action of $\pi_{1}(M, p)$ on $\pi_{1}\left(F_{p}, x_{0}\right)$ is given by the monodromy of π.

Proposition

Meridians around the same irreducible components of B are conjugate in $\pi_{1}(M \backslash B)$. Moreover, the conjugacy class of a meridian coincides with the set of homotopy classes of meridians around the same irreducible component.

Proposition

The inclusion $M \backslash B \hookrightarrow M$ induces a surjective morphism, whose kernel is given by the smallest normal subgroup of $\pi_{1}(M \backslash B)$ containing meridians of all the irreducible components of B.

Zariski-Van Kampen Theorem

Let $\mathcal{C} \subset \mathbb{P}^{2}$ be a projective plane curve. Consider $P=[0: 1: 0] \in \mathbb{P}^{2} \backslash \mathcal{C}$.

Zariski-Van Kampen Theorem

Let $\mathcal{C} \subset \mathbb{P}^{2}$ be a projective plane curve. Consider $P=[0: 1: 0] \in \mathbb{P}^{2} \backslash \mathcal{C}$.

Zariski-Van Kampen Theorem

Let $\mathcal{C} \subset \mathbb{P}^{2}$ be a projective plane curve. Consider $P=[0: 1: 0] \in \mathbb{P}^{2} \backslash \mathcal{C}$. Project $\pi: \mathbb{P}^{2} \backslash\{P\} \rightarrow \mathbb{P}^{1}$ from P

Zariski-Van Kampen Theorem

Let $\mathcal{C} \subset \mathbb{P}^{2}$ be a projective plane curve. Consider $P=[0: 1: 0] \in \mathbb{P}^{2} \backslash \mathcal{C}$. Project $\pi: \mathbb{P}^{2} \backslash\{P\} \rightarrow \mathbb{P}^{1}$ from P

Zariski-Van Kampen Theorem

Let $\mathcal{C} \subset \mathbb{P}^{2}$ be a projective plane curve. Consider $P=[0: 1: 0] \in \mathbb{P}^{2} \backslash \mathcal{C}$. Project $\pi: \mathbb{P}^{2} \backslash\{P\} \rightarrow \mathbb{P}^{1}$ from P

Zariski-Van Kampen Theorem

Remark (1)

Let $X=\mathbb{P}^{2} \backslash(\mathcal{C} \cup L)$, then $\left.\pi\right|_{X}: X \rightarrow \mathbb{P}^{1} \backslash Z_{n}$ is a locally trivial fibration.

Zariski-Van Kampen Theorem

Remark (1)

Let $X=\mathbb{P}^{2} \backslash(\mathcal{C} \cup L)$, then $\left.\pi\right|_{X}: X \rightarrow \mathbb{P}^{1} \backslash Z_{n}$ is a locally trivial fibration. Moreover, its fiber is $\mathbb{P}^{1} \backslash Z_{d}$, where $d:=\operatorname{deg} \mathcal{C}$.

Zariski-Van Kampen Theorem

Remark (2)
By (2.3), $\pi_{1}\left(X, x_{0}\right)=\pi_{1}\left(F_{z_{0}}, x_{0}\right) \rtimes \pi_{1}\left(\mathbb{P}^{1} \backslash Z_{n}, z_{0}\right)$. Action is given by the monodromy of $\pi_{1}\left(\mathbb{P}^{1} \backslash Z_{n}, Z_{0}\right)$ on $\pi_{1}\left(F_{Z_{0}}, x_{0}\right)$ as follows

Zariski-Van Kampen Theorem

Remark (3)

Note that $\pi_{1}\left(F_{z_{0}}, x_{0}\right)=\left\langle g_{1}, \ldots, g_{d}: g_{d} g_{d-1} \cdots g_{1}=1\right\rangle$ and

$$
\pi_{1}\left(\mathbb{P}^{1} \backslash Z_{n}, z_{0}\right)=\left\langle\gamma_{1}, \ldots, \gamma_{n}: \gamma_{n} \cdots \gamma_{1}=1\right\rangle
$$

Zariski-Van Kampen Theorem

Theorem

$\pi_{1}\left(X, x_{0}\right)$ admits the following presentation:

$$
\left\langle g_{1}, \ldots, g_{d}, \gamma_{1}, \ldots, \gamma_{n}: g_{d} g_{d-1} \cdots g_{1}=\gamma_{n} \cdots \gamma_{1}=1, g_{i}^{\gamma_{j}}=\gamma_{j}^{-1} g_{i} \gamma_{j}\right\rangle
$$

Zariski-Van Kampen Theorem

Theorem
$\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}\right)$ admits the following presentation:

$$
\left\langle g_{1}, \ldots, g_{d}: g_{d} g_{d-1} \cdots g_{1}=1, g_{i}^{\gamma_{j}}=g_{i}\right\rangle
$$

Remark

$■$ Let $\mathcal{C}=\mathcal{C}_{1} \cup \ldots \cup \mathcal{C}_{r}$ the decomposition of \mathcal{C} in its irreducible components, then

$$
H_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}\right)=\mathbb{Z}^{r-1} \oplus \mathbb{Z} /\left(d_{1}, \ldots, d_{r}\right)
$$

where $d_{i}:=\operatorname{deg} \mathcal{C}$.

Remark

$■$ Let $\mathcal{C}=\mathcal{C}_{1} \cup \ldots \cup \mathcal{C}_{r}$ the decomposition of \mathcal{C} in its irreducible components, then

$$
H_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}\right)=\mathbb{Z}^{r-1} \oplus \mathbb{Z} /\left(d_{1}, \ldots, d_{r}\right)
$$

where $d_{i}:=\operatorname{deg} \mathcal{C}$.

- It two curves are in a connected family of equisingular curves, then they are isotopic

Alexander Polynomials of a curve

We shall consider reducible, not necessarily reduced curves in \mathbb{P}^{2}.

Alexander Polynomials of a curve

We shall consider reducible, not necessarily reduced curves in \mathbb{P}^{2}.

$$
\mathcal{C}:=\mathcal{C}_{1} \cup \cdots \cup \mathcal{C}_{r}
$$

Alexander Polynomials of a curve

We shall consider reducible, not necessarily reduced curves in \mathbb{P}^{2}.

$$
\mathcal{C}:=\mathcal{C}_{1} \cup \cdots \cup \mathcal{C}_{r}
$$

$$
\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right), \varepsilon_{i} \in \mathbb{Z} \text { multiplicities. }
$$

Alexander Polynomials of a curve

We shall consider reducible, not necessarily reduced curves in \mathbb{P}^{2}.

$$
\mathcal{C}:=\mathcal{C}_{1} \cup \cdots \cup \mathcal{C}_{r}
$$

$$
\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right), \varepsilon_{i} \in \mathbb{Z} \text { multiplicities. }
$$

■ Let \mathcal{C}_{0} be a line transversal to \mathcal{C}.

Alexander Polynomials of a curve

We shall consider reducible, not necessarily reduced curves in \mathbb{P}^{2}.

$$
\mathcal{C}:=\mathcal{C}_{1} \cup \cdots \cup \mathcal{C}_{r}
$$

$$
\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right), \varepsilon_{i} \in \mathbb{Z} \text { multiplicities. }
$$

■ Let \mathcal{C}_{0} be a line transversal to \mathcal{C}.
$■$ Recall that $H_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}_{0} \cup \mathcal{C}\right)=\mathbb{Z}^{r}$.

Alexander Polynomials of a curve

We shall consider reducible, not necessarily reduced curves in \mathbb{P}^{2}.

$$
\mathcal{C}:=\mathcal{C}_{1} \cup \cdots \cup \mathcal{C}_{r}
$$

$$
\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right), \varepsilon_{i} \in \mathbb{Z} \text { multiplicities. }
$$

■ Let \mathcal{C}_{0} be a line transversal to \mathcal{C}.
■ Recall that $H_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}_{0} \cup \mathcal{C}\right)=\mathbb{Z}^{r}$.
■ Let ε be the epimorphism

$$
\begin{array}{ccccc}
\varepsilon: \quad G:=\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}_{0} \cup \mathcal{C}\right) & \rightarrow & H_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}_{0} \cup \mathcal{C}\right) & \rightarrow & \mathbb{Z} \\
\gamma_{i} & \mapsto & {\left[\gamma_{i}\right]} & \mapsto & \varepsilon_{i} .
\end{array}
$$

Alexander Polynomials of a curve

We shall consider reducible, not necessarily reduced curves in \mathbb{P}^{2}.

$$
\mathcal{C}:=\mathcal{C}_{1} \cup \cdots \cup \mathcal{C}_{r}
$$

$$
\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right), \varepsilon_{i} \in \mathbb{Z} \text { multiplicities. }
$$

- Let \mathcal{C}_{0} be a line transversal to \mathcal{C}.

■ Recall that $H_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}_{0} \cup \mathcal{C}\right)=\mathbb{Z}^{r}$.
■ Let ε be the epimorphism

$$
\begin{array}{ccccc}
\varepsilon: \quad G:=\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}_{0} \cup \mathcal{C}\right) & \rightarrow & H_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}_{0} \cup \mathcal{C}\right) & \rightarrow & \mathbb{Z} \\
\gamma_{i} & \mapsto & {\left[\gamma_{i}\right]} & \mapsto & \varepsilon_{i} .
\end{array}
$$

■ Let $\mathbb{Q}[\mathbb{Z}]=\mathbb{Q}\left[t, t^{-1}\right]$ denote the group ring over \mathbb{Q}.

Alexander Polynomials of a curve

We shall consider reducible, not necessarily reduced curves in \mathbb{P}^{2}.

$$
\mathcal{C}:=\mathcal{C}_{1} \cup \cdots \cup \mathcal{C}_{r}
$$

$$
\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right), \varepsilon_{i} \in \mathbb{Z} \text { multiplicities. }
$$

- Let \mathcal{C}_{0} be a line transversal to \mathcal{C}.

■ Recall that $H_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}_{0} \cup \mathcal{C}\right)=\mathbb{Z}^{r}$.
■ Let ε be the epimorphism

$$
\begin{array}{ccccc}
\varepsilon: \quad G:=\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}_{0} \cup \mathcal{C}\right) & \rightarrow & H_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}_{0} \cup \mathcal{C}\right) & \rightarrow & \mathbb{Z} \\
\gamma_{i} & \mapsto & {\left[\gamma_{i}\right]} & \mapsto & \varepsilon_{i} .
\end{array}
$$

■ Let $\mathbb{Q}[\mathbb{Z}]=\mathbb{Q}\left[t, t^{-1}\right]$ denote the group ring over \mathbb{Q}.

$$
K_{\varepsilon}:=\operatorname{ker} \varepsilon \quad \text { and } \quad K_{\varepsilon}^{\prime}:=\left[K_{\varepsilon}, K_{\varepsilon}\right]
$$

Alexander Polynomials of a curve

We shall consider reducible, not necessarily reduced curves in \mathbb{P}^{2}.

$$
\begin{gathered}
\mathcal{C}:=\mathcal{C}_{1} \cup \cdots \cup \mathcal{C}_{r} \\
\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right), \varepsilon_{i} \in \mathbb{Z} \text { multiplicities. }
\end{gathered}
$$

■ Let \mathcal{C}_{0} be a line transversal to \mathcal{C}.
■ Recall that $H_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}_{0} \cup \mathcal{C}\right)=\mathbb{Z}^{r}$.
■ Let ε be the epimorphism

$$
\begin{array}{ccccc}
\varepsilon: \quad G:=\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}_{0} \cup \mathcal{C}\right) & \rightarrow & H_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}_{0} \cup \mathcal{C}\right) & \rightarrow & \mathbb{Z} \\
\gamma_{i} & \mapsto & {\left[\gamma_{i}\right]} & \mapsto & \varepsilon_{i} .
\end{array}
$$

■ Let $\mathbb{Q}[\mathbb{Z}]=\mathbb{Q}\left[t, t^{-1}\right]$ denote the group ring over \mathbb{Q}.

$$
K_{\varepsilon}:=\operatorname{ker} \varepsilon \quad \text { and } \quad K_{\varepsilon}^{\prime}:=\left[K_{\varepsilon}, K_{\varepsilon}\right]
$$

- $K_{\varepsilon} / K_{\varepsilon}^{\prime}$ can be viewed as a module over the group ring $\mathbb{Z}[\mathbb{Z}]$.

Alexander Polynomials of a curve

We shall consider reducible, not necessarily reduced curves in \mathbb{P}^{2}.

$$
\begin{gathered}
\mathcal{C}:=\mathcal{C}_{1} \cup \cdots \cup \mathcal{C}_{r} \\
\left(\varepsilon_{1}, \ldots, \varepsilon_{r}\right), \varepsilon_{i} \in \mathbb{Z} \text { multiplicities. }
\end{gathered}
$$

■ Let \mathcal{C}_{0} be a line transversal to \mathcal{C}.
■ Recall that $H_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}_{0} \cup \mathcal{C}\right)=\mathbb{Z}^{r}$.
■ Let ε be the epimorphism

$$
\begin{array}{ccccc}
\varepsilon: \quad G:=\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}_{0} \cup \mathcal{C}\right) & \rightarrow & H_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}_{0} \cup \mathcal{C}\right) & \rightarrow & \mathbb{Z} \\
\gamma_{i} & \mapsto & {\left[\gamma_{i}\right]} & \mapsto & \varepsilon_{i} .
\end{array}
$$

■ Let $\mathbb{Q}[\mathbb{Z}]=\mathbb{Q}\left[t, t^{-1}\right]$ denote the group ring over \mathbb{Q}.

$$
K_{\varepsilon}:=\operatorname{ker} \varepsilon \quad \text { and } \quad K_{\varepsilon}^{\prime}:=\left[K_{\varepsilon}, K_{\varepsilon}\right]
$$

■ $K_{\varepsilon} / K_{\varepsilon}^{\prime}$ can be viewed as a module over the group ring $\mathbb{Z}[\mathbb{Z}]$.

Definition ([5])

The Alexander polynomial $\Delta_{\mathcal{C}, \varepsilon}(t)$ of G relative to surjection $\varepsilon: G \rightarrow \mathbb{Z}$ is the order of the torsion of the $\mathbb{Q}[\mathbb{Z}]=\mathbb{Q}\left[t, t^{-1}\right]$-module $K_{\varepsilon} / K_{\varepsilon}^{\prime} \otimes \mathbb{Q}$.

Alexander Polynomials of a curve

Theorem ([6],-)

The Alexander polynomial of \mathcal{C} w.r.t. ε is the first invariant of the colored Burau representation matrix of the braid monodromy of \mathcal{C} w.r.t. ε divided by $\left(1-t_{1}^{\varepsilon_{1}} \cdots t_{r}^{\varepsilon_{r}}\right)$.

Alexander Polynomials of a curve

Theorem ([6],-)

The Alexander polynomial of \mathcal{C} w.r.t. ε is the first invariant of the colored Burau representation matrix of the braid monodromy of \mathcal{C} w.r.t. ε divided by $\left(1-t_{1}^{\varepsilon_{1}} \cdots t_{r}^{\varepsilon_{r}}\right)$.

Colored Burau Representation:

$$
\sigma_{1} \mapsto\left(\begin{array}{ccccc}
-t_{i}^{\varepsilon_{i}} & 1 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
0 & \ldots & & \ldots & \\
0 & 0 & 0 & \ldots & 1
\end{array}\right) \quad \sigma_{i} \mapsto\left(\begin{array}{ccccccccc}
1 & \ldots & 0 & & & & & \\
& \ldots & & & 0 & & & 0 & \\
0 & \ldots & 1 & & & & & & \\
& & & 1 & 0 & 0 & & & \\
& 0 & & t_{i}^{\varepsilon_{i}} & -t_{i}^{\varepsilon_{i}} & 1 & & 0 & \\
& & & 0 & 0 & 1 & & & \\
& 0 & & & 0 & & 1 & \ldots & 0 \\
& & & & & & 0 & \ldots & 1
\end{array}\right)
$$

Orbifolds and Orbifold Fundamental Groups

Definition (Orbifold)

An orbifold curve $S_{\bar{m}}$ is a Riemann surface S with a function $\bar{m}: S \rightarrow \mathbb{N}$ whose value is 1 outside a finite number of points. A point $P \in S$ for which $\bar{m}(P)>1$ is called an orbifold point.

Orbifolds and Orbifold Fundamental Groups

Definition (Orbifold)

An orbifold curve $S_{\bar{m}}$ is a Riemann surface S with a function $\bar{m}: S \rightarrow \mathbb{N}$ whose value is 1 outside a finite number of points. A point $P \in S$ for which $\bar{m}(P)>1$ is called an orbifold point.

Definition (Orbifold Fundamental Group)

For an orbifold $S_{\bar{m}}$, let P_{1}, \ldots, P_{n} be the orbifold points, $m_{j}:=\bar{m}\left(P_{j}\right)>1$. Then, the orbifold fundamental group of $S_{\bar{m}}$ is

$$
\pi_{1}^{\mathrm{orb}}\left(S_{\bar{m}}\right):=\pi_{1}\left(S \backslash\left\{P_{1}, \ldots, P_{n}\right\}\right) /\left\langle\mu_{j}^{m_{j}}=1\right\rangle
$$

where μ_{j} is a meridian of P_{j}. We will denote $S_{\bar{m}}$ simply by $S_{m_{1}, \ldots, m_{n}}$.

Orbifold Morphisms

Definition

A dominant algebraic morphism $\varphi: X \rightarrow S$ defines an orbifold morphism $X \rightarrow S_{\bar{m}}$ if for all $P \in S$, the divisor $\varphi^{*}(P)$ is a $\bar{m}(P)$-multiple.

Orbifold Morphisms

Definition

A dominant algebraic morphism $\varphi: X \rightarrow S$ defines an orbifold morphism $X \rightarrow S_{\bar{m}}$ if for all $P \in S$, the divisor $\varphi^{*}(P)$ is a $\bar{m}(P)$-multiple.

Proposition ([1, Proposition 1.5])

Let $\rho: X \rightarrow S$ define an orbifold morphism $X \rightarrow S_{\bar{m}}$. Then φ induces a morphism $\varphi_{*}: \pi_{1}(X) \rightarrow \pi_{1}^{\mathrm{orb}}\left(S_{\bar{m}}\right)$.
Moreover, if the generic fiber is connected, then φ_{*} is surjective.

Example

Suppose F fits in a functional equation of type

$$
\begin{equation*}
F_{2} h_{2}^{3}+F_{3} h_{3}^{2}+F=0 \tag{1}
\end{equation*}
$$

Then (1) induces a pencil map $\varphi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{1}$ given by $\varphi([x: y: z])=\left[h_{2}^{3}: h_{3}^{2}\right]$. Since $\left.\varphi\right|_{\mathbb{P}^{2} \backslash \mathcal{C}}$ has two multiple fibers (over $[0: 1],[1: 0]$) one has an orbifold morphism $\varphi_{2,3}: \mathbb{P}^{2} \backslash \mathcal{C} \rightarrow \mathbb{P}_{2,3}^{1} \backslash\{[1:-1]\}$. In particular, if the quasi-toric relation is primitive, then by Proposition 3.4, there is an epimorphism

$$
\varphi_{2,3}: \pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}\right) \rightarrow \pi_{1}^{\text {orb }}\left(\mathbb{P}_{2,3}^{1} \backslash\{[1:-1]\}\right)=\mathbb{Z}_{2} * \mathbb{Z}_{3}
$$

Example

Suppose F fits in a functional equation of type

$$
\begin{equation*}
F_{2} h_{2}^{3}+F_{3} h_{3}^{2}+F=0 \tag{1}
\end{equation*}
$$

Then (1) induces a pencil map $\varphi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{1}$ given by $\varphi([x: y: z])=\left[h_{2}^{3}: h_{3}^{2}\right]$. Since $\left.\varphi\right|_{\mathbb{P}^{2} \backslash \mathcal{C}}$ has two multiple fibers (over $[0: 1],[1: 0]$) one has an orbifold morphism $\varphi_{2,3}: \mathbb{P}^{2} \backslash \mathcal{C} \rightarrow \mathbb{P}_{2,3}^{1} \backslash\{[1:-1]\}$. In particular, if the quasi-toric relation is primitive, then by Proposition 3.4, there is an epimorphism

$$
\varphi_{2,3}: \pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}\right) \rightarrow \pi_{1}^{\text {orb }}\left(\mathbb{P}_{2,3}^{1} \backslash\{[1:-1]\}\right)=\mathbb{Z}_{2} * \mathbb{Z}_{3}
$$

Another Application

Corollary

The number of multiple members in a pencil of plane curves (with no base components) is at most two.

Functional Relation $F_{1} h_{1}^{o}+F_{2} h_{2}^{q}+F_{3} h_{3}^{r}=0$

Definition

A curve $\mathcal{C}:=\{F=0\}$ satisfies a quasi-toric relation of type (p, q, r) if there exist homogeneous polynomials $h_{1}, h_{2}, h_{3} \in \mathbb{C}[x, y, z]$ such that

$$
h_{1}^{p} F_{1}+h_{2}^{q} F_{2}+h_{3}^{r} F_{3}=0,
$$

where F_{1}, F_{2}, F_{3} are homogeneous polynomials and $\left\{F_{1} F_{2} F_{3}=0\right\}=\mathcal{C}$.

Main Theorem

Theorem ([3])

Let $\mathcal{C}=\{F=0\}$ be a (possibly non-reduced) curve.

Main Theorem

Theorem ([3])

Let $\mathcal{C}=\{F=0\}$ be a (possibly non-reduced) curve.
Then the following statements are equivalent:
1 The Alexander polynomial $\Delta_{\mathcal{C}, \varepsilon}(t)$ has a primitive root ξ of order 3 (resp. 6) as a zero.

Main Theorem

Theorem ([3])

Let $\mathcal{C}=\{F=0\}$ be a (possibly non-reduced) curve.
Then the following statements are equivalent:
1 The Alexander polynomial $\Delta_{\mathcal{C}, \varepsilon}(t)$ has a primitive root ξ of order 3 (resp. 6) as a zero.
(2. There exists an orbifold morphism $\varphi: X \rightarrow \mathbb{P}_{3,3,3}^{1}$ (resp. $\varphi: X \rightarrow \mathbb{P}_{2,3,6}^{1}$).

Main Theorem

Theorem ([3])

Let $\mathcal{C}=\{F=0\}$ be a (possibly non-reduced) curve.
Then the following statements are equivalent:
1 The Alexander polynomial $\Delta_{\mathcal{C}, \varepsilon}(t)$ has a primitive root ξ of order 3 (resp. 6) as a zero.
〔 There exists an orbifold morphism $\varphi: X \rightarrow \mathbb{P}_{3,3,3}^{1}$ (resp. $\varphi: X \rightarrow \mathbb{P}_{2,3,6}^{1}$).
3 The polynomial F fits in a quasi-toric relation of type $(3,3,3)$ (resp. $(2,3,6)$).

Main Theorem

Theorem ([3])

Let $\mathcal{C}=\{F=0\}$ be a (possibly non-reduced) curve.
Then the following statements are equivalent:
1 The Alexander polynomial $\Delta_{\mathcal{C}, \varepsilon}(t)$ has a primitive root ξ of order 3 (resp. 6) as a zero.
〔 There exists an orbifold morphism $\varphi: X \rightarrow \mathbb{P}_{3,3,3}^{1}$ (resp. $\varphi: X \rightarrow \mathbb{P}_{2,3,6}^{1}$).
3 The polynomial F fits in a quasi-toric relation of type $(3,3,3)$ (resp. $(2,3,6)$).

Main Theorem

Theorem ([3])

Let $\mathcal{C}=\{F=0\}$ be a (possibly non-reduced) curve.
Then the following statements are equivalent:
1 The Alexander polynomial $\Delta_{\mathcal{C}, \varepsilon}(t)$ has a primitive root ξ of order 3 (resp. 6) as a zero.
2. There exists an orbifold morphism $\varphi: X \rightarrow \mathbb{P}_{3,3,3}^{1}$ (resp. $\varphi: X \rightarrow \mathbb{P}_{2,3,6}^{1}$).

3 The polynomial F fits in a quasi-toric relation of type $(3,3,3)$ (resp. $(2,3,6)$).
Moreover, the set of quasi-toric relations of type $(3,3,3)$ (resp. $(2,3,6)$) has a group structure, whose rank is twice the multiplicity of ξ as a root of $\Delta_{\mathcal{C}, \varepsilon}(t)$.

Examples

Example

Since the 6-cuspidal sextic $\mathcal{C}_{6,6}$ from Example 4 is such that: $\Delta_{\mathcal{C}_{6,6}}(t)=\left(t^{2}-t+1\right)$, the decomposition $F=f_{2}^{3}+f_{3}^{2}$ is essentially unique.

Examples

Example

Since the 6-cuspidal sextic $\mathcal{C}_{6,6}$ from Example 4 is such that: $\Delta_{\mathcal{C}_{6,6}}(t)=\left(t^{2}-t+1\right)$, the decomposition $F=f_{2}^{3}+f_{3}^{2}$ is essentially unique.

Example

$F=\left(y^{3}-z^{3}\right)\left(z^{3}-x^{3}\right)\left(x^{3}-y^{3}\right), \mathcal{C}:=\{F=0\}$, then $\Delta_{\mathcal{C}}(t)=\left(t^{2}+t+1\right)^{2}(t-1)^{8}$.

Examples

Example

Since the 6-cuspidal sextic $\mathcal{C}_{6,6}$ from Example 4 is such that: $\Delta_{\mathcal{C}_{6,6}}(t)=\left(t^{2}-t+1\right)$, the decomposition $F=f_{2}^{3}+f_{3}^{2}$ is essentially unique.

Example

$F=\left(y^{3}-z^{3}\right)\left(z^{3}-x^{3}\right)\left(x^{3}-y^{3}\right), \mathcal{C}:=\{F=0\}$, then $\Delta_{\mathcal{C}}(t)=\left(t^{2}+t+1\right)^{2}(t-1)^{8}$. By Theorem 4.2, F fits in a quasi-toric relation of elliptic type $(3,3,3)$:

Examples

Example

Since the 6-cuspidal sextic $\mathcal{C}_{6,6}$ from Example 4 is such that: $\Delta_{\mathcal{C}_{6,6}}(t)=\left(t^{2}-t+1\right)$, the decomposition $F=f_{2}^{3}+f_{3}^{2}$ is essentially unique.

Example

$F=\left(y^{3}-z^{3}\right)\left(z^{3}-x^{3}\right)\left(x^{3}-y^{3}\right), \mathcal{C}:=\{F=0\}$, then $\Delta_{\mathcal{C}}(t)=\left(t^{2}+t+1\right)^{2}(t-1)^{8}$. By Theorem 4.2, F fits in a quasi-toric relation of elliptic type $(3,3,3)$:

$$
\begin{equation*}
x^{3}\left(y^{3}-z^{3}\right)+y^{3}\left(z^{3}-x^{3}\right)+z^{3}\left(x^{3}-y^{3}\right)=0 . \tag{2}
\end{equation*}
$$

Examples

Example

Since the 6-cuspidal sextic $\mathcal{C}_{6,6}$ from Example 4 is such that: $\Delta_{\mathcal{C}_{6,6}}(t)=\left(t^{2}-t+1\right)$, the decomposition $F=f_{2}^{3}+f_{3}^{2}$ is essentially unique.

Example

$F=\left(y^{3}-z^{3}\right)\left(z^{3}-x^{3}\right)\left(x^{3}-y^{3}\right), \mathcal{C}:=\{F=0\}$, then $\Delta_{\mathcal{C}}(t)=\left(t^{2}+t+1\right)^{2}(t-1)^{8}$. By Theorem 4.2, F fits in a quasi-toric relation of elliptic type $(3,3,3)$:

$$
\begin{equation*}
x^{3}\left(y^{3}-z^{3}\right)+y^{3}\left(z^{3}-x^{3}\right)+z^{3}\left(x^{3}-y^{3}\right)=0 . \tag{2}
\end{equation*}
$$

However, there should exist another relation independent from (2), namely

$$
\begin{equation*}
\ell_{1}^{3} F_{1}+\ell_{2}^{3} F_{2}+\ell_{3}^{3} F_{3}=0, \tag{3}
\end{equation*}
$$

where

$$
F_{i}=\left(y-\omega_{3}^{i} z\right)\left(z-\omega_{3}^{i+1} x\right)\left(x-\omega_{3}^{i+2} y\right), \quad i=1,2,3
$$

ω_{3} is a third-root of unity, and

$$
\begin{aligned}
& \ell_{1}=\left(\omega_{3}-\omega_{3}^{2}\right) x+\left(\omega_{3}-\omega_{3}^{2}\right) y+\left(\omega_{3}^{2}-1\right) z \\
& \ell_{2}=\left(\omega_{3}-\omega_{3}^{2}\right) z+\left(\omega_{3}-\omega_{3}^{2}\right) x+\left(\omega_{3}^{2}-1\right) y \\
& \ell_{3}=\left(\omega_{3}-\omega_{3}^{2}\right) y+\left(\omega_{3}-\omega_{3}^{2}\right) z+\left(\omega_{3}^{2}-1\right) x
\end{aligned}
$$

E. Artal, J.I. Cogolludo, On the connection between fundamental groups and pencils with multiple fibers. Preprint available at arXiv:1002.2097v1 [math.AG].J.I. Cogolludo and V. Florens, Twisted alexander polynomials of plane algebraic curves, J. Lond. Math. Soc. (2) 76 (2007), no. 1, 105-121.J.I. Cogolludo, A. Libgober, Mordell-Weil groups of elliptic threefolds and the Alexander module of plane curves Preprint available at arXiv:1008.2018v1 [math.AG].

Vik.S. Kulikov, On plane algebraic curves of positive Albanese dimension, Izv. Ross. Akad. Nauk Ser. Mat. 59 (1995), no. 6, 75-94.
A. Libgober, Alexander polynomial of plane algebraic curves and cyclic multiple planes. Duke Math. J. 49 (1982), no. 4, 833-851.
\qquad Invariants of plane algebraic curves via representations of the braid groups. Invent. Math. 95 (1989), no. 1, 25-30.
\qquad , Characteristic varieties of algebraic curves, Applications of algebraic geometry to coding theory, physics and computation (Eilat, 2001), Kluwer Acad. Publ., Dordrecht, 2001, pp. 215-254.

\qquad Problems in topology of the complements to plane singular curves. Singularities in geometry and topology, 370-387, World Sci. Publ., Hackensack, NJ, 2007.
J. Milnor, On the 3-dimensional Brieskorn manifolds $M(p, q, r)$, Knots, groups, and 3-manifolds (Papers dedicated to the memory of R. H. Fox), Princeton Univ. Press, Princeton, N. J., 1975, pp. 175-225. Ann. of Math. Studies, No. 84.
M. Oka, On the fundamental group of the complement of certain plane curves, J. Math. Soc. Japan 30 (1978), no. 4, 579-597.
, Alexander polynomial of sextics, J. Knot Theory Ramifications 12 (2003), no. 5, 619-636.
\qquad , A survey on Alexander polynomials of plane curves, Singularités Franco-Japonaises, Sémin. Congr., vol. 10, Soc. Math. France, Paris, 2005, pp. 209-232.H.O. Tokunaga, Irreducible plane curves with the Albanese dimension 2, Proc. Amer. Math. Soc. 127 (1999), no. 7, 1935-1940.

Braid Action

