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Three Approaches to One Problem

C ⊂ P2

X := P2 \ C

Three approaches:

Topological : Braid Monodromy, Fundamental Group, Alexander Polynomial.

Geometric: Morphisms onto curves (De Franchis).

Algebraic: Existence of pencils containing C.
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A New Look at a Classical Example

Consider C := {F := h3
2 + h2

3 = 0} ⊂ P2 a sextic.
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Geometric basis

C̄ = C0 ∪ C1 ∪ ... ∪ Cr , di = deg Ci
C0 transversal line.
C 2 := P2 \ C0, C := C̄ ∩ C 2

π : C 2 \ C → P1 \ Zn
D a big enough disk containing Zn

Definition

Geometric basis:

z0
z2 z1· · ·zn

γ1

γ2
γn

D

γnγn−1 · · · γ1 = ∂D
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Braid Monodromy Representation

Definition

Consider the braid monodromy action:

ρ : π1(D \ Zn, z0) −→ Diff +(Fz0 ) ∼= Bd .

Γ := (γ1, ..., γn) geometric basis of π1(D \ Zn, z0).

(ργ1, ..., ργn) ∈ Bn
d

is the Braid Monodromy Representation of C relative to (π, Γ, z0).
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Braid Monodromy Representation

Remark

ρ(γn)ρ(γn−1) · · · ρ(γ2)ρ(γ1) = ∆2
d = (σ1 · · ·σd−1)d

Braid Monodromy Factorization.

Choice of base point, choice of section (Bd ).

β · (β1, ..., βn) = (ββ1β
−1, ..., ββnβ

−1)

Choice of different geometric bases (Bn).

(β1, ..., βi , βi+1, ..., βn) · σi = (β1, ..., β
−1
i βi+1βi , βi , ..., βn)

Both actions commute (Bn × Bd ). Hurwitz Moves.
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projective curve in P2.
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Let π : X → M be a locally trivial fibration with section s : M → X . Consider p ∈ M and
x0 ∈ Fp .

Theorem

π1(X , x0) = π1(Fp, x0) o π1(M, p), where the action of π1(M, p) on π1(Fp, x0) is given
by the monodromy of π.

Proposition

Meridians around the same irreducible components of B are conjugate in π1(M \ B).
Moreover, the conjugacy class of a meridian coincides with the set of homotopy
classes of meridians around the same irreducible component.

Proposition

The inclusion M \ B ↪→ M induces a surjective morphism, whose kernel is given by the
smallest normal subgroup of π1(M \ B) containing meridians of all the irreducible
components of B.
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Remark (1)

Let X = P2 \ (C ∪ L), then π|X : X → P1 \ Zn is a locally trivial fibration.



Zariski-Van Kampen Theorem

zn zn−1 · · · z2 z1 z0

Ln Ln−1 · · · L2 L1 L0

Remark (1)

Let X = P2 \ (C ∪ L), then π|X : X → P1 \ Zn is a locally trivial fibration. Moreover, its
fiber is P1 \ Zd , where d := deg C.



Zariski-Van Kampen Theorem

Remark (2)

By (2.3), π1(X , x0) = π1(Fz0 , x0) o π1(P1 \ Zn, z0). Action is given by the monodromy
of π1(P1 \ Zn, z0) on π1(Fz0 , x0) as follows :.



Zariski-Van Kampen Theorem

γn γn−1 · · · γ2 γ1

x0

z0

g1

...

g2

gd

Remark (3)

Note that π1(Fz0 , x0) = 〈g1, ..., gd : gd gd−1 · · · g1 = 1〉 and
π1(P1 \ Zn, z0) = 〈γ1, ..., γn : γn · · · γ1 = 1〉.
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γn γn−1 · · · γ2 γ1 z0

x0

g1

...

g2

gd

Theorem

π1(X , x0) admits the following presentation:

〈g1, ..., gd , γ1, ..., γn : gd gd−1 · · · g1 = γn · · · γ1 = 1, g
γj
i = γ−1

j giγj 〉
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Theorem

π1(P2 \ C) admits the following presentation:

〈g1, ..., gd : gd gd−1 · · · g1 = 1, g
γj
i = gi 〉



Remark

Let C = C1 ∪ ... ∪ Cr the decomposition of C in its irreducible components, then

H1(P2 \ C) = Zr−1 ⊕ Z/(d1, ..., dr ),

where di := deg C.

It two curves are in a connected family of equisingular curves, then they are
isotopic
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Alexander Polynomials of a curve

We shall consider reducible, not necessarily reduced curves in P2.

C := C1 ∪ · · · ∪ Cr

(ε1, . . . , εr ), εi ∈ Z multiplicities.

Let C0 be a line transversal to C.
Recall that H1(P2 \ C0 ∪ C) = Zr .
Let ε be the epimorphism

ε : G := π1(P2 \ C0 ∪ C) → H1(P2 \ C0 ∪ C) → Z
γi 7→ [γi ] 7→ εi .

Let Q[Z] = Q[t , t−1] denote the group ring over Q.

Kε := ker ε and K ′ε := [Kε,Kε]

Kε/K ′ε can be viewed as a module over the group ring Z[Z].

Definition ([5])

The Alexander polynomial ∆C,ε(t) of G relative to surjection ε : G→ Z is the order of
the torsion of the Q[Z] = Q[t , t−1]-module Kε/K ′ε ⊗ Q.
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Alexander Polynomials of a curve

Theorem ([6],-)

The Alexander polynomial of C w.r.t. ε is the first invariant of the colored Burau
representation matrix of the braid monodromy of C w.r.t. ε divided by (1− tε1

1 · · · t
εr
r ).

Colored Burau Representation:

σ1 7→

0BBB@
−tεi

i 1 0 ... 0
0 1 0 ... 0
0 0 1 ... 0

... ...
0 0 0 ... 1

1CCCA σi 7→

0BBBBBBBBBBB@

1 ... 0
...

0 ... 1
0 0

0
1 0 0

tεi
i −tεi

i 1
0 0 1

0

0 0
1 ... 0

...
0 ... 1

1CCCCCCCCCCCA



Alexander Polynomials of a curve

Theorem ([6],-)

The Alexander polynomial of C w.r.t. ε is the first invariant of the colored Burau
representation matrix of the braid monodromy of C w.r.t. ε divided by (1− tε1

1 · · · t
εr
r ).

Colored Burau Representation:

σ1 7→

0BBB@
−tεi

i 1 0 ... 0
0 1 0 ... 0
0 0 1 ... 0

... ...
0 0 0 ... 1

1CCCA σi 7→

0BBBBBBBBBBB@

1 ... 0
...

0 ... 1
0 0

0
1 0 0

tεi
i −tεi

i 1
0 0 1

0

0 0
1 ... 0

...
0 ... 1

1CCCCCCCCCCCA



Orbifolds and Orbifold Fundamental Groups

Definition (Orbifold)

An orbifold curve Sm̄ is a Riemann surface S with a function m̄ : S → N whose value
is 1 outside a finite number of points. A point P ∈ S for which m̄(P) > 1 is called an
orbifold point .

Definition (Orbifold Fundamental Group)

For an orbifold Sm̄, let P1, . . . ,Pn be the orbifold points, mj := m̄(Pj ) > 1. Then, the
orbifold fundamental group of Sm̄ is

πorb
1 (Sm̄) := π1(S \ {P1, . . . ,Pn})/〈µ

mj
j = 1〉,

where µj is a meridian of Pj . We will denote Sm̄ simply by Sm1,...,mn .
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Orbifold Morphisms

Definition

A dominant algebraic morphism ϕ : X → S defines an orbifold morphism X → Sm̄ if for
all P ∈ S, the divisor ϕ∗(P) is a m̄(P)-multiple.

Proposition ([1, Proposition 1.5])

Let ρ : X → S define an orbifold morphism X → Sm̄. Then ϕ induces a morphism
ϕ∗ : π1(X)→ πorb

1 (Sm̄).
Moreover, if the generic fiber is connected, then ϕ∗ is surjective.
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The Classical Example

Example

Suppose F fits in a functional equation of type

F2h3
2 + F3h2

3 + F = 0, (1)

Then (1) induces a pencil map ϕ : P2 99K P1 given by ϕ([x : y : z]) = [h3
2 : h2

3]. Since
ϕ|P2\C has two multiple fibers (over [0 : 1], [1 : 0]) one has an orbifold morphism
ϕ2,3 : P2 \ C → P1

2,3 \ {[1 : −1]}. In particular, if the quasi-toric relation is primitive,
then by Proposition 3.4, there is an epimorphism

ϕ2,3 : π1(P2 \ C)→ πorb
1 (P1

2,3 \ {[1 : −1]}) = Z2 ∗ Z3.

P1

2
3
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Another Application

Corollary

The number of multiple members in a pencil of plane curves (with no base
components) is at most two.



Functional Relation F1hp
1 + F2hq

2 + F3hr
3 = 0

Definition

A curve C := {F = 0} satisfies a quasi-toric relation of type (p, q, r) if there exist
homogeneous polynomials h1, h2, h3 ∈ C [x , y , z] such that

hp
1F1 + hq

2F2 + hr
3F3 = 0,

where F1,F2,F3 are homogeneous polynomials and {F1F2F3 = 0} = C.



Main Theorem

Theorem ([3])

Let C = {F = 0} be a (possibly non-reduced) curve.

Then the following statements are equivalent:

1 The Alexander polynomial ∆C,ε(t) has a primitive root ξ of order 3 (resp. 6) as a
zero.

2 There exists an orbifold morphism ϕ : X → P1
3,3,3 (resp. ϕ : X → P1

2,3,6).

3 The polynomial F fits in a quasi-toric relation of type (3, 3, 3) (resp. (2, 3, 6)).

Moreover, the set of quasi-toric relations of type (3, 3, 3) (resp. (2, 3, 6)) has a group
structure, whose rank is twice the multiplicity of ξ as a root of ∆C,ε(t).
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Examples

Example

Since the 6-cuspidal sextic C6,6 from Example 4 is such that: ∆C6,6 (t) = (t2 − t + 1),
the decomposition F = f 3

2 + f 2
3 is essentially unique.

Example

F = (y3 − z3)(z3 − x3)(x3 − y3), C := {F = 0}, then ∆C(t) = (t2 + t + 1)2(t − 1)8.
By Theorem 4.2, F fits in a quasi-toric relation of elliptic type (3, 3, 3):

x3(y3 − z3) + y3(z3 − x3) + z3(x3 − y3) = 0. (2)

However, there should exist another relation independent from (2), namely

`31F1 + `32F2 + `33F3 = 0, (3)

where
Fi = (y − ωi

3z)(z − ωi+1
3 x)(x − ωi+2

3 y), i = 1, 2, 3,

ω3 is a third-root of unity, and

`1 = (ω3 − ω2
3)x + (ω3 − ω2

3)y + (ω2
3 − 1)z,

`2 = (ω3 − ω2
3)z + (ω3 − ω2

3)x + (ω2
3 − 1)y ,

`3 = (ω3 − ω2
3)y + (ω3 − ω2

3)z + (ω2
3 − 1)x .
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Braid Action

λ = 0

λ = 1
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