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B (X, X0, Yo) :== {v € (X, %0, %0)}/ ~

m (X, X0, o) has a groupoid structure.

m (X, x0) := m (X, Xo, Xo) has a group structure.

m X complex manifold = ~ can be considered Piecewise Smooth.

m X connected = 7y (X)
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Example (Ordered Configuration Spaces)
Let Xp := {(21,...,2n) € C" | z; # Z;,i # j}. Then 71 (Xn) = Pn.

Example (Non-ordered Configuration Spaces)

Let Pp := {f(z) € C[z] | deg(f) = n}, Yn :=P(Pn \ An), where

Ap = {f € Ppn | f has multiple roots}. Note that Y, = X,/%p. Then m1(Yn) = By.
Analogously, if we consider P, := {f(s, t) € C[s, ] | f homogeneous deg(f) = n},
Yn := P(Pn\ Ap), where Ap, := {f € P | f has multiple roots}. Note that

™ (Yn) = IB3n(82)
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Van Kampen Theorem

Let Uy and U, open subsets of X such that:
m Uy U U, =X and
m U := Uy N Us is path-connected.
Then

m(X) = 71 (Up) %y (Uyp) ™1 (U2).

m(S' V.. VS =Fp. \

Let z1,...,zn € C, Zn :=={Z, ..., Zn}. Then m1(C \ Zn) = Fp.




Locally trivial Fibrations

Definition

A surjective smooth map 7 : X — M of smooth manifolds is a locally trivial fibration if
there is an open cover i/ of M and diffeomorphisms ¢ : 7= 1(U) — U x =~ (py), with
pu € U, such that ¢ is fiber-preserving, that is pry oy = . We denote 7~ (p) by Fp.




Locally trivial Fibrations

Definition

A surjective smooth map 7 : X — M of smooth manifolds is a locally trivial fibration if
there is an open cover i/ of M and diffeomorphisms ¢ : 7= 1(U) — U x =~ (py), with
pu € U, such that ¢ is fiber-preserving, that is pry oy = . We denote 7~ (p) by Fp.

Consider 7 : X — M a locally trivial fibration and s : M — X a section. There is an
action of 1 (M, p) on w1 (Fp, Xo) (8(P) = Xp) called monodromy action of M on Fp.



Monodromy Actions

7r_1('y) = X <= X



Monodromy Actions
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The fibration 7 is trivial, and hence there exists
w:lxFp—X

such that ¢(0, x) = lde.

If 7 is such that Fp is connected, then given a loop « € m1(Fp, Xp) and a loop

v € m1(M, p), then one deforms (¢, o) into a loop a; € T(Fy ), S(7(1))). Then
a? := a4 is the monodromy action of v over a.



Another interesting scenario occurs when Fp, is finite and = is a topological cover. In
that case ¢(1, x) induces a permutation of Fp. This permutation is also called the
monodromy action of -y over Fp.
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Example

Letm: X = M x F — M be a trivial fibration. Any continuous map w : M — F, defines
s(x) = (x,w(x)) a section of = : X — M. In this case, ¢ is the identity. Let

v € m(M,p) and « € 71(F, Xp), then oy is given by (wt o v)~'a(wt o v), where

wt 0 y(A) = w(v(At)). Therefore 71 (M, p) acts on 71 (F,w(p)) by
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e e of = (apar) ™o (a2ay)

ag = a1_1a2a1
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Examples

Consider F as before, but now X is not trivial. The trivialization along ~ is not the
identity, but given as follows:

a1 = Qp

Yo —1
Oéz = a2a1a2




Mapping Class Group

There is an isomorphism between the geometric group of braids on n-strings and the
mapping class group of automorphisms on the punctured disc D := D \ Z, modulo
homotopy relative to the boundary, that is, o (Diff ™ (Xp)).




Braid Action

m The set mo(Diff(Xp)) is naturally in bijection with the set of trivializations along /
of locally trivial fibrations of fiber Dp.




Braid Action

m The set mo(Diff(Xp)) is naturally in bijection with the set of trivializations along /
of locally trivial fibrations of fiber Dp,.

m This way, via monodromy, a braid in B, acts on 71 (Dp) = Fn = Zgq * ... * Zgn as
follows (Se):

_ 9i+1 J=i
9 =13 0110i95; j=i+1
gi otherwise.




Braid Action

m The set mo(Diff(Xp)) is naturally in bijection with the set of trivializations along /
of locally trivial fibrations of fiber Dp,.

m This way, via monodromy, a braid in B, acts on 71 (Dn) = Fp = Zgq * ... x Zgn as

follows (°):
i1 j=i
9 =13 0110i95; j=i+1
gi otherwise.

m Since (gn - ... - g1) = 0D, one obtains (gn - ... - 91)7 = (Gn - -.- - G1)-
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Definition

Let M be an m-dimensional (connected) complex manifold. A branched covering of M
is an m-dimensional irreducible normal complex space X together with a surjective
holomorphic map 7 : X — M such that:

m every fiber of « is discrete in X,

B Ar:={q € X |7 : Orqg),m — Oq,xis not an isomorphism} called the
ramification locus, and B = w(R;) called the branched locus, are hypersurfaces
of X and M, resp.

m 7|: X\ 7 '(Br) — M\ B, is an unramified (topological) covering, and

m V p € M there is a connected open neighborhood WP C M such that for every
connected component U of =~ (W):

i) = '(p) N U ={q}
i) m|y : U— W is surjective and proper.
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Construction of branched coverings: smooth case

If Bis a non-singular hypersurface, B= Dy U...UDp, ey, ...,en € N, D =>" n;D; on M.
po € M\ Bbase point. Let J = N(’y1e1 s YE) @ (M\ B, pg). G :=m(M\ B, po)/J.

Condition

I~ € Jthend =0 (mod &) ¥ 1 <j < s.

=
|
|
\

Theorem
There is a natural one-to-one correspondence between

{m : X — M Galois, finite, ramified along D} / ~
. !
{J C K4 my(M\ B) satistying (1.4)} .

Moreover, there is a maximal Galois covering (M, D) of M ramified along D iff
K = NK 4 m (M \ B) satisfies (1.4).

A




Construction of branched coverings: smooth case

Theorem (Riemann Existence Theorem)

Any monodromy action 71 (P! \ Z,) — Xs can be realized by a branched covering of
the projective line P'.
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If Bis a hypersurface, B= Dy U...U Dy, e1,...,.en € N,D=> nDijon M. pg € M\ B
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Construction of branched coverings: general case

If Bis a hypersurface, B= Dy U...U Dy, e1,...,.en € N,D=> nDijon M. pg € M\ B
base point. Let K = m. (m1(X \ 7~ (B), Q)), 9o € 7~ '(qo). p € Sing B.
it WP\ B M\ B.

Condition

Let K am1(M\ B, po) such that J <« K. For any point p € Sing B,
Kp = i (K) 4 m(W\ B, p).

Theorem

| A\

There is a one-to-one correspondence:
{m : X — M Galois, finite, ramified along D} / ~
, !
{JCK 4 (M \ B) satisfying (1.4) and (1.7)} .

Moreover, there is a maximal Galois covering (M, D) of M ramified along D iff
Kx = NK 4 (M \ B) satisfies (1.4) and (1.7).

N




Consider M = P2, D; = {zy? = x3}, D, = {z = 0}. Let us study the possible Galois
covers of P2 ramified along D = e; Dy + e,D5.
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Consider M = P2, D; = {zy? = x3}, D, = {z = 0}. Let us study the possible Galois
covers of P2 ramified along D = e; Dy + e,D5.

=

|

)

FooF2v271 = 1,

Yo = 72,
Y212 = V17271




In the following cases there is a maximal Galois covering of P? ramified along D:

| (e1,€2) || G=m(®2\D)/J | |Gl |

| 22 | T3 | 6 |
| (3,4) | sL2z/3z) | 24 |
|

| (5,20) || SL(2,2/5Z) x Z/5Z | 600

4,8) || Y4 X Z/AL | 96 |
|




In the following cases there is a maximal Galois covering of P? ramified along D:

| (e1,€2) || G=m(®2\D)/J | |Gl |

| 22 | T3 | 6 |
| (3,4) | sL2z/3z) | 24 |
| (4,8) | Y4 X Z/AT | 96 |
| (

(5,20) || SL(2,Z/5Z) x Z/5Z | 600 |

However, there is no maximal Galois cover of P? ramified along D = 6Dy + 2D,.




Let B= Dy U ... U Dn. Then any representation of =1(M \ B) on a linear group
GL(r,C) such that the image of a meridian ~; has order e;, gives rise to a Galois cover
of M branched along D = e;D; + ... + enDn.




m |f we want to understand coverings of M ramified along D one needs to study
w1 (M\ B).
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m |f we want to understand coverings of M ramified along D one needs to study
w1 (M\ B).

m How to compute the fundamental group 71(M \ B) of a quasi-projective variety?

Theorem (Hamm,Goreski-MacPherson)

Let M C P" be a closed subvariety which is locally a complete intersection of
dimension m. Let A be a Whitney stratification of M and consider B C P" another
Subvariety such that BN M is a union of strata of A. Consider H a hyperplane
transversal to A in M\ B, then the inclusion

(M\B)nH— M\ B

is an (m — 1)-homotopy equivalence.
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m It is enough to understand the fundamental group of complements of curves on a
surface.
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m |f we want to understand coverings of M ramified along D one needs to study
w1 (M\ B).
m How to compute the fundamental group 71(M \ B) of a quasi-projective variety?
m It is enough to understand the fundamental group of complements of curves on a
surface.
m Zariski-Van Kampen method.

m Chisini Problem:
Let S be a nonsingular compact complex surface, let 7 : S — P2 be a finite
morphism having simple branching, and let B be the branch curve; then “to what
extent does the pair (P2, B) determine 7"?



Zariski-Van Kampen Method

Purpose:
Obtain a presentation for the fundamental group of the complement of a plane

projective curve in P2,
We will put together several ingredients, among which, the Van Kampen Theorem is

key.



Let 7 : X — M be a locally trivial fibration with section s : M — X. Consider p € M and
Xy € Fp.



Let 7 : X — M be a locally trivial fibration with section s : M — X. Consider p € M and
Xy € Fp.

1 (X, X0) = 71 (Fp, Xo) X w1 (M, p), where the action of 1 (M, p) on w1 (Fp, Xo) is given
by the monodromy of .

Proposition

Meridians around the same irreducible components of B are conjugate in wy (M \ B).
Moreover, the conjugacy class of a meridian coincides with the set of homotopy
classes of meridians around the same irreducible component.

Proposition

The inclusion M\ B — M induces a surjective morphism, whose kernel is given by the
smallest normal subgroup of w1(M \ B) containing meridians of all the irreducible
components of B.

| A\




Zariski-Van Kampen Theorem

Let C C P? be a projective plane curve. Consider P =[0:1:0] € P2\ C.
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7 : P2\ {P} — P! from P

T
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Zariski-Van Kampen Theorem

Let C C P? be a projective plane curve. Consider P = [0: 1: 0] € P? \ C. Project
7 : P2\ {P} — P! from P

Ln Ln_4 e Ly Ly

\

T
>

Zn Zn—1 s 22 Z



Zariski-Van Kampen Theorem

Ln Ln_1 e Ly Ly

N
_—

L J J
Zn Zn—1 T 22 Z

Let X = P2\ (CU L), then wt|x : X — P!\ Z, is a locally trivial fibration. l




Zariski-Van Kampen Theorem

Ln Ly + . L Ly Lo

N
_—

Zn Zn—1 T 22 Z 2o

Let X = P2\ (CU L), then |x : X — P!\ Z, is a locally trivial fibration. Moreover, its
fiber is P! \ Zy, where d := degC.




Zariski-Van Kampen Theorem

) /

By (2.1), m1(X, Xo) = 71(Fzy, Xo) X m1(P" \ Zn, ). Action is given by the monodromy
of w1 (P! \ Zn, 29) on 1 (Fz,, Xo)-




Zariski-Van Kampen Theorem

Xo
\\ 91
> %
9d
&g & ;
Yn Yn—1 T Y2 M 20

Note that 71 (Fz, Xo) = (91, ---,9d : GaGd—1--- g4 = 1) and
T (P'\ Zn, 20) = (v, oy vn i 0 = 1).




Zariski-Van Kampen Theorem

X0
\\ 91
> o
9d
&g & ;
Yn Yn—1 T Y2 M 20

1 (X, Xo) admits the following presentation:

(G153 9ds V15 Y 9d9d—1 -Gt = Yn- "Y1 = 1,9,7j = ’Yj_1gi’7j>




Zariski-Van Kampen Theorem

X0
\\ 91
> %
9d
&g & ;
Yn Yn—1 s Y2 M 20

w1 (P? \ C) admits the following presentation:

(91,90 9d9d—1 g1 = 1,9, = gi)




m LetC = Cq U ... UC, the decomposition of C in its irreducible components, then

Hi(PP\C)=Z"""a2z/(di,...,d),

where d; := degC.




m LetC = Cq U ... UC, the decomposition of C in its irreducible components, then

Hi(PP\C)=Z"""a2z/(di,...,d),

where d; := degC.

m |t two curves are in a connected family of equisingular curves, then they are
isotopic




Zariski-Van Kampen Theorem

C smooth of degree d = 71 (P? \ C) = Z/dZ.
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Zariski-Van Kampen Theorem

Example

C smooth of degree d = (P2 \ C) = Z/dZ. For computation purposes it is more
convenient to use a non-generic projection. Use for instance C := {F = 0}, where
F(X,Y,2)=X94+ Y9 24 P=[0:1:0] ¢ Cand Fy = dY?—".




Zariski-Van Kampen Theorem

Example

C smooth of degree d = (P2 \ C) = Z/dZ. For computation purposes it is more
convenient to use a non-generic projection. Use for instance C := {F = 0}, where
F(X,Y,2)=X94+ Y9 24 P=[0:1:0] ¢ Cand Fy = dY?—".

Let us compute the local monodromy of x = y9. Consider ~(t) = e2mvV=T 3 loop
around x = 0. The fiber at v(t) is given by:

_>

£y




Zariski-Van Kampen Theorem

C smooth of degree d = (P2 \ C) = Z/dZ.
The monodromy around x = 0 looks as follows:

L

e




Zariski-Van Kampen Theorem

Example

C smooth of degree d = (P2 \ C) = Z/dZ.
Corresponds to the braid o105 - - - 0g_1

Co

N




Zariski-Van Kampen Theorem

Example

C smooth of degree d = (P2 \ C) = Z/dZ.
Note that the global part of the monodromy has no contribution:

-

!
N




Zariski-Van Kampen Theorem

C smooth of degree d = (P2 \ C) = Z/dZ.
Applying the Zariski-Van Kampen Theorem to these generators:
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One obtains:
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Zariski-Van Kampen Theorem

C smooth of degree d = (P2 \ C) = Z/dZ.
Applying the Zariski-Van Kampen Theorem to these generators:

<

One obtains:

_ (oy02:0g—1) _ ) 9d i=1
g {g;‘g,-_1gd i#1

hence g» = g;1g1 9d = 91, and by induction gy = ... = gy = g. Finally, g1 - - - gg = 1
becomes g9 = 1

(P2 \C) = (g: g% =1) = Z/dZ.




Example (Zariski-Harris-Severi, Cheniot)

C nodal = 71(C) is abelian.
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Example (Zariski-Harris-Severi, Cheniot)

C nodal = 71(C) is abelian.
Cy and Cs intersect transversally = 71 (C) = 71(C1) & m1(C2)

Remark (Harris)
The space of irreducible nodal curves with given number of nodes is connected




Example (Zariski-Harris-Severi, Cheniot)

C nodal = m(C) is abelian.
Cy and Cs intersect transversally = 71 (C) = 71(C1) & m1(C2)

Remark (Harris)
The space of irreducible nodal curves with given number of nodes is connected

Example (Zariski)

Let C be a general nodal rational curve of degree d. Consider C its dual. Note that C is
a rational curve of degree 2(d — 1), 2(d — 2)(d — 3) nodes, and 3(d — 2) cusps.

The fundamental group of € coincides with the fundamental group of the unordered
configuration space of d points in S?, that is,

9i9; = 9,9i,
By(S?) = (g1, ., Gd—1 : 9i9i+19i = Ji+19igi+1, ).
g1 99205 194201 =1




Non-Generic Projections

m P € C thatis, existence of asymptotes.



Non-Generic Projections

m P € C thatis, existence of asymptotes.
m “Very” special fibers.




Local Braid Monodromy

m Can be obtained from the Puiseux Series (local parametrization) of the curve
around a singular point.



Local Braid Monodromy

m Can be obtained from the Puiseux Series (local parametrization) of the curve
around a singular point.

m Computational methods are “generically” effective.



Global Braid Monodromy

m Most difficult part of monodromy computations.



Global Braid Monodromy

m Most difficult part of monodromy computations.
m Real arrangements, real curves.



Global Braid Monodromy

m Most difficult part of monodromy computations.
m Real arrangements, real curves.
m Computational methods are effective essentially over Z[v/—1].



Consider the following quartic:




Example

Consider the following quartic and project from [0 : 1 : 0]

]
.




Example

Compute the braid monodromy:

N
\\ |




Example

Compute the braid monodromy: o8,

I
\\ |




Example

Compute the braid monodromy: o?, o2,

I
\\ |




Example

Compute the braid monodromy: ¢, 05, o5 "o} 'op0103.

I
\\ |




Compute the braid monodromy: ¢, 05, o5 "o} 'op0103.




Example

8.
aq-




Example

8.
aq-

0_8
g;" = (9201)*91(9201)~* = [(9201)*, 911 =1




Example

8.
aq-

0_8
9 =(09)'o1(%0) " = [(901)*01] =1
%' =(9201)*92(0201) % = [(9291)* 2] = 1




Example
o$:
gy i = (9201)*91(%291)~* = [(9201)*, 911 =1
95! = (991" %2(929)7* = [(0291)*, 9] = 1

g =%




Example

8.
aq-

0_8
9 =(09)'o1(%0) " = [(901)*01] =1
gg; =(0201)*02(%291)™* = [(6201)*,02] = 1

g;,’; g
QT =04




Example

g2.




Example

g2.

972 = o




Example

02' gf =g
92 =03 =02 =03




Example

g2.
9, =91
9% =03 , T9=0
052 = 030205 = 02 =03




Example
= 9, =91
9> =03 =02=03
g% = 939293 = 02=03
=04
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03 0y 020103!




—1_—1 .
03 0y 020103!

03_10'1_10'201 o3

g, =0, g = 0= 029195




—1_—1 .
03 0y 020103!

=i _=il
Oy Oy 020103 _ __{ _ —1

94 =0, 9492 = 04 = 92019,
0'3_10'1_10'2010'3

95 =02




—1_—1 .
03 0y 020103!

03_10'1_10'201 o3

g° =0, ' %0 = 04 = 02010,
gga oy 020103 _

03_10'1_10'201 o3

93 =03




—1_—1 .
03 0y 020103!

03_10'1_10'201 o3

1 1
94 L =0, 9492 = 04 = 92019,
Oy Oy 020103
gg . ; =02
Oy Oy 020103
9° =0s

o3 Gr102010

g, = ugeg10,'9;" = 0s= 029195




Geometric basis

C=CyUCiU...UCr, d =degC;
Cop transversal line.
C2:=P?\(Cy,C:=CNC?
m:C2\C—P'\ Z,

D a big enough disk containing Z,

Definition

Geometric basis:

YnYn—1 -1 = OD




Braid Monodromy Representation

Consider the braid monodromy action:

p: 7 (D\ Zn, 20) — Difft(Fz,) = By.




Braid Monodromy Representation

Consider the braid monodromy action:

p: 7 (D\ Zn, 20) — Difft(Fz,) = By.

I:= (7, ..., 7n) geometric basis of 71 (D \ Zn, 2p).




Braid Monodromy Representation

Definition

Consider the braid monodromy action:
p:m1(D\ Zn, 20) — Difft(Fz,) = By.
I := (71, ..., yn) geometric basis of 71 (D \ Zn, 2p).

(715> p¥n) € By

is the Braid Monodromy Representation of C relative to (, T, zp).




Braid Monodromy Representation

m p(vn)p(vn—1) - - pr2)p(1) = Af = (o1 - - - 34_1). Braid Monodromy
Factorization.




Braid Monodromy Representation

® p(yn)p(vn—1) - p(12)p(11) = A = (o1 - - - 34_1)®. Braid Monodromy
Factorization.

m Choice of base point, choice of section (By).
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® p(yn)p(vn—1) - p(12)p(11) = A = (o1 - - - 34_1)®. Braid Monodromy
Factorization.

m Choice of base point, choice of section (By).

B (B, Bn) = (BB1BT, ... BBBTT)

m Choice of different geometric bases (Bp).

(Bt s By Bists s Bn) - 05 = (Bt o0 BT Bi1 Bis Bis ---» Bn)




Braid Monodromy Representation

m p(vn)p(vn—1) - - pr2)p(1) = Af = (o1 - - - 34_1). Braid Monodromy
Factorization.

m Choice of base point, choice of section (By).

B (B, Bn) = (BB1BT, ... BBBTT)

m Choice of different geometric bases (Bp).

(Bt s By Bists s Bn) - 05 = (Bt o0 BT Bi1 Bis Bis ---» Bn)

m Both actions commute (B, x By). Hurwitz Moves.




{(T, 20)} < {Hurwitz class}

m Which (positive) factorizations are realizable in the algebraic category?

m All theoretical factorizations of a smooth curve are Hurwitz equivalent (Ben
ltzak-Teicher), but are there theoretical factorizations of a smooth curve that are
not realizable by a smooth curve?

Theorem (Kulikov-Teicher,Carmona)

Braid monodromy class of C fully determines the topology (P2, C).
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The converse is not known in general. There are two partial converses:
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Theorem (Kulikov-Teicher,Carmona)

Braid monodromy class of C fully determines the topology (P2, C).

The converse is not known in general. There are two partial converses:

Theorem (Carmona)

The pair (P2, C) fully determines the braid monodromy class of C with respect to a
projection.




{(T, 20)} < {Hurwitz class}

m Which (positive) factorizations are realizable in the algebraic category?

m All theoretical factorizations of a smooth curve are Hurwitz equivalent (Ben
ltzak-Teicher), but are there theoretical factorizations of a smooth curve that are
not realizable by a smooth curve?

Theorem (Kulikov-Teicher,Carmona)

Braid monodromy class of C fully determines the topology (P2, C).

The converse is not known in general. There are two partial converses:

Theorem (Carmona)

The pair (P2, C) fully determines the braid monodromy class of C with respect to a
projection.

)

The triple (P2, C, L) fully determines the braid monodromy class of C.

Theorem (Artal,-,Carm




The homotopy type of (C?2,()

C=CyUCiU...UCr, d =degC;
Cop transversal line.
C2:=P?\(Cy,C:=CNC?
w:C2\C — P\ Z, generic.

D a big enough disk containing Z,

Xo

Xi

i

>

Yi 20



The homotopy type of (C?2,()

X0

Xi

>

i

& & G T >~

Yi 20

(Gi -+ 95)" = (93 -+ 9iy)

(91, Ga—1:9] = 7,-_19171',": 1,end=1,j=1,.@kpn—1)

is a presentation of 71(C?2 \ C).




The homotopy type of (C?2,()

Theorem (Libgober)

The 2-dimensional complex associated with the Zariski presentation has the homotopy
type of C2\ C.

Lemma

The 2-dimensional complex associated with the Wirtinger presentation of a link K c S°
has the homotopy type of K \ S®.

Lemma

|

The 2-dimensional complex associated with the Artin presentation of a link K C S has
the homotopy type of K \ SS.

a
A\ A,




The homotopy type of (C?2,()




The homotopy type of (C?2,()

[(g291)* g1l =1,

g2 = 937
m(C3\C) =(01,02,93,94 : Oa=GoG105 ', )

9> = 03,

04 = 020195 '




The homotopy type of (C?2,()

[(g291)* g1l =1,

g2 = 937
m(C3\C) =(01,02,93,94 : Oa=GoG105 ', )

9> = 03,

04 = 020195 '

=(91,02: [(9e91)*, g1l =1,1 =1,1=1)




The homotopy type of (C?2,()

[(g201)* 1] =1,

922937

m(C3\C) =(01,02,03,04 : Ga = GGGy ', )=
9> = 03,
04 = 020195 '

=(91,9 : (o) gl=1,1=1,1=1)
Hence C2\ C & (3 \ Kpg) Vv S? v S2.




The homotopy type of (C?2,()

Does the fundamental group and the Euler characteristic determine the homotopy
structure of complements to affine curves?




The homotopy type of (C?2,()

Does the fundamental group and the Euler characteristic determine the homotopy
structure of complements to affine curves?

Not true for general 2-dimensional complexes (Dunwoody).




Braid Action

Git2

i1

aj

gi
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