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π1(X , x0, y0) := {γ ∈ Γ(X , x0, y0)}/ ∼

where
γ1 ∼ γ2

⇔ ∃h : I × I → X

such that:

h(λ, 0) = γ1(λ),
h(λ, 1) = γ2(λ),
h(0, µ) = x0, h(1, µ) = y0
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Definition

π1(X , x0, y0) := {γ ∈ Γ(X , x0, y0)}/ ∼

π1(X , x0, y0) has a groupoid structure:

if γ1 ∈ π1(X , x0, y0) and γ2 ∈ π1(X , y0, z0), then γ1γ2 ∈ π1(X , x0, z0) where

γ1γ2(λ) =

(
γ1(2λ) λ ∈ [0, 1

2 ]

γ2(2λ− 1) λ ∈ [ 1
2 , 1]

γ1

γ2

x0 y0 z0

1 ≡ x0 ∈ π1(X , x0, x0)

γ−1(λ) = γ(1 − λ) ∈ π1(X , y0, x0)
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Example

π1(S1) = Z.

Example (Ordered Configuration Spaces)

Let Xn := {(z1, ..., zn) ∈ C n | zi 6= zj , i 6= j}. Then π1(Xn) = Pn.

Example (Non-ordered Configuration Spaces)

Let Pn := {f (z) ∈ C [z] | deg(f ) = n}, Yn := P(Pn \∆n), where
∆n := {f ∈ Pn | f has multiple roots}. Note that Yn ∼= Xn/Σn. Then π1(Yn) = Bn.
Analogously, if we consider P̄n := {f (s, t) ∈ C [s, t] | f homogeneous deg(f ) = n},
Ȳn := P(Pn \∆n), where ∆̄n := {f ∈ P̄n | f has multiple roots}. Note that
π1(Ȳn) = Bn(S2).



Example

π1(S1) = Z.

Example (Ordered Configuration Spaces)

Let Xn := {(z1, ..., zn) ∈ C n | zi 6= zj , i 6= j}. Then π1(Xn) = Pn.

Example (Non-ordered Configuration Spaces)

Let Pn := {f (z) ∈ C [z] | deg(f ) = n}, Yn := P(Pn \∆n), where
∆n := {f ∈ Pn | f has multiple roots}. Note that Yn ∼= Xn/Σn. Then π1(Yn) = Bn.
Analogously, if we consider P̄n := {f (s, t) ∈ C [s, t] | f homogeneous deg(f ) = n},
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Van Kampen Theorem

Theorem

Let U1 and U2 open subsets of X such that:

U1 ∪ U2 = X and

U12 := U1 ∩ U2 is path-connected.

Then
π1(X) = π1(U1) ∗π1(U12) π1(U2).

Example

π1(S1 ∨ ... ∨ S1) = Fn.

Example

Let z1, ..., zn ∈ C , Zn := {z1, ..., zn}. Then π1(C \ Zn) = Fn.
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Locally trivial Fibrations

Definition

A surjective smooth map π : X → M of smooth manifolds is a locally trivial fibration if
there is an open cover U of M and diffeomorphisms ϕU : π−1(U) → U ×π−1(pU), with
pU ∈ U, such that ϕU is fiber-preserving, that is pr1ϕU = π. We denote π−1(p) by Fp .

Consider π : X → M a locally trivial fibration and s : M → X a section. There is an
action of π1(M, p) on π1(Fp, x0) (s(p) = x0) called monodromy action of M on Fp .
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Monodromy Actions

π−1(γ) = X̃ ↪→ X
↓ π̃ ↓ π

I
γ−→ M

The fibration π̃ is trivial, and hence there exists

ϕ : I × Fp → X̃

such that ϕ(0, x) = IdFp .
If π is such that Fp is connected, then given a loop α ∈ π1(Fp, x0) and a loop
γ ∈ π1(M, p), then one deforms ϕ(t , α) into a loop αt ∈ Γ(Fγ(t), s(γ(t))). Then
αγ := α1 is the monodromy action of γ over α.
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Remark

Another interesting scenario occurs when Fp is finite and π is a topological cover. In
that case ϕ(1, x) induces a permutation of Fp . This permutation is also called the
monodromy action of γ over Fp .



Examples

Example

Let π : X = M × F → M be a trivial fibration. Any continuous map ω : M → F , defines
s(x) = (x , ω(x)) a section of π : X → M. In this case, ϕ is the identity. Let
γ ∈ π1(M, p) and α ∈ π1(F , x0), then αt is given by (ωt ◦ γ)−1α(ωt ◦ γ), where
ωt ◦ γ(λ) = ω(γ(λt)). Therefore π1(M, p) acts on π1(F , ω(p)) by

αγ = (ω ◦ γ)−1α(ω ◦ γ).

F
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Example

Consider F as before, but now X is not trivial. The trivialization along γ is not the
identity, but given as follows:
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Mapping Class Group

Theorem

There is an isomorphism between the geometric group of braids on n-strings and the
mapping class group of automorphisms on the punctured disc Dn := D \ Zn modulo
homotopy relative to the boundary, that is, π0(Diff +(Xn)).



Braid Action

Remarks

The set π0(Diff +(Xn)) is naturally in bijection with the set of trivializations along I
of locally trivial fibrations of fiber Dn.

This way, via monodromy, a braid in Bn acts on π1(Dn) = Fn = Zg1 ∗ ... ∗ Zgn as
follows ( ):

gσi
j =

8><>:
gi+1 j = i
gi+1gi g

−1
i+1 j = i + 1

gi otherwise.

Since (gn · ... · g1) = ∂D, one obtains (gn · ... · g1)
σ = (gn · ... · g1).



Braid Action

Remarks

The set π0(Diff +(Xn)) is naturally in bijection with the set of trivializations along I
of locally trivial fibrations of fiber Dn.

This way, via monodromy, a braid in Bn acts on π1(Dn) = Fn = Zg1 ∗ ... ∗ Zgn as
follows ( ):

gσi
j =

8><>:
gi+1 j = i
gi+1gi g

−1
i+1 j = i + 1

gi otherwise.

Since (gn · ... · g1) = ∂D, one obtains (gn · ... · g1)
σ = (gn · ... · g1).



Braid Action

Remarks

The set π0(Diff +(Xn)) is naturally in bijection with the set of trivializations along I
of locally trivial fibrations of fiber Dn.

This way, via monodromy, a braid in Bn acts on π1(Dn) = Fn = Zg1 ∗ ... ∗ Zgn as
follows ( ):

gσi
j =

8><>:
gi+1 j = i
gi+1gi g

−1
i+1 j = i + 1

gi otherwise.

Since (gn · ... · g1) = ∂D, one obtains (gn · ... · g1)
σ = (gn · ... · g1).



Definition

Definition

Let M be an m-dimensional (connected) complex manifold. A branched covering of M
is an m-dimensional irreducible normal complex space X together with a surjective
holomorphic map π : X → M such that:

every fiber of π is discrete in X ,

Rπ := {q ∈ X | π∗ : Oπ(q),M → Oq,X is not an isomorphism} called the
ramification locus, and Bπ = π(Rπ) called the branched locus, are hypersurfaces
of X and M, resp.

π| : X \ π−1(Bπ) → M \ Bπ is an unramified (topological) covering, and
∀ p ∈ M there is a connected open neighborhood W p ⊂ M such that for every
connected component U of π−1(W ):

i) π−1(p) ∩ U = {q}
ii) π|U : U → W is surjective and proper.
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Construction of branched coverings: smooth case

If B is a non-singular hypersurface, B = D1 ∪ ...∪Dn, e1, ..., en ∈ N, D =
P

ni Di on M.
p0 ∈ M \ B base point.

Let J = N(γ
e1
1 , ..., γen

n ) / π1(M \ B, p0). G := π1(M \ B, p0)/J.

Condition

If γd
j ∈ J then d ≡ 0 (mod ej ) ∀ 1 ≤ j ≤ s.

Theorem

There is a natural one-to-one correspondence between

{π : X → M Galois, finite, ramified along D} / ∼
l

{J ⊂ K f .i
/ π1(M \ B) satisfying (1.4)} .

Moreover, there is a maximal Galois covering π(M, D) of M ramified along D iff
Kπ = ∩K f .i

/ π1(M \ B) satisfies (1.4).
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Theorem (Riemann Existence Theorem)

Any monodromy action π1(P1 \ Zn) → Σs can be realized by a branched covering of
the projective line P1.
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Example

Consider M = P2, D1 = {zy2 = x3}, D2 = {z = 0}. Let us study the possible Galois
covers of P2 ramified along D = e1D1 + e2D2.
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Theorem

In the following cases there is a maximal Galois covering of P2 ramified along D:

(e1, e2) G = π1(P2 \ D)/J |G|

(2, 2) Σ3 6

(3, 4) SL(2, Z/3Z) 24

(4, 8) Σ4 n Z/4Z 96

(5, 20) SL(2, Z/5Z)× Z/5Z 600

However, there is no maximal Galois cover of P2 ramified along D = 6D1 + 2D2.
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Theorem

Let B = D1 ∪ ... ∪ Dn. Then any representation of π1(M \ B) on a linear group
GL(r , C ) such that the image of a meridian γi has order ei , gives rise to a Galois cover
of M branched along D = e1D1 + ... + enDn.



If we want to understand coverings of M ramified along D one needs to study
π1(M \ B).

How to compute the fundamental group π1(M \ B) of a quasi-projective variety?

Theorem (Hamm,Goreski-MacPherson)

Let M ⊂ Pn be a closed subvariety which is locally a complete intersection of
dimension m. Let A be a Whitney stratification of M and consider B ⊂ Pn another
subvariety such that B ∩M is a union of strata of A. Consider H a hyperplane
transversal to A in M \ B, then the inclusion

(M \ B) ∩ H ↪→ M \ B

is an (m − 1)-homotopy equivalence.
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surface.

Zariski-Van Kampen method.

Chisini Problem:
Let S be a nonsingular compact complex surface, let π : S → P2 be a finite
morphism having simple branching, and let B be the branch curve; then “to what
extent does the pair (P2, B) determine π”?
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Zariski-Van Kampen Method

Purpose:
Obtain a presentation for the fundamental group of the complement of a plane
projective curve in P2.
We will put together several ingredients, among which, the Van Kampen Theorem is
key.



Let π : X → M be a locally trivial fibration with section s : M → X . Consider p ∈ M and
x0 ∈ Fp .

Theorem

π1(X , x0) = π1(Fp, x0) o π1(M, p), where the action of π1(M, p) on π1(Fp, x0) is given
by the monodromy of π.

Proposition

Meridians around the same irreducible components of B are conjugate in π1(M \ B).
Moreover, the conjugacy class of a meridian coincides with the set of homotopy
classes of meridians around the same irreducible component.

Proposition

The inclusion M \ B ↪→ M induces a surjective morphism, whose kernel is given by the
smallest normal subgroup of π1(M \ B) containing meridians of all the irreducible
components of B.
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zn zn−1 · · · z2 z1

Ln Ln−1 · · · L2 L1

Remark (1)

Let X = P2 \ (C ∪ L), then π|X : X → P1 \ Zn is a locally trivial fibration.



Zariski-Van Kampen Theorem

zn zn−1 · · · z2 z1 z0

Ln Ln−1 · · · L2 L1 L0

Remark (1)

Let X = P2 \ (C ∪ L), then π|X : X → P1 \ Zn is a locally trivial fibration. Moreover, its
fiber is P1 \ Zd , where d := deg C.



Zariski-Van Kampen Theorem

Remark (2)

By (2.1), π1(X , x0) = π1(Fz0 , x0) o π1(P1 \ Zn, z0). Action is given by the monodromy
of π1(P1 \ Zn, z0) on π1(Fz0 , x0).



Zariski-Van Kampen Theorem

γn γn−1 · · · γ2 γ1

x0

z0

g1

...

g2

gd

Remark (3)

Note that π1(Fz0 , x0) = 〈g1, ..., gd : gd gd−1 · · · g1 = 1〉 and
π1(P1 \ Zn, z0) = 〈γ1, ..., γn : γn · · · γ1 = 1〉.



Zariski-Van Kampen Theorem

γn γn−1 · · · γ2 γ1 z0

x0

g1

...

g2

gd

Theorem

π1(X , x0) admits the following presentation:

〈g1, ..., gd , γ1, ..., γn : gd gd−1 · · · g1 = γn · · · γ1 = 1, g
γj
i = γ−1

j giγj 〉



Zariski-Van Kampen Theorem

γn γn−1 · · · γ2 γ1 z0

x0

g1

...

g2

gd

Theorem

π1(P2 \ C) admits the following presentation:

〈g1, ..., gd : gd gd−1 · · · g1 = 1, g
γj
i = gi 〉



Remark

Let C = C1 ∪ ... ∪ Cr the decomposition of C in its irreducible components, then

H1(P2 \ C) = Zr−1 ⊕ Z/(d1, ..., dr ),

where di := deg C.

It two curves are in a connected family of equisingular curves, then they are
isotopic
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Zariski-Van Kampen Theorem

Example

C smooth of degree d ⇒ π1(P2 \ C) = Z/dZ.

For computation purposes it is more
convenient to use a non-generic projection. Use for instance C := {F = 0}, where
F (X , Y , Z ) = X d + Y d − Z d . P = [0 : 1 : 0] /∈ C and FY = dY d−1.
Let us compute the local monodromy of x = yd . Consider γ(t) = e2πt

√
−1 a loop

around x = 0. The fiber at γ(t) is given by:

ξi
d
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Zariski-Van Kampen Theorem

Example

C smooth of degree d ⇒ π1(P2 \ C) = Z/dZ.
The monodromy around x = 0 looks as follows:



Zariski-Van Kampen Theorem

Example

C smooth of degree d ⇒ π1(P2 \ C) = Z/dZ.
Corresponds to the braid σ1σ2 · · ·σd−1



Zariski-Van Kampen Theorem

Example

C smooth of degree d ⇒ π1(P2 \ C) = Z/dZ.
Note that the global part of the monodromy has no contribution:



Zariski-Van Kampen Theorem

Example

C smooth of degree d ⇒ π1(P2 \ C) = Z/dZ.
Applying the Zariski-Van Kampen Theorem to these generators:

One obtains:

gi = g
(σ1σ2···σd−1)

i =

(
gd i = 1
g−1

d gi−1gd i 6= 1

hence g2 = g−1
d g1gd = g1, and by induction g1 = ... = gd = g. Finally, g1 · · · gd = 1

becomes gd = 1
π1(P2 \ C) = 〈g : gd = 1〉 = Z/dZ.
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Example (Zariski-Harris-Severi, Cheniot)

C nodal ⇒ π1(C) is abelian.

C1 and C2 intersect transversally ⇒ π1(C) = π1(C1)⊕ π1(C2)

Remark (Harris)

The space of irreducible nodal curves with given number of nodes is connected

Example (Zariski)

Let C be a general nodal rational curve of degree d . Consider C̃ its dual. Note that C̃ is
a rational curve of degree 2(d − 1), 2(d − 2)(d − 3) nodes, and 3(d − 2) cusps.
The fundamental group of C̃ coincides with the fundamental group of the unordered
configuration space of d points in S2, that is,

Bd (S2) = 〈g1, ..., gd−1 :

gi gj = gj gi ,
gi gi+1gi = gi+1gi gi+1,
g1 · · · gd−2g2

d−1gd−2 · · · g1 = 1
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Non-Generic Projections

P ∈ C that is, existence of asymptotes.

“Very” special fibers.
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Local Braid Monodromy

Can be obtained from the Puiseux Series (local parametrization) of the curve
around a singular point.

Computational methods are “generically” effective.
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Global Braid Monodromy

Most difficult part of monodromy computations.

Real arrangements, real curves.

Computational methods are effective essentially over Z[
√
−1].
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Example

Consider the following quartic:



Example

Consider the following quartic and project from [0 : 1 : 0]
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1 , σ2, σ−1

3 σ−1
1 σ2σ1σ3.
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Geometric basis

C̄ = C0 ∪ C1 ∪ ... ∪ Cr , di = deg Ci
C0 transversal line.
C 2 := P2 \ C0, C := C̄ ∩ C 2

π : C 2 \ C → P1 \ Zn
D a big enough disk containing Zn

Definition

Geometric basis:

z0
z2 z1· · ·zn

γ1

γ2
γn

D

γnγn−1 · · · γ1 = ∂D



Braid Monodromy Representation

Definition

Consider the braid monodromy action:

ρ : π1(D \ Zn, z0) −→ Diff +(Fz0 )
∼= Bd .

Γ := (γ1, ..., γn) geometric basis of π1(D \ Zn, z0).

(ργ1, ..., ργn) ∈ Bn
d

is the Braid Monodromy Representation of C relative to (π, Γ, z0).
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Braid Monodromy Representation

Remark

ρ(γn)ρ(γn−1) · · · ρ(γ2)ρ(γ1) = ∆2
d = (σ1 · · ·σd−1)

d . Braid Monodromy
Factorization.

Choice of base point, choice of section (Bd ).

β · (β1, ..., βn) = (ββ1β−1, ..., ββnβ−1)

Choice of different geometric bases (Bn).

(β1, ..., βi , βi+1, ..., βn) · σi = (β1, ..., β−1
i βi+1βi , βi , ..., βn)

Both actions commute (Bn × Bd ). Hurwitz Moves.
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Theorem

{(Γ, z0)} ↔ {Hurwitz class}

Questions

Which (positive) factorizations are realizable in the algebraic category?

All theoretical factorizations of a smooth curve are Hurwitz equivalent (Ben
Itzak-Teicher), but are there theoretical factorizations of a smooth curve that are
not realizable by a smooth curve?

Theorem (Kulikov-Teicher,Carmona)

Braid monodromy class of C fully determines the topology (P2, C).

The converse is not known in general. There are two partial converses:

Theorem (Carmona)

The pair (P2, C) fully determines the braid monodromy class of C with respect to a
projection.

Theorem (Artal,-,Carmona)

The triple (P2, C, L) fully determines the braid monodromy class of C.
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The homotopy type of (C 2, C)

C̄ = C0 ∪ C1 ∪ ... ∪ Cr , di = deg Ci
C0 transversal line.
C 2 := P2 \ C0, C := C̄ ∩ C 2

π : C 2 \ C → P1 \ Zn generic.
D a big enough disk containing Zn

γi

x0

z0

xi

...

gik(i)

gi1



The homotopy type of (C 2, C)

γi

x0

z0

xi

...

gik(i)

gi1

(gik · · · gi1 )
ργi = (gik · · · gi1 )

Remark

〈g1, ..., gd−1 : g
γj
i = γ−1

j giγj , i = 1, ..., d − 1, j = 1, ..., ik(i) − 1〉

is a presentation of π1(C 2 \ C).

This presentation will be called Zariski presentation.



The homotopy type of (C 2, C)

Theorem (Libgober)

The 2-dimensional complex associated with the Zariski presentation has the homotopy
type of C 2 \ C.

Proof.

Lemma

The 2-dimensional complex associated with the Wirtinger presentation of a link K ⊂ S3

has the homotopy type of K \ S3.

Lemma

The 2-dimensional complex associated with the Artin presentation of a link K ⊂ S3 has
the homotopy type of K \ S3.



The homotopy type of (C 2, C)

Example

π1(C 2 \ C) = 〈g1, g2, g3, g4 :

[(g2g1)
4, g1] = 1,

g2 = g3,

g4 = g2g1g−1
2 ,

g2 = g3,

g4 = g2g1g−1
2

〉 ≡

≡ 〈g1, g2 : [(g2g1)
4, g1] = 1, 1 = 1, 1 = 1〉

Hence C 2 \ C
h.t.∼= (S3 \ K2,8) ∨ S2 ∨ S2.
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The homotopy type of (C 2, C)

Questions

1 Does the fundamental group and the Euler characteristic determine the homotopy
structure of complements to affine curves?

2 Not true for general 2-dimensional complexes (Dunwoody).
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Braid Action

λ = 0

λ = 1

s
σi

gigi+1gi+2
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