Braid Monodromy Of Algebraic Plane Curves

José Ignacio COGOLLUDO-AGUSTín

Departamento de Matemáticas Universidad de Zaragoza

Braids in Pau - October 5-8, 2009

Contents

1 Settings and Motivations

Contents

1 Settings and Motivations
■ Fundamental Groupoids

Contents

1 Settings and Motivations

- Fundamental Groupoids
- Van Kampen Theorem

Contents

1 Settings and Motivations

- Fundamental Groupoids
- Van Kampen Theorem
- Monodromy Actions

Contents

1 Settings and Motivations

- Fundamental Groupoids
- Van Kampen Theorem
- Monodromy Actions
- Branched Coverings

Contents

1 Settings and Motivations

- Fundamental Groupoids
- Van Kampen Theorem
- Monodromy Actions
- Branched Coverings

■ Zariski Theorem of Lefschetz Type

Contents

1 Settings and Motivations
■ Fundamental Groupoids

- Van Kampen Theorem
- Monodromy Actions
- Branched Coverings

■ Zariski Theorem of Lefschetz Type

2 Zariski-Van Kampen Method

Contents

1 Settings and Motivations
■ Fundamental Groupoids

- Van Kampen Theorem
- Monodromy Actions
- Branched Coverings

■ Zariski Theorem of Lefschetz Type

2 Zariski-Van Kampen Method
■ Fundamental Group of the Total Space of a Locally Trivial Fibration

Contents

1 Settings and Motivations

- Fundamental Groupoids
- Van Kampen Theorem
- Monodromy Actions
- Branched Coverings

■ Zariski Theorem of Lefschetz Type

2 Zariski-Van Kampen Method

- Fundamental Group of the Total Space of a Locally Trivial Fibration

■ Zariski-Van Kampen Theorem

Contents

1 Settings and Motivations

- Fundamental Groupoids
- Van Kampen Theorem
- Monodromy Actions
- Branched Coverings

■ Zariski Theorem of Lefschetz Type

2 Zariski-Van Kampen Method
■ Fundamental Group of the Total Space of a Locally Trivial Fibration

- Zariski-Van Kampen Theorem

■ Local, Global, and Non-Generic

Contents

1 Settings and Motivations

- Fundamental Groupoids
- Van Kampen Theorem
- Monodromy Actions
- Branched Coverings

■ Zariski Theorem of Lefschetz Type

2 Zariski-Van Kampen Method
■ Fundamental Group of the Total Space of a Locally Trivial Fibration

- Zariski-Van Kampen Theorem

■ Local, Global, and Non-Generic

3 Braid Monodromy Representations

Contents

1 Settings and Motivations

- Fundamental Groupoids
- Van Kampen Theorem
- Monodromy Actions
- Branched Coverings

■ Zariski Theorem of Lefschetz Type

2 Zariski-Van Kampen Method
■ Fundamental Group of the Total Space of a Locally Trivial Fibration

- Zariski-Van Kampen Theorem

■ Local, Global, and Non-Generic

3 Braid Monodromy Representations

- Definitions and First Properties

Contents

1 Settings and Motivations
■ Fundamental Groupoids

- Van Kampen Theorem
- Monodromy Actions
- Branched Coverings

■ Zariski Theorem of Lefschetz Type

2 Zariski-Van Kampen Method
■ Fundamental Group of the Total Space of a Locally Trivial Fibration

- Zariski-Van Kampen Theorem

■ Local, Global, and Non-Generic

3 Braid Monodromy Representations

- Definitions and First Properties
- The Homotopy Type

Contents

1 Settings and Motivations
■ Fundamental Groupoids

- Van Kampen Theorem
- Monodromy Actions
- Branched Coverings

■ Zariski Theorem of Lefschetz Type

2 Zariski-Van Kampen Method
■ Fundamental Group of the Total Space of a Locally Trivial Fibration

- Zariski-Van Kampen Theorem

■ Local, Global, and Non-Generic

3 Braid Monodromy Representations

- Definitions and First Properties
- The Homotopy Type
- Line Arrangements

Contents

1 Settings and Motivations
■ Fundamental Groupoids

- Van Kampen Theorem
- Monodromy Actions
- Branched Coverings

■ Zariski Theorem of Lefschetz Type

2 Zariski-Van Kampen Method
■ Fundamental Group of the Total Space of a Locally Trivial Fibration

- Zariski-Van Kampen Theorem

■ Local, Global, and Non-Generic

3 Braid Monodromy Representations

- Definitions and First Properties
- The Homotopy Type
- Line Arrangements
- Wiring Diagrams

Contents

1 Settings and Motivations
■ Fundamental Groupoids

- Van Kampen Theorem
- Monodromy Actions
- Branched Coverings

■ Zariski Theorem of Lefschetz Type

2 Zariski-Van Kampen Method
■ Fundamental Group of the Total Space of a Locally Trivial Fibration

- Zariski-Van Kampen Theorem

■ Local, Global, and Non-Generic

3 Braid Monodromy Representations

- Definitions and First Properties
- The Homotopy Type
- Line Arrangements
- Wiring Diagrams
- Conjugated Curves

Definition

Definition

- $\pi_{1}\left(X, x_{0}, y_{0}\right):=\left\{\gamma \in \Gamma\left(X, x_{0}, y_{0}\right)\right\} / \sim$

Definition

■ $\pi_{1}\left(X, x_{0}, y_{0}\right):=\left\{\gamma \in \Gamma\left(X, x_{0}, y_{0}\right)\right\} / \sim$ where

$$
\gamma_{1} \sim \gamma_{2} \quad \Leftrightarrow \quad \exists h: I \times I \rightarrow X
$$

such that:

■ $h(\lambda, 0)=\gamma_{1}(\lambda)$,

- $h(\lambda, 1)=\gamma_{2}(\lambda)$,

■ $h(0, \mu)=x_{0}, h(1, \mu)=y_{0}$

Definition

■ $\pi_{1}\left(X, x_{0}, y_{0}\right):=\left\{\gamma \in \Gamma\left(X, x_{0}, y_{0}\right)\right\} / \sim$ where

$$
\gamma_{1} \sim \gamma_{2} \quad \Leftrightarrow \quad \exists h: I \times I \rightarrow X
$$

such that:

- $h(\lambda, 0)=\gamma_{1}(\lambda)$,
- $h(\lambda, 1)=\gamma_{2}(\lambda)$,
- $h(0, \mu)=x_{0}, h(1, \mu)=y_{0}$

Definition

- $\pi_{1}\left(X, x_{0}, y_{0}\right):=\left\{\gamma \in \Gamma\left(X, x_{0}, y_{0}\right)\right\} / \sim$
- $\pi_{1}\left(X, x_{0}, y_{0}\right)$ has a groupoid structure:

Definition

- $\pi_{1}\left(X, x_{0}, y_{0}\right):=\left\{\gamma \in \Gamma\left(X, x_{0}, y_{0}\right)\right\} / \sim$
- $\pi_{1}\left(X, x_{0}, y_{0}\right)$ has a groupoid structure:

■ if $\gamma_{1} \in \pi_{1}\left(X, x_{0}, y_{0}\right)$ and $\gamma_{2} \in \pi_{1}\left(X, y_{0}, z_{0}\right)$, then $\gamma_{1} \gamma_{2} \in \pi_{1}\left(X, x_{0}, z_{0}\right)$ where

$$
\gamma_{1} \gamma_{2}(\lambda)= \begin{cases}\gamma_{1}(2 \lambda) & \lambda \in\left[0, \frac{1}{2}\right] \\ \gamma_{2}(2 \lambda-1) & \lambda \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

Definition

- $\pi_{1}\left(X, x_{0}, y_{0}\right):=\left\{\gamma \in \Gamma\left(X, x_{0}, y_{0}\right)\right\} / \sim$
- $\pi_{1}\left(X, x_{0}, y_{0}\right)$ has a groupoid structure:

■ if $\gamma_{1} \in \pi_{1}\left(X, x_{0}, y_{0}\right)$ and $\gamma_{2} \in \pi_{1}\left(X, y_{0}, z_{0}\right)$, then $\gamma_{1} \gamma_{2} \in \pi_{1}\left(X, x_{0}, z_{0}\right)$ where

$$
\gamma_{1} \gamma_{2}(\lambda)= \begin{cases}\gamma_{1}(2 \lambda) & \lambda \in\left[0, \frac{1}{2}\right] \\ \gamma_{2}(2 \lambda-1) & \lambda \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

Definition

- $\pi_{1}\left(X, x_{0}, y_{0}\right):=\left\{\gamma \in \Gamma\left(X, x_{0}, y_{0}\right)\right\} / \sim$
- $\pi_{1}\left(X, x_{0}, y_{0}\right)$ has a groupoid structure:

■ if $\gamma_{1} \in \pi_{1}\left(X, x_{0}, y_{0}\right)$ and $\gamma_{2} \in \pi_{1}\left(X, y_{0}, z_{0}\right)$, then $\gamma_{1} \gamma_{2} \in \pi_{1}\left(X, x_{0}, z_{0}\right)$ where

$$
\gamma_{1} \gamma_{2}(\lambda)= \begin{cases}\gamma_{1}(2 \lambda) & \lambda \in\left[0, \frac{1}{2}\right] \\ \gamma_{2}(2 \lambda-1) & \lambda \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

■ $1 \equiv x_{0} \in \pi_{1}\left(X, x_{0}, x_{0}\right)$

Definition

- $\pi_{1}\left(X, x_{0}, y_{0}\right):=\left\{\gamma \in \Gamma\left(X, x_{0}, y_{0}\right)\right\} / \sim$
- $\pi_{1}\left(X, x_{0}, y_{0}\right)$ has a groupoid structure:

■ if $\gamma_{1} \in \pi_{1}\left(X, x_{0}, y_{0}\right)$ and $\gamma_{2} \in \pi_{1}\left(X, y_{0}, z_{0}\right)$, then $\gamma_{1} \gamma_{2} \in \pi_{1}\left(X, x_{0}, z_{0}\right)$ where

$$
\gamma_{1} \gamma_{2}(\lambda)= \begin{cases}\gamma_{1}(2 \lambda) & \lambda \in\left[0, \frac{1}{2}\right] \\ \gamma_{2}(2 \lambda-1) & \lambda \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

■ $1 \equiv x_{0} \in \pi_{1}\left(X, x_{0}, x_{0}\right)$

- $\gamma^{-1}(\lambda)=\gamma(1-\lambda) \in \pi_{1}\left(X, y_{0}, x_{0}\right)$

Definition

- $\pi_{1}\left(X, x_{0}, y_{0}\right):=\left\{\gamma \in \Gamma\left(X, x_{0}, y_{0}\right)\right\} / \sim$
- $\pi_{1}\left(X, x_{0}, y_{0}\right)$ has a groupoid structure.
- $\pi_{1}\left(X, x_{0}\right):=\pi_{1}\left(X, x_{0}, x_{0}\right)$ has a group structure.

Definition

- $\pi_{1}\left(X, x_{0}, y_{0}\right):=\left\{\gamma \in \Gamma\left(X, x_{0}, y_{0}\right)\right\} / \sim$
- $\pi_{1}\left(X, x_{0}, y_{0}\right)$ has a groupoid structure.
- $\pi_{1}\left(X, x_{0}\right):=\pi_{1}\left(X, x_{0}, x_{0}\right)$ has a group structure.
- X complex manifold $\Rightarrow \gamma$ can be considered Piecewise Smooth.

Definition

- $\pi_{1}\left(X, x_{0}, y_{0}\right):=\left\{\gamma \in \Gamma\left(X, x_{0}, y_{0}\right)\right\} / \sim$
- $\pi_{1}\left(X, x_{0}, y_{0}\right)$ has a groupoid structure.
- $\pi_{1}\left(X, x_{0}\right):=\pi_{1}\left(X, x_{0}, x_{0}\right)$ has a group structure.
- X complex manifold $\Rightarrow \gamma$ can be considered Piecewise Smooth.

Definition

- $\pi_{1}\left(X, x_{0}, y_{0}\right):=\left\{\gamma \in \Gamma\left(X, x_{0}, y_{0}\right)\right\} / \sim$
- $\pi_{1}\left(X, x_{0}, y_{0}\right)$ has a groupoid structure.
- $\pi_{1}\left(X, x_{0}\right):=\pi_{1}\left(X, x_{0}, x_{0}\right)$ has a group structure.
- X complex manifold $\Rightarrow \gamma$ can be considered Piecewise Smooth.
- X connected $\Rightarrow \pi_{1}(X)$

Example

 $\pi_{1}\left(\mathbb{S}^{1}\right)=\mathbb{Z}$.
Example

$$
\pi_{1}\left(\mathbb{S}^{1}\right)=\mathbb{Z}
$$

Example (Ordered Configuration Spaces)

Let $X_{n}:=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mid z_{i} \neq z_{j}, i \neq j\right\}$. Then $\pi_{1}\left(X_{n}\right)=\mathbb{P}_{n}$.

Example

$$
\pi_{1}\left(\mathbb{S}^{1}\right)=\mathbb{Z}
$$

Example (Ordered Configuration Spaces)

Let $X_{n}:=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mid z_{i} \neq z_{j}, i \neq j\right\}$. Then $\pi_{1}\left(X_{n}\right)=\mathbb{P}_{n}$.

Example (Non-ordered Configuration Spaces)

Let $\mathcal{P}_{n}:=\{f(z) \in \mathbb{C}[z] \mid \operatorname{deg}(f)=n\}, Y_{n}:=\mathbb{P}\left(\mathcal{P}_{n} \backslash \Delta_{n}\right)$, where $\Delta_{n}:=\left\{f \in \mathcal{P}_{n} \mid f\right.$ has multiple roots $\}$. Note that $Y_{n} \cong X_{n} / \Sigma_{n}$. Then $\pi_{1}\left(Y_{n}\right)=\mathbb{B}_{n}$. Analogously, if we consider $\overline{\mathcal{P}}_{n}:=\{f(s, t) \in \mathbb{C}[s, t] \mid f$ homogeneous $\operatorname{deg}(f)=n\}$, $\bar{Y}_{n}:=\mathbb{P}\left(\mathcal{P}_{n} \backslash \Delta_{n}\right)$, where $\bar{\Delta}_{n}:=\left\{f \in \overline{\mathcal{P}}_{n} \mid f\right.$ has multiple roots $\}$. Note that $\pi_{1}\left(\bar{Y}_{n}\right)=\mathbb{B}_{n}\left(\mathbb{S}^{2}\right)$.

Van Kampen Theorem

Theorem

Let U_{1} and U_{2} open subsets of X such that:

- $U_{1} \cup U_{2}=X$ and
- $U_{12}:=U_{1} \cap U_{2}$ is path-connected.

Then

$$
\pi_{1}(X)=\pi_{1}\left(U_{1}\right) *_{\pi_{1}\left(U_{12}\right)} \pi_{1}\left(U_{2}\right)
$$

Van Kampen Theorem

Theorem

Let U_{1} and U_{2} open subsets of X such that:
■ $U_{1} \cup U_{2}=X$ and

- $U_{12}:=U_{1} \cap U_{2}$ is path-connected.

Then

$$
\pi_{1}(X)=\pi_{1}\left(U_{1}\right) *_{\pi_{1}\left(U_{12}\right)} \pi_{1}\left(U_{2}\right)
$$

Example

$$
\pi_{1}\left(\mathbb{S}^{1} \vee \ldots \vee \mathbb{S}^{1}\right)=\mathbb{F}_{n}
$$

Van Kampen Theorem

Theorem

Let U_{1} and U_{2} open subsets of X such that:
■ $U_{1} \cup U_{2}=X$ and

- $U_{12}:=U_{1} \cap U_{2}$ is path-connected.

Then

$$
\pi_{1}(X)=\pi_{1}\left(U_{1}\right) *_{\pi_{1}\left(U_{12}\right)} \pi_{1}\left(U_{2}\right)
$$

Example

$$
\pi_{1}\left(\mathbb{S}^{1} \vee \ldots \vee \mathbb{S}^{1}\right)=\mathbb{F}_{n}
$$

Example

Let $z_{1}, \ldots, z_{n} \in \mathbb{C}, Z_{n}:=\left\{z_{1}, \ldots, z_{n}\right\}$. Then $\pi_{1}\left(\mathbb{C} \backslash Z_{n}\right)=\mathbb{F}_{n}$.

Locally trivial Fibrations

Definition

A surjective smooth map $\pi: X \rightarrow M$ of smooth manifolds is a locally trivial fibration if there is an open cover \mathcal{U} of M and diffeomorphisms $\varphi_{U}: \pi^{-1}(U) \rightarrow U \times \pi^{-1}\left(p_{U}\right)$, with $p_{U} \in U$, such that φ_{U} is fiber-preserving, that is $p r_{1} \varphi_{U}=\pi$. We denote $\pi^{-1}(p)$ by F_{p}.

Locally trivial Fibrations

Definition

A surjective smooth map $\pi: X \rightarrow M$ of smooth manifolds is a locally trivial fibration if there is an open cover \mathcal{U} of M and diffeomorphisms $\varphi_{U}: \pi^{-1}(U) \rightarrow U \times \pi^{-1}\left(p_{U}\right)$, with $p_{U} \in U$, such that φ_{U} is fiber-preserving, that is $p r_{1} \varphi_{U}=\pi$. We denote $\pi^{-1}(p)$ by F_{p}.

Consider $\pi: X \rightarrow M$ a locally trivial fibration and $s: M \rightarrow X$ a section. There is an action of $\pi_{1}(M, p)$ on $\pi_{1}\left(F_{p}, x_{0}\right)\left(s(p)=x_{0}\right)$ called monodromy action of M on F_{p}.

$$
\pi^{-1}(\gamma)=\begin{array}{lll}
\tilde{X} & \hookrightarrow & X \\
& \downarrow \tilde{\pi} & \\
l & \xrightarrow{\gamma} & \downarrow
\end{array}
$$

$$
\pi^{-1}(\gamma)=\begin{array}{ccc}
\tilde{X} & \hookrightarrow & X \\
& \downarrow \tilde{\pi} & \\
l & \xrightarrow{\gamma} & \downarrow
\end{array}
$$

The fibration $\tilde{\pi}$ is trivial, and hence there exists

$$
\varphi: I \times F_{p} \rightarrow \tilde{X}
$$

such that $\varphi(0, x)=l d_{F_{p}}$.
If π is such that F_{p} is connected, then given a loop $\alpha \in \pi_{1}\left(F_{p}, x_{0}\right)$ and a loop $\gamma \in \pi_{1}(M, p)$, then one deforms $\varphi(t, \alpha)$ into a loop $\alpha_{t} \in \Gamma\left(F_{\gamma(t)}, s(\gamma(t))\right)$. Then $\alpha^{\gamma}:=\alpha_{1}$ is the monodromy action of γ over α.

Remark

Another interesting scenario occurs when F_{p} is finite and π is a topological cover. In that case $\varphi(1, x)$ induces a permutation of F_{p}. This permutation is also called the monodromy action of γ over F_{p}.

Examples

Example

Let $\pi: X=M \times F \rightarrow M$ be a trivial fibration. Any continuous map $\omega: M \rightarrow F$, defines $s(x)=(x, \omega(x))$ a section of $\pi: X \rightarrow M$. In this case, φ is the identity. Let $\gamma \in \pi_{1}(M, p)$ and $\alpha \in \pi_{1}\left(F, x_{0}\right)$, then α_{t} is given by $\left(\omega_{t} \circ \gamma\right)^{-1} \alpha\left(\omega_{t} \circ \gamma\right)$, where $\omega_{t} \circ \gamma(\lambda)=\omega(\gamma(\lambda t))$. Therefore $\pi_{1}(M, p)$ acts on $\pi_{1}(F, \omega(p))$ by

$$
\alpha^{\gamma}=(\omega \circ \gamma)^{-1} \alpha(\omega \circ \gamma)
$$

Examples

Example

Let $\pi: X=M \times F \rightarrow M$ be a trivial fibration. Any continuous map $\omega: M \rightarrow F$, defines $s(x)=(x, \omega(x))$ a section of $\pi: X \rightarrow M$. In this case, φ is the identity. Let $\gamma \in \pi_{1}(M, p)$ and $\alpha \in \pi_{1}\left(F, x_{0}\right)$, then α_{t} is given by $\left(\omega_{t} \circ \gamma\right)^{-1} \alpha\left(\omega_{t} \circ \gamma\right)$, where $\omega_{t} \circ \gamma(\lambda)=\omega(\gamma(\lambda t))$. Therefore $\pi_{1}(M, p)$ acts on $\pi_{1}(F, \omega(p))$ by

$$
\alpha^{\gamma}=(\omega \circ \gamma)^{-1} \alpha(\omega \circ \gamma)
$$

Examples

Example

Let $\pi: X=M \times F \rightarrow M$ be a trivial fibration. Any continuous map $\omega: M \rightarrow F$, defines $s(x)=(x, \omega(x))$ a section of $\pi: X \rightarrow M$. In this case, φ is the identity. Let $\gamma \in \pi_{1}(M, p)$ and $\alpha \in \pi_{1}\left(F, x_{0}\right)$, then α_{t} is given by $\left(\omega_{t} \circ \gamma\right)^{-1} \alpha\left(\omega_{t} \circ \gamma\right)$, where $\omega_{t} \circ \gamma(\lambda)=\omega(\gamma(\lambda t))$. Therefore $\pi_{1}(M, p)$ acts on $\pi_{1}(F, \omega(p))$ by

$$
\alpha^{\gamma}=(\omega \circ \gamma)^{-1} \alpha(\omega \circ \gamma)
$$

Examples

Example

Let $\pi: X=M \times F \rightarrow M$ be a trivial fibration. Any continuous map $\omega: M \rightarrow F$, defines $s(x)=(x, \omega(x))$ a section of $\pi: X \rightarrow M$. In this case, φ is the identity. Let $\gamma \in \pi_{1}(M, p)$ and $\alpha \in \pi_{1}\left(F, x_{0}\right)$, then α_{t} is given by $\left(\omega_{t} \circ \gamma\right)^{-1} \alpha\left(\omega_{t} \circ \gamma\right)$, where $\omega_{t} \circ \gamma(\lambda)=\omega(\gamma(\lambda t))$. Therefore $\pi_{1}(M, p)$ acts on $\pi_{1}(F, \omega(p))$ by

$$
\alpha^{\gamma}=(\omega \circ \gamma)^{-1} \alpha(\omega \circ \gamma)
$$

Examples

Example

Let $\pi: X=M \times F \rightarrow M$ be a trivial fibration. Any continuous map $\omega: M \rightarrow F$, defines $s(x)=(x, \omega(x))$ a section of $\pi: X \rightarrow M$. In this case, φ is the identity. Let $\gamma \in \pi_{1}(M, p)$ and $\alpha \in \pi_{1}\left(F, x_{0}\right)$, then α_{t} is given by $\left(\omega_{t} \circ \gamma\right)^{-1} \alpha\left(\omega_{t} \circ \gamma\right)$, where $\omega_{t} \circ \gamma(\lambda)=\omega(\gamma(\lambda t))$. Therefore $\pi_{1}(M, p)$ acts on $\pi_{1}(F, \omega(p))$ by

$$
\alpha^{\gamma}=(\omega \circ \gamma)^{-1} \alpha(\omega \circ \gamma)
$$

Examples

Example

Let $\pi: X=M \times F \rightarrow M$ be a trivial fibration. Any continuous map $\omega: M \rightarrow F$, defines $s(x)=(x, \omega(x))$ a section of $\pi: X \rightarrow M$. In this case, φ is the identity. Let $\gamma \in \pi_{1}(M, p)$ and $\alpha \in \pi_{1}\left(F, x_{0}\right)$, then α_{t} is given by $\left(\omega_{t} \circ \gamma\right)^{-1} \alpha\left(\omega_{t} \circ \gamma\right)$, where $\omega_{t} \circ \gamma(\lambda)=\omega(\gamma(\lambda t))$. Therefore $\pi_{1}(M, p)$ acts on $\pi_{1}(F, \omega(p))$ by

$$
\alpha^{\gamma}=(\omega \circ \gamma)^{-1} \alpha(\omega \circ \gamma)
$$

$$
\begin{aligned}
& \alpha_{1}^{\gamma}=\left(\alpha_{2} \alpha_{1}\right)^{-1} \alpha_{1}\left(\alpha_{2} \alpha_{1}\right) \\
& \alpha_{2}^{\gamma}=\alpha_{1}^{-1} \alpha_{2} \alpha_{1}
\end{aligned}
$$

Examples

Example

Consider F as before, but now X is not trivial. The trivialization along γ is not the identity, but given as follows:

Examples

Example

Consider F as before, but now X is not trivial. The trivialization along γ is not the identity, but given as follows:

Examples

Example

Consider F as before, but now X is not trivial. The trivialization along γ is not the identity, but given as follows:

Examples

Example

Consider F as before, but now X is not trivial. The trivialization along γ is not the identity, but given as follows:

Examples

Example

Consider F as before, but now X is not trivial. The trivialization along γ is not the identity, but given as follows:

Examples

Example

Consider F as before, but now X is not trivial. The trivialization along γ is not the identity, but given as follows:

$$
\begin{gathered}
\alpha_{1}^{\gamma}=\alpha_{2} \\
\alpha_{2}^{\gamma}=\alpha_{2} \alpha_{1} \alpha_{2}^{-1}
\end{gathered}
$$

Mapping Class Group

Theorem

There is an isomorphism between the geometric group of braids on n-strings and the mapping class group of automorphisms on the punctured disc $\mathbb{D}_{n}:=\mathbb{D} \backslash Z_{n}$ modulo homotopy relative to the boundary, that is, $\pi_{0}\left(\operatorname{Diff}^{+}\left(X_{n}\right)\right)$.

Braid Action

Remarks

- The set $\pi_{0}\left(\right.$ Diff $\left.^{+}\left(X_{n}\right)\right)$ is naturally in bijection with the set of trivializations along I of locally trivial fibrations of fiber \mathbb{D}_{n}.

Braid Action

Remarks

■ The set $\pi_{0}\left(\operatorname{Diff}^{+}\left(X_{n}\right)\right)$ is naturally in bijection with the set of trivializations along / of locally trivial fibrations of fiber \mathbb{D}_{n}.

- This way, via monodromy, a braid in \mathbb{B}_{n} acts on $\pi_{1}\left(\mathbb{D}_{n}\right)=F_{n}=\mathbb{Z} g_{1} * \ldots * \mathbb{Z} g_{n}$ as follows () :

$$
g_{j}^{\sigma_{i}}= \begin{cases}g_{i+1} & j=i \\ g_{i+1} g_{i} g_{i+1}^{-1} & j=i+1 \\ g_{i} & \text { otherwise }\end{cases}
$$

Remarks

- The set $\pi_{0}\left(\operatorname{Diff}^{+}\left(X_{n}\right)\right)$ is naturally in bijection with the set of trivializations along I of locally trivial fibrations of fiber \mathbb{D}_{n}.
- This way, via monodromy, a braid in \mathbb{B}_{n} acts on $\pi_{1}\left(\mathbb{D}_{n}\right)=F_{n}=\mathbb{Z} g_{1} * \ldots * \mathbb{Z} g_{n}$ as follows () :

$$
g_{j}^{\sigma_{i}}= \begin{cases}g_{i+1} & j=i \\ g_{i+1} g_{i} g_{i+1}^{-1} & j=i+1 \\ g_{i} & \text { otherwise }\end{cases}
$$

■ Since $\left(g_{n} \cdot \ldots \cdot g_{1}\right)=\partial \mathbb{D}$, one obtains $\left(g_{n} \cdot \ldots \cdot g_{1}\right)^{\sigma}=\left(g_{n} \cdot \ldots \cdot g_{1}\right)$.

Definition

Definition

Let M be an m-dimensional (connected) complex manifold. A branched covering of M is an m-dimensional irreducible normal complex space X together with a surjective holomorphic map $\pi: X \rightarrow M$ such that:

- every fiber of π is discrete in X,

Definition

Definition

Let M be an m-dimensional (connected) complex manifold. A branched covering of M is an m-dimensional irreducible normal complex space X together with a surjective holomorphic map $\pi: X \rightarrow M$ such that:

- every fiber of π is discrete in X,
- $R_{\pi}:=\left\{q \in X \mid \pi^{*}: \mathcal{O}_{\pi(q), M} \rightarrow \mathcal{O}_{q, x}\right.$ is not an isomorphism $\}$ called the ramification locus, and $B_{\pi}=\pi\left(R_{\pi}\right)$ called the branched locus, are hypersurfaces of X and M, resp.

Definition

Definition

Let M be an m-dimensional (connected) complex manifold. A branched covering of M is an m-dimensional irreducible normal complex space X together with a surjective holomorphic map $\pi: X \rightarrow M$ such that:
\square every fiber of π is discrete in X,
$\square R_{\pi}:=\left\{q \in X \mid \pi^{*}: \mathcal{O}_{\pi(q), M} \rightarrow \mathcal{O}_{q, X}\right.$ is not an isomorphism $\}$ called the ramification locus, and $B_{\pi}=\pi\left(R_{\pi}\right)$ called the branched locus, are hypersurfaces of X and M, resp.
$\square \pi \mid: X \backslash \pi^{-1}\left(B_{\pi}\right) \rightarrow M \backslash B_{\pi}$ is an unramified (topological) covering, and

Definition

Definition

Let M be an m-dimensional (connected) complex manifold. A branched covering of M is an m-dimensional irreducible normal complex space X together with a surjective holomorphic map $\pi: X \rightarrow M$ such that:
\square every fiber of π is discrete in X,
$\square R_{\pi}:=\left\{q \in X \mid \pi^{*}: \mathcal{O}_{\pi(q), M} \rightarrow \mathcal{O}_{q, X}\right.$ is not an isomorphism $\}$ called the ramification locus, and $B_{\pi}=\pi\left(R_{\pi}\right)$ called the branched locus, are hypersurfaces of X and M, resp.
$\square \pi \mid: X \backslash \pi^{-1}\left(B_{\pi}\right) \rightarrow M \backslash B_{\pi}$ is an unramified (topological) covering, and
■ $\forall p \in M$ there is a connected open neighborhood $W^{p} \subset M$ such that for every connected component U of $\pi^{-1}(W)$:

Definition

Definition

Let M be an m-dimensional (connected) complex manifold. A branched covering of M is an m-dimensional irreducible normal complex space X together with a surjective holomorphic map $\pi: X \rightarrow M$ such that:
\square every fiber of π is discrete in X,
■ $R_{\pi}:=\left\{q \in X \mid \pi^{*}: \mathcal{O}_{\pi(q), M} \rightarrow \mathcal{O}_{q, X}\right.$ is not an isomorphism $\}$ called the ramification locus, and $B_{\pi}=\pi\left(R_{\pi}\right)$ called the branched locus, are hypersurfaces of X and M, resp.
$\square \pi \mid: X \backslash \pi^{-1}\left(B_{\pi}\right) \rightarrow M \backslash B_{\pi}$ is an unramified (topological) covering, and
$\square \forall p \in M$ there is a connected open neighborhood $W^{p} \subset M$ such that for every connected component U of $\pi^{-1}(W)$:

$$
\text { i) } \pi^{-1}(p) \cap U=\{q\}
$$

Definition

Definition

Let M be an m-dimensional (connected) complex manifold. A branched covering of M is an m-dimensional irreducible normal complex space X together with a surjective holomorphic map $\pi: X \rightarrow M$ such that:
\square every fiber of π is discrete in X,
■ $R_{\pi}:=\left\{q \in X \mid \pi^{*}: \mathcal{O}_{\pi(q), M} \rightarrow \mathcal{O}_{q, X}\right.$ is not an isomorphism $\}$ called the ramification locus, and $B_{\pi}=\pi\left(R_{\pi}\right)$ called the branched locus, are hypersurfaces of X and M, resp.
$\square \pi \mid: X \backslash \pi^{-1}\left(B_{\pi}\right) \rightarrow M \backslash B_{\pi}$ is an unramified (topological) covering, and
$\square \forall p \in M$ there is a connected open neighborhood $W^{p} \subset M$ such that for every connected component U of $\pi^{-1}(W)$:

$$
\begin{aligned}
& \text { i) } \pi^{-1}(p) \cap U=\{q\} \\
& \text { ii) } \pi \mid U: U \rightarrow W \text { is surjective and proper. }
\end{aligned}
$$

Construction of branched coverings: smooth case

If B is a non-singular hypersurface, $B=D_{1} \cup \ldots \cup D_{n}, e_{1}, \ldots, e_{n} \in \mathbb{N}, D=\sum n_{i} D_{i}$ on M. $p_{0} \in M \backslash B$ base point.

Construction of branched coverings: smooth case

If B is a non-singular hypersurface, $B=D_{1} \cup \ldots \cup D_{n}, e_{1}, \ldots, e_{n} \in \mathbb{N}, D=\sum n_{i} D_{i}$ on M. $p_{0} \in M \backslash B$ base point. Let $J=N\left(\gamma_{1}^{e_{1}}, \ldots, \gamma_{n}^{e_{n}}\right) \triangleleft \pi_{1}\left(M \backslash B, p_{0}\right)$.

Construction of branched coverings: smooth case

If B is a non-singular hypersurface, $B=D_{1} \cup \ldots \cup D_{n}, e_{1}, \ldots, e_{n} \in \mathbb{N}, D=\sum n_{i} D_{i}$ on M. $p_{0} \in M \backslash B$ base point. Let $J=N\left(\gamma_{1}^{e_{1}}, \ldots, \gamma_{n}^{e_{n}}\right) \triangleleft \pi_{1}\left(M \backslash B, p_{0}\right) . G:=\pi_{1}\left(M \backslash B, p_{0}\right) / J$.

Construction of branched coverings: smooth case

If B is a non-singular hypersurface, $B=D_{1} \cup \ldots \cup D_{n}, e_{1}, \ldots, e_{n} \in \mathbb{N}, D=\sum n_{i} D_{i}$ on M. $p_{0} \in M \backslash B$ base point. Let $J=N\left(\gamma_{1}^{e_{1}}, \ldots, \gamma_{n}^{e_{n}}\right) \triangleleft \pi_{1}\left(M \backslash B, p_{0}\right) . G:=\pi_{1}\left(M \backslash B, p_{0}\right) / J$.

Condition

If $\gamma_{j}^{d} \in J$ then $d \equiv 0\left(\bmod e_{j}\right) \forall 1 \leq j \leq s$.

Theorem

There is a natural one-to-one correspondence between

$$
\begin{gathered}
\{\pi: X \rightarrow M \text { Galois, finite, ramified along } D\} / \sim \\
\left\{J \subset K^{f \cdot j} \pi_{1}(M \backslash B) \text { satisfying }(1.4)\right\} .
\end{gathered}
$$

Moreover, there is a maximal Galois covering $\pi(M, D)$ of M ramified along D iff $K_{\pi}=\cap K^{\dagger . j} \triangleleft \pi_{1}(M \backslash B)$ satisfies (1.4).

Construction of branched coverings: smooth case

Theorem (Riemann Existence Theorem)

Any monodromy action $\pi_{1}\left(\mathbb{P}^{1} \backslash Z_{n}\right) \rightarrow \Sigma_{s}$ can be realized by a branched covering of the projective line \mathbb{P}^{1}.

If B is a hypersurface, $B=D_{1} \cup \ldots \cup D_{n}, e_{1}, \ldots, e_{n} \in \mathbb{N}, D=\sum n_{i} D_{i}$ on M. $p_{0} \in M \backslash B$ base point.

If B is a hypersurface, $B=D_{1} \cup \ldots \cup D_{n}, e_{1}, \ldots, e_{n} \in \mathbb{N}, D=\sum n_{i} D_{i}$ on M. $p_{0} \in M \backslash B$ base point. Let $K=\pi_{*}\left(\pi_{1}\left(X \backslash \pi^{-1}(B), q_{0}\right)\right), q_{0} \in \pi^{-1}\left(q_{0}\right), p \in \operatorname{Sing} B$.

If B is a hypersurface, $B=D_{1} \cup \ldots \cup D_{n}, e_{1}, \ldots, e_{n} \in \mathbb{N}, D=\sum n_{i} D_{i}$ on M. $p_{0} \in M \backslash B$ base point. Let $K=\pi_{*}\left(\pi_{1}\left(X \backslash \pi^{-1}(B), q_{0}\right)\right), q_{0} \in \pi^{-1}\left(q_{0}\right), p \in \operatorname{Sing} B$.
$i: W^{p_{0}} \backslash B \hookrightarrow M \backslash B$.

If B is a hypersurface, $B=D_{1} \cup \ldots \cup D_{n}, e_{1}, \ldots, e_{n} \in \mathbb{N}, D=\sum n_{i} D_{i}$ on M. $p_{0} \in M \backslash B$ base point. Let $K=\pi_{*}\left(\pi_{1}\left(X \backslash \pi^{-1}(B), q_{0}\right)\right), q_{0} \in \pi^{-1}\left(q_{0}\right), p \in \operatorname{Sing} B$.
$i: W^{p_{0}} \backslash B \hookrightarrow M \backslash B$.

Condition

Let $K \triangleleft \pi_{1}\left(M \backslash B, p_{0}\right)$ such that $J \triangleleft K$. For any point $p \in \operatorname{Sing} B$, $K_{p}=i_{*}^{-1}(K) \stackrel{f, j}{\triangleleft} \pi_{1}(W \backslash B, \tilde{p})$.

Theorem

There is a one-to-one correspondence:

$$
\begin{aligned}
& \{\pi: X \rightarrow M \text { Galois, finite, ramified along } D\} / \sim \\
& \left\{J \subset K^{f . j} \pi_{1}(M \backslash B) \text { satisfying (1.4) and (1.7) }\right\} .
\end{aligned}
$$

Moreover, there is a maximal Galois covering $\pi(M, D)$ of M ramified along D iff $K_{\pi}=\cap K^{{ }^{f \cdot j}}{ }^{i} \pi_{1}(M \backslash B)$ satisfies (1.4) and (1.7).

Example

Consider $M=\mathbb{P}^{2}, D_{1}=\left\{z y^{2}=x^{3}\right\}, D_{2}=\{z=0\}$. Let us study the possible Galois covers of \mathbb{P}^{2} ramified along $D=e_{1} D_{1}+e_{2} D_{2}$.

Example

Consider $M=\mathbb{P}^{2}, D_{1}=\left\{z y^{2}=x^{3}\right\}, D_{2}=\{z=0\}$. Let us study the possible Galois covers of \mathbb{P}^{2} ramified along $D=e_{1} D_{1}+e_{2} D_{2}$.

Figure: $y^{2}=x^{3}$

Example

Consider $M=\mathbb{P}^{2}, D_{1}=\left\{z y^{2}=x^{3}\right\}, D_{2}=\{z=0\}$. Let us study the possible Galois covers of \mathbb{P}^{2} ramified along $D=e_{1} D_{1}+e_{2} D_{2}$.

Figure: $y^{2}=(x-y)^{3}$

Example

Consider $M=\mathbb{P}^{2}, D_{1}=\left\{z y^{2}=x^{3}\right\}, D_{2}=\{z=0\}$. Let us study the possible Galois covers of \mathbb{P}^{2} ramified along $D=e_{1} D_{1}+e_{2} D_{2}$.

Figure: $y^{2}=(x-y)^{3}$

Example

Consider $M=\mathbb{P}^{2}, D_{1}=\left\{z y^{2}=x^{3}\right\}, D_{2}=\{z=0\}$. Let us study the possible Galois covers of \mathbb{P}^{2} ramified along $D=e_{1} D_{1}+e_{2} D_{2}$.

Figure: $y^{2}=(x-y)^{3}$

Example

Consider $M=\mathbb{P}^{2}, D_{1}=\left\{z y^{2}=x^{3}\right\}, D_{2}=\{z=0\}$. Let us study the possible Galois covers of \mathbb{P}^{2} ramified along $D=e_{1} D_{1}+e_{2} D_{2}$.

$$
\tilde{\gamma}_{\infty} \tilde{\gamma}_{2} \gamma_{2} \gamma_{1}=1,
$$

Example

Consider $M=\mathbb{P}^{2}, D_{1}=\left\{z y^{2}=x^{3}\right\}, D_{2}=\{z=0\}$. Let us study the possible Galois covers of \mathbb{P}^{2} ramified along $D=e_{1} D_{1}+e_{2} D_{2}$.

$$
\begin{aligned}
& \tilde{\gamma}_{\infty} \tilde{\gamma}_{2} \gamma_{2} \gamma_{1}=1 \\
& \tilde{\gamma}_{2}=\gamma_{2}
\end{aligned}
$$

Example

Consider $M=\mathbb{P}^{2}, D_{1}=\left\{z y^{2}=x^{3}\right\}, D_{2}=\{z=0\}$. Let us study the possible Galois covers of \mathbb{P}^{2} ramified along $D=e_{1} D_{1}+e_{2} D_{2}$.

$$
\begin{aligned}
& \tilde{\gamma}_{\infty} \tilde{\gamma}_{2} \gamma_{2} \gamma_{1}=1, \\
& \tilde{\gamma}_{2}=\gamma_{2} \\
& \gamma_{2} \gamma_{1} \gamma_{2}=\gamma_{1} \gamma_{2} \gamma_{1}
\end{aligned}
$$

Theorem

In the following cases there is a maximal Galois covering of \mathbb{P}^{2} ramified along D :

| $\left(e_{1}, e_{2}\right) \\|$ | $G=\pi_{1}\left(\mathbb{P}^{2} \backslash D\right) / J$ | $\|G\|$ | | | | | |
|---|---|---|---|---|---|---|---|---|
| $(2,2)$ | $\\|$ | Σ_{3} |$|6|$| $(3,4)$ | $S L(2, \mathbb{Z} / 3 \mathbb{Z})$ |
| :---: | :---: |
| $(4,8)$ | $\\|$ |
| $(5,20)$ | $\Sigma_{4} \ltimes \mathbb{Z} / 4 \mathbb{Z}$ |

Theorem

In the following cases there is a maximal Galois covering of \mathbb{P}^{2} ramified along D :

$\left(e_{1}, e_{2}\right) \\|$	$G=\pi_{1}\left(\mathbb{P}^{2} \backslash D\right) / J$	$\|G\|$
$(2,2)$	Σ_{3}	6
$(3,4)$	$\\|$	$S L(2, \mathbb{Z} / 3 \mathbb{Z})$
$(4,8)$	$\\|$	$\Sigma_{4} \ltimes \mathbb{Z} / 4 \mathbb{Z}$
$(5,20)$	$\\|$	$S L(2, \mathbb{Z} / 5 \mathbb{Z}) \times \mathbb{Z} / 5 \mathbb{Z}$

However, there is no maximal Galois cover of \mathbb{P}^{2} ramified along $D=6 D_{1}+2 D_{2}$.

Theorem

Let $B=D_{1} \cup \ldots \cup D_{n}$. Then any representation of $\pi_{1}(M \backslash B)$ on a linear group $G L(r, \mathbb{C})$ such that the image of a meridian γ_{i} has order e_{i}, gives rise to a Galois cover of M branched along $D=e_{1} D_{1}+\ldots+e_{n} D_{n}$.

- If we want to understand coverings of M ramified along D one needs to study $\pi_{1}(M \backslash B)$.
- If we want to understand coverings of M ramified along D one needs to study $\pi_{1}(M \backslash B)$.
- How to compute the fundamental group $\pi_{1}(M \backslash B)$ of a quasi-projective variety?
- If we want to understand coverings of M ramified along D one needs to study $\pi_{1}(M \backslash B)$.
■ How to compute the fundamental group $\pi_{1}(M \backslash B)$ of a quasi-projective variety?

Theorem (Hamm,Goreski-MacPherson)

Let $M \subset \mathbb{P}^{n}$ be a closed subvariety which is locally a complete intersection of dimension m. Let \mathcal{A} be a Whitney stratification of M and consider $B \subset \mathbb{P}^{n}$ another subvariety such that $B \cap M$ is a union of strata of \mathcal{A}. Consider H a hyperplane transversal to \mathcal{A} in $M \backslash B$, then the inclusion

$$
(M \backslash B) \cap H \hookrightarrow M \backslash B
$$

is an ($m-1$)-homotopy equivalence.

- If we want to understand coverings of M ramified along D one needs to study $\pi_{1}(M \backslash B)$.
■ How to compute the fundamental group $\pi_{1}(M \backslash B)$ of a quasi-projective variety?
- It is enough to understand the fundamental group of complements of curves on a surface.
- If we want to understand coverings of M ramified along D one needs to study $\pi_{1}(M \backslash B)$.
■ How to compute the fundamental group $\pi_{1}(M \backslash B)$ of a quasi-projective variety?
- It is enough to understand the fundamental group of complements of curves on a surface.
■ Zariski-Van Kampen method.
- If we want to understand coverings of M ramified along D one needs to study $\pi_{1}(M \backslash B)$.
■ How to compute the fundamental group $\pi_{1}(M \backslash B)$ of a quasi-projective variety?
- It is enough to understand the fundamental group of complements of curves on a surface.
■ Zariski-Van Kampen method.
■ Chisini Problem:
Let S be a nonsingular compact complex surface, let $\pi: S \rightarrow \mathbb{P}^{2}$ be a finite morphism having simple branching, and let B be the branch curve; then "to what extent does the pair $\left(\mathbb{P}^{2}, B\right)$ determine π "?

Zariski-Van Kampen Method

Purpose:
Obtain a presentation for the fundamental group of the complement of a plane projective curve in \mathbb{P}^{2}.
We will put together several ingredients, among which, the Van Kampen Theorem is key.

Let $\pi: X \rightarrow M$ be a locally trivial fibration with section $s: M \rightarrow X$. Consider $p \in M$ and $x_{0} \in F_{p}$.

Let $\pi: X \rightarrow M$ be a locally trivial fibration with section $s: M \rightarrow X$. Consider $p \in M$ and $x_{0} \in F_{p}$.

Theorem

$\pi_{1}\left(X, x_{0}\right)=\pi_{1}\left(F_{p}, x_{0}\right) \rtimes \pi_{1}(M, p)$, where the action of $\pi_{1}(M, p)$ on $\pi_{1}\left(F_{p}, x_{0}\right)$ is given by the monodromy of π.

Proposition

Meridians around the same irreducible components of B are conjugate in $\pi_{1}(M \backslash B)$. Moreover, the conjugacy class of a meridian coincides with the set of homotopy classes of meridians around the same irreducible component.

Proposition

The inclusion $M \backslash B \hookrightarrow M$ induces a surjective morphism, whose kernel is given by the smallest normal subgroup of $\pi_{1}(M \backslash B)$ containing meridians of all the irreducible components of B.

Zariski-Van Kampen Theorem

Let $\mathcal{C} \subset \mathbb{P}^{2}$ be a projective plane curve. Consider $P=[0: 1: 0] \in \mathbb{P}^{2} \backslash \mathcal{C}$.

Zariski-Van Kampen Theorem

Let $\mathcal{C} \subset \mathbb{P}^{2}$ be a projective plane curve. Consider $P=[0: 1: 0] \in \mathbb{P}^{2} \backslash \mathcal{C}$.

Zariski-Van Kampen Theorem

Let $\mathcal{C} \subset \mathbb{P}^{2}$ be a projective plane curve. Consider $P=[0: 1: 0] \in \mathbb{P}^{2} \backslash \mathcal{C}$. Project $\pi: \mathbb{P}^{2} \backslash\{P\} \rightarrow \mathbb{P}^{1}$ from P

Zariski-Van Kampen Theorem

Let $\mathcal{C} \subset \mathbb{P}^{2}$ be a projective plane curve. Consider $P=[0: 1: 0] \in \mathbb{P}^{2} \backslash \mathcal{C}$. Project $\pi: \mathbb{P}^{2} \backslash\{P\} \rightarrow \mathbb{P}^{1}$ from P

Zariski-Van Kampen Theorem

Let $\mathcal{C} \subset \mathbb{P}^{2}$ be a projective plane curve. Consider $P=[0: 1: 0] \in \mathbb{P}^{2} \backslash \mathcal{C}$. Project $\pi: \mathbb{P}^{2} \backslash\{P\} \rightarrow \mathbb{P}^{1}$ from P

Zariski-Van Kampen Theorem

Remark (1)

Let $X=\mathbb{P}^{2} \backslash(\mathcal{C} \cup L)$, then $\left.\pi\right|_{X}: X \rightarrow \mathbb{P}^{1} \backslash Z_{n}$ is a locally trivial fibration.

Zariski-Van Kampen Theorem

Remark (1)

Let $X=\mathbb{P}^{2} \backslash(\mathcal{C} \cup L)$, then $\left.\pi\right|_{X}: X \rightarrow \mathbb{P}^{1} \backslash Z_{n}$ is a locally trivial fibration. Moreover, its fiber is $\mathbb{P}^{1} \backslash Z_{d}$, where $d:=\operatorname{deg} \mathcal{C}$.

Zariski-Van Kampen Theorem

Remark (2)
By (2.1), $\pi_{1}\left(X, x_{0}\right)=\pi_{1}\left(F_{z_{0}}, x_{0}\right) \rtimes \pi_{1}\left(\mathbb{P}^{1} \backslash Z_{n}, z_{0}\right)$. Action is given by the monodromy of $\pi_{1}\left(\mathbb{P}^{1} \backslash Z_{n}, z_{0}\right)$ on $\pi_{1}\left(F_{z_{0}}, x_{0}\right)$.

Zariski-Van Kampen Theorem

Remark (3)
Note that $\pi_{1}\left(F_{z_{0}}, x_{0}\right)=\left\langle g_{1}, \ldots, g_{d}: g_{d} g_{d-1} \cdots g_{1}=1\right\rangle$ and

$$
\pi_{1}\left(\mathbb{P}^{1} \backslash Z_{n}, z_{0}\right)=\left\langle\gamma_{1}, \ldots, \gamma_{n}: \gamma_{n} \cdots \gamma_{1}=1\right\rangle
$$

Zariski-Van Kampen Theorem

Theorem

$\pi_{1}\left(X, x_{0}\right)$ admits the following presentation:

$$
\left\langle g_{1}, \ldots, g_{d}, \gamma_{1}, \ldots, \gamma_{n}: g_{d} g_{d-1} \cdots g_{1}=\gamma_{n} \cdots \gamma_{1}=1, g_{i}^{\gamma_{j}}=\gamma_{j}^{-1} g_{i} \gamma_{j}\right\rangle
$$

Zariski-Van Kampen Theorem

Theorem
$\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}\right)$ admits the following presentation:

$$
\left\langle g_{1}, \ldots, g_{d}: g_{d} g_{d-1} \cdots g_{1}=1, g_{i}^{\gamma_{j}}=g_{i}\right\rangle
$$

Remark

$■$ Let $\mathcal{C}=\mathcal{C}_{1} \cup \ldots \cup \mathcal{C}_{r}$ the decomposition of \mathcal{C} in its irreducible components, then

$$
H_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}\right)=\mathbb{Z}^{r-1} \oplus \mathbb{Z} /\left(d_{1}, \ldots, d_{r}\right)
$$

where $d_{i}:=\operatorname{deg} \mathcal{C}$.

Remark

$■$ Let $\mathcal{C}=\mathcal{C}_{1} \cup \ldots \cup \mathcal{C}_{r}$ the decomposition of \mathcal{C} in its irreducible components, then

$$
H_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}\right)=\mathbb{Z}^{r-1} \oplus \mathbb{Z} /\left(d_{1}, \ldots, d_{r}\right)
$$

where $d_{i}:=\operatorname{deg} \mathcal{C}$.

- It two curves are in a connected family of equisingular curves, then they are isotopic

Zariski-Van Kampen Theorem

Example

\mathcal{C} smooth of degree $d \Rightarrow \pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}\right)=\mathbb{Z} / d \mathbb{Z}$.

Zariski-Van Kampen Theorem

Example

\mathcal{C} smooth of degree $d \Rightarrow \pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}\right)=\mathbb{Z} / d \mathbb{Z}$. For computation purposes it is more convenient to use a non-generic projection.

Zariski-Van Kampen Theorem

Example

\mathcal{C} smooth of degree $d \Rightarrow \pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}\right)=\mathbb{Z} / d \mathbb{Z}$. For computation purposes it is more convenient to use a non-generic projection. Use for instance $\mathcal{C}:=\{F=0\}$, where $F(X, Y, Z)=X^{d}+Y^{d}-Z^{d} . P=[0: 1: 0] \notin \mathcal{C}$ and $F_{Y}=d Y^{d-1}$.

Zariski-Van Kampen Theorem

Example

\mathcal{C} smooth of degree $d \Rightarrow \pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}\right)=\mathbb{Z} / d \mathbb{Z}$. For computation purposes it is more convenient to use a non-generic projection. Use for instance $\mathcal{C}:=\{F=0\}$, where $F(X, Y, Z)=X^{d}+Y^{d}-Z^{d} . P=[0: 1: 0] \notin \mathcal{C}$ and $F_{Y}=d Y^{d-1}$.
Let us compute the local monodromy of $x=y^{d}$. Consider $\gamma(t)=e^{2 \pi t \sqrt{-1}}$ a loop around $x=0$. The fiber at $\gamma(t)$ is given by:

Zariski-Van Kampen Theorem

Example

\mathcal{C} smooth of degree $d \Rightarrow \pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}\right)=\mathbb{Z} / d \mathbb{Z}$.
The monodromy around $x=0$ looks as follows:

Zariski-Van Kampen Theorem

Example

\mathcal{C} smooth of degree $d \Rightarrow \pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}\right)=\mathbb{Z} / d \mathbb{Z}$.
Corresponds to the braid $\sigma_{1} \sigma_{2} \cdots \sigma_{d-1}$

Zariski-Van Kampen Theorem

Example

\mathcal{C} smooth of degree $d \Rightarrow \pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}\right)=\mathbb{Z} / d \mathbb{Z}$.

Note that the global part of the monodromy has no contribution:

Zariski-Van Kampen Theorem

Example

\mathcal{C} smooth of degree $d \Rightarrow \pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}\right)=\mathbb{Z} / d \mathbb{Z}$.
Applying the Zariski-Van Kampen Theorem to these generators:

Zariski-Van Kampen Theorem

Example

\mathcal{C} smooth of degree $d \Rightarrow \pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}\right)=\mathbb{Z} / d \mathbb{Z}$.
Applying the Zariski-Van Kampen Theorem to these generators:

One obtains:

$$
g_{i}=g_{i}^{\left(\sigma_{1} \sigma_{2} \cdots \sigma_{d-1}\right)}= \begin{cases}g_{d} & i=1 \\ g_{d}^{-1} g_{i-1} g_{d} & i \neq 1\end{cases}
$$

Zariski-Van Kampen Theorem

Example

\mathcal{C} smooth of degree $d \Rightarrow \pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}\right)=\mathbb{Z} / d \mathbb{Z}$.
Applying the Zariski-Van Kampen Theorem to these generators:

One obtains:

$$
g_{i}=g_{i}^{\left(\sigma_{1} \sigma_{2} \cdots \sigma_{d-1}\right)}= \begin{cases}g_{d} & i=1 \\ g_{d}^{-1} g_{i-1} g_{d} & i \neq 1\end{cases}
$$

hence $g_{2}=g_{d}^{-1} g_{1} g_{d}=g_{1}$, and by induction $g_{1}=\ldots=g_{d}=g$. Finally, $g_{1} \cdots g_{d}=1$ becomes $g^{d}=1$

$$
\pi_{1}\left(\mathbb{P}^{2} \backslash \mathcal{C}\right)=\left\langle g: g^{d}=1\right\rangle=\mathbb{Z} / d \mathbb{Z}
$$

Example (Zariski-Harris-Severi, Cheniot)

\mathcal{C} nodal $\Rightarrow \pi_{1}(\mathcal{C})$ is abelian.

Example (Zariski-Harris-Severi, Cheniot)

\mathcal{C} nodal $\Rightarrow \pi_{1}(\mathcal{C})$ is abelian.
\mathcal{C}_{1} and \mathcal{C}_{2} intersect transversally $\Rightarrow \pi_{1}(\mathcal{C})=\pi_{1}\left(\mathcal{C}_{1}\right) \oplus \pi_{1}\left(\mathcal{C}_{2}\right)$

Example (Zariski-Harris-Severi, Cheniot)

\mathcal{C} nodal $\Rightarrow \pi_{1}(\mathcal{C})$ is abelian.
\mathcal{C}_{1} and \mathcal{C}_{2} intersect transversally $\Rightarrow \pi_{1}(\mathcal{C})=\pi_{1}\left(\mathcal{C}_{1}\right) \oplus \pi_{1}\left(\mathcal{C}_{2}\right)$

Remark (Harris)

The space of irreducible nodal curves with given number of nodes is connected

Example (Zariski-Harris-Severi, Cheniot)

\mathcal{C} nodal $\Rightarrow \pi_{1}(\mathcal{C})$ is abelian.
\mathcal{C}_{1} and \mathcal{C}_{2} intersect transversally $\Rightarrow \pi_{1}(\mathcal{C})=\pi_{1}\left(\mathcal{C}_{1}\right) \oplus \pi_{1}\left(\mathcal{C}_{2}\right)$

Remark (Harris)

The space of irreducible nodal curves with given number of nodes is connected

Example (Zariski)

Let \mathcal{C} be a general nodal rational curve of degree d. Consider $\tilde{\mathcal{C}}$ its dual. Note that $\tilde{\mathcal{C}}$ is a rational curve of degree $2(d-1), 2(d-2)(d-3)$ nodes, and $3(d-2)$ cusps. The fundamental group of $\tilde{\mathcal{C}}$ coincides with the fundamental group of the unordered configuration space of d points in \mathbb{S}^{2}, that is,

$$
\left.\begin{array}{ll}
& g_{i} g_{j}=g_{j} g_{i}, \\
\mathbb{B}_{d}\left(\mathbb{S}^{2}\right)=\left\langle g_{1}, \ldots, g_{d-1}:\right. & g_{i} g_{i+1} g_{i}=g_{i+1} g_{i} g_{i+1}, \\
& g_{1} \cdots g_{d-2} g_{d-1}^{2} g_{d-2} \cdots g_{1}=1
\end{array}\right\rangle .
$$

Non-Generic Projections

- $P \in \mathcal{C}$ that is, existence of asymptotes.

Non-Generic Projections

- $P \in \mathcal{C}$ that is, existence of asymptotes.

■ "Very" special fibers.

Local Braid Monodromy

■ Can be obtained from the Puiseux Series (local parametrization) of the curve around a singular point.

Local Braid Monodromy

■ Can be obtained from the Puiseux Series (local parametrization) of the curve around a singular point.
■ Computational methods are "generically" effective.

Global Braid Monodromy

■ Most difficult part of monodromy computations.

Global Braid Monodromy

- Most difficult part of monodromy computations.

■ Real arrangements, real curves.

Global Braid Monodromy

■ Most difficult part of monodromy computations.
■ Real arrangements, real curves.

- Computational methods are effective essentially over $\mathbb{Z}[\sqrt{-1}]$.

Example

Consider the following quartic:

Example

Consider the following quartic and project from $[0: 1: 0]$

Example

Compute the braid monodromy:

Example

Compute the braid monodromy: σ_{1}^{8},

Example

Compute the braid monodromy: $\sigma_{1}^{8}, \sigma_{2}$,

Example

Compute the braid monodromy: $\sigma_{1}^{8}, \sigma_{2}, \sigma_{3}^{-1} \sigma_{1}^{-1} \sigma_{2} \sigma_{1} \sigma_{3}$.

Example

Compute the braid monodromy: $\sigma_{1}^{8}, \sigma_{2}, \sigma_{3}^{-1} \sigma_{1}^{-1} \sigma_{2} \sigma_{1} \sigma_{3}$.

Example

σ_{1}^{8} :

Example

σ_{1}^{8} :

$$
g_{1}^{\sigma_{1}^{8}}=\left(g_{2} g_{1}\right)^{4} g_{1}\left(g_{2} g_{1}\right)^{-4} \quad \Rightarrow\left[\left(g_{2} g_{1}\right)^{4}, g_{1}\right]=1
$$

Example
σ_{1}^{8} :

$$
\begin{array}{ll}
g_{1}^{\sigma_{1}^{8}}=\left(g_{2} g_{1}\right)^{4} g_{1}\left(g_{2} g_{1}\right)^{-4} & \Rightarrow\left[\left(g_{2} g_{1}\right)^{4}, g_{1}\right]=1 \\
g_{2}^{\sigma_{1}^{8}}=\left(g_{2} g_{1}\right)^{4} g_{2}\left(g_{2} g_{1}\right)^{-4} & \Rightarrow\left[\left(g_{2} g_{1}\right)^{4}, g_{2}\right]=1
\end{array}
$$

Example

σ_{1}^{8} :

$$
\begin{array}{ll}
g_{1}^{\sigma_{1}^{8}}=\left(g_{2} g_{1}\right)^{4} g_{1}\left(g_{2} g_{1}\right)^{-4} & \Rightarrow\left[\left(g_{2} g_{1}\right)^{4}, g_{1}\right]=1 \\
g_{2}^{\sigma_{1}^{8}}=\left(g_{2} g_{1}\right)^{4} g_{2}\left(g_{2} g_{1}\right)^{-4} & \Rightarrow\left[\left(g_{2} g_{1}\right)^{4}, g_{2}\right]=1 \\
g_{3}^{\sigma_{1}^{8}}=g_{3} &
\end{array}
$$

Example

σ_{1}^{8} :

$$
\begin{array}{ll}
g_{1}^{\sigma_{1}^{8}}=\left(g_{2} g_{1}\right)^{4} g_{1}\left(g_{2} g_{1}\right)^{-4} & \Rightarrow\left[\left(g_{2} g_{1}\right)^{4}, g_{1}\right]=1 \\
g_{2}^{\sigma_{1}^{8}}=\left(g_{2} g_{1}\right)^{4} g_{2}\left(g_{2} g_{1}\right)^{-4} & \Rightarrow\left[\left(g_{2} g_{1}\right)^{4}, g_{2}\right]=1 \\
g_{3}^{\sigma_{1}^{8}}=g_{3} & \\
g_{4}^{\sigma_{1}^{8}}=g_{4} &
\end{array}
$$

Example

σ_{2} :

Example
σ_{2} :

$$
g_{1}^{\sigma_{2}}=g_{1}
$$

Example
σ_{2} :

$$
\begin{aligned}
& g_{1}^{\sigma_{2}}=g_{1} \\
& g_{2}^{\sigma_{2}}=g_{3}
\end{aligned} \quad \Rightarrow g_{2}=g_{3}
$$

Example
σ_{2} :

$$
\begin{array}{ll}
g_{1}^{\sigma_{2}}=g_{1} & \\
g_{2}^{\sigma_{2}}=g_{3} & \Rightarrow g_{2}=g_{3} \\
g_{3}^{\sigma_{2}}=g_{3} g_{2} g_{3}^{-1} & \Rightarrow g_{2}=g_{3}
\end{array}
$$

Example
σ_{2} :

$$
\begin{array}{ll}
g_{1}^{\sigma_{2}}=g_{1} & \\
g_{2}^{\sigma_{2}}=g_{3} & \Rightarrow g_{2}=g_{3} \\
g_{3}^{\sigma_{2}}=g_{3} g_{2} g_{3}^{-1} & \Rightarrow g_{2}=g_{3} \\
g_{4}^{\sigma_{2}}=g_{4} &
\end{array}
$$

Example

$\sigma_{3}^{-1} \sigma_{1}^{-1} \sigma_{2} \sigma_{1} \sigma_{3}$:

Example

$\sigma_{3}^{-1} \sigma_{1}^{-1} \sigma_{2} \sigma_{1} \sigma_{3}$:

$$
g_{1}^{\sigma_{3}^{-1} \sigma_{1}^{-1} \sigma_{2} \sigma_{1} \sigma_{3}}=g_{2}^{-1} g_{4} g_{2} \quad \Rightarrow g_{4}=g_{2} g_{1} g_{2}^{-1}
$$

Example

$\sigma_{3}^{-1} \sigma_{1}^{-1} \sigma_{2} \sigma_{1} \sigma_{3}$

$$
\begin{array}{ll}
g_{1}^{\sigma_{3}^{-1} \sigma_{1}^{-1} \sigma_{2} \sigma_{1} \sigma_{3}}=g_{2}^{-1} g_{4} g_{2} & \Rightarrow g_{4}=g_{2} g_{1} g_{2}^{-1} \\
g_{2}^{\sigma_{3}^{-1} \sigma_{1}^{-1} \sigma_{2} \sigma_{1} \sigma_{3}}=g_{2}
\end{array}
$$

Example

$\sigma_{3}^{-1} \sigma_{1}^{-1} \sigma_{2} \sigma_{1} \sigma_{3}$

$$
\begin{aligned}
& g_{1}^{\sigma_{3}^{-1} \sigma_{1}^{-1} \sigma_{2} \sigma_{1} \sigma_{3}}=g_{2}^{-1} g_{4} g_{2} \quad \Rightarrow g_{4}=g_{2} g_{1} g_{2}^{-1} \\
& g_{2}^{\sigma_{3}^{-1} \sigma_{1}^{-1} \sigma_{2} \sigma_{1} \sigma_{3}}=g_{2} \\
& g_{3}^{\sigma_{3}^{-1} \sigma_{1}^{-1} \sigma_{2} \sigma_{1} \sigma_{3}}=g_{3}
\end{aligned}
$$

Example

$\sigma_{3}^{-1} \sigma_{1}^{-1} \sigma_{2} \sigma_{1} \sigma_{3}$:

$$
\begin{array}{ll}
g_{1}^{\sigma_{3}^{-1} \sigma_{1}^{-1} \sigma_{2} \sigma_{1} \sigma_{3}}=g_{2}^{-1} g_{4} g_{2} & \Rightarrow g_{4}=g_{2} g_{1} g_{2}^{-1} \\
g_{2}^{\sigma_{3}^{-1} \sigma_{1}^{-1} \sigma_{2} \sigma_{1} \sigma_{3}}=g_{2} & \\
g_{3}^{\sigma_{3}^{-1} \sigma_{1}^{-1} \sigma_{2} \sigma_{1} \sigma_{3}}=g_{3} & \\
g_{4}^{\sigma_{3}^{-1} \sigma_{1}^{-1} \sigma_{2} \sigma_{1} \sigma_{3}}=g_{4} g_{2} g_{1} g_{2}^{-1} g_{4}^{-1} & \Rightarrow g_{4}=g_{2} g_{1} g_{2}^{-1}
\end{array}
$$

Geometric basis

$\overline{\mathcal{C}}=\mathcal{C}_{0} \cup \mathcal{C}_{1} \cup \ldots \cup \mathcal{C}_{r}, d_{i}=\operatorname{deg} \mathcal{C}_{i}$
\mathcal{C}_{0} transversal line.
$\mathbb{C}^{2}:=\mathbb{P}^{2} \backslash \mathcal{C}_{0}, \mathcal{C}:=\overline{\mathcal{C}} \cap \mathbb{C}^{2}$
$\pi: \mathbb{C}^{2} \backslash \mathcal{C} \rightarrow \mathbb{P}^{1} \backslash Z_{n}$
\mathbb{D} a big enough disk containing Z_{n}

Definition

Geometric basis:

$$
\gamma_{n} \gamma_{n-1} \cdots \gamma_{1}=\partial \mathbb{D}
$$

Braid Monodromy Representation

Definition

Consider the braid monodromy action:

$$
\rho: \pi_{1}\left(\mathbb{D} \backslash Z_{n}, z_{0}\right) \longrightarrow \operatorname{Diff}^{+}\left(F_{z_{0}}\right) \cong \mathbb{B}_{d}
$$

Definition

Consider the braid monodromy action:

$$
\rho: \pi_{1}\left(\mathbb{D} \backslash Z_{n}, z_{0}\right) \longrightarrow \operatorname{Diff}^{+}\left(F_{z_{0}}\right) \cong \mathbb{B}_{d}
$$

$\Gamma:=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ geometric basis of $\pi_{1}\left(\mathbb{D} \backslash Z_{n}, z_{0}\right)$.

Definition

Consider the braid monodromy action:

$$
\rho: \pi_{1}\left(\mathbb{D} \backslash Z_{n}, z_{0}\right) \longrightarrow \operatorname{Diff}^{+}\left(F_{z_{0}}\right) \cong \mathbb{B}_{d}
$$

$\Gamma:=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ geometric basis of $\pi_{1}\left(\mathbb{D} \backslash Z_{n}, z_{0}\right)$.

$$
\left(\rho \gamma_{1}, \ldots, \rho \gamma_{n}\right) \in \mathbb{B}_{d}^{n}
$$

is the Braid Monodromy Representation of \mathcal{C} relative to $\left(\pi, \Gamma, z_{0}\right)$.

Braid Monodromy Representation

Remark

■ $\rho\left(\gamma_{n}\right) \rho\left(\gamma_{n-1}\right) \cdots \rho\left(\gamma_{2}\right) \rho\left(\gamma_{1}\right)=\Delta_{d}^{2}=\left(\sigma_{1} \cdots \sigma_{d-1}\right)^{d}$. Braid Monodromy Factorization.

Remark

■ $\rho\left(\gamma_{n}\right) \rho\left(\gamma_{n-1}\right) \cdots \rho\left(\gamma_{2}\right) \rho\left(\gamma_{1}\right)=\Delta_{d}^{2}=\left(\sigma_{1} \cdots \sigma_{d-1}\right)^{d}$. Braid Monodromy Factorization.
$■$ Choice of base point, choice of section $\left(\mathbb{B}_{d}\right)$.

Remark

■ $\rho\left(\gamma_{n}\right) \rho\left(\gamma_{n-1}\right) \cdots \rho\left(\gamma_{2}\right) \rho\left(\gamma_{1}\right)=\Delta_{d}^{2}=\left(\sigma_{1} \cdots \sigma_{d-1}\right)^{d}$. Braid Monodromy Factorization.
■ Choice of base point, choice of section $\left(\mathbb{B}_{d}\right)$.

$$
\beta \cdot\left(\beta_{1}, \ldots, \beta_{n}\right)=\left(\beta \beta_{1} \beta^{-1}, \ldots, \beta \beta_{n} \beta^{-1}\right)
$$

Remark

■ $\rho\left(\gamma_{n}\right) \rho\left(\gamma_{n-1}\right) \cdots \rho\left(\gamma_{2}\right) \rho\left(\gamma_{1}\right)=\Delta_{d}^{2}=\left(\sigma_{1} \cdots \sigma_{d-1}\right)^{d}$. Braid Monodromy Factorization.

■ Choice of base point, choice of section $\left(\mathbb{B}_{d}\right)$.

$$
\beta \cdot\left(\beta_{1}, \ldots, \beta_{n}\right)=\left(\beta \beta_{1} \beta^{-1}, \ldots, \beta \beta_{n} \beta^{-1}\right)
$$

- Choice of different geometric bases $\left(\mathbb{B}_{n}\right)$.

Remark

■ $\rho\left(\gamma_{n}\right) \rho\left(\gamma_{n-1}\right) \cdots \rho\left(\gamma_{2}\right) \rho\left(\gamma_{1}\right)=\Delta_{d}^{2}=\left(\sigma_{1} \cdots \sigma_{d-1}\right)^{d}$. Braid Monodromy Factorization.
■ Choice of base point, choice of section $\left(\mathbb{B}_{d}\right)$.

$$
\beta \cdot\left(\beta_{1}, \ldots, \beta_{n}\right)=\left(\beta \beta_{1} \beta^{-1}, \ldots, \beta \beta_{n} \beta^{-1}\right)
$$

- Choice of different geometric bases $\left(\mathbb{B}_{n}\right)$.

$$
\left(\beta_{1}, \ldots, \beta_{i}, \beta_{i+1}, \ldots, \beta_{n}\right) \cdot \sigma_{i}=\left(\beta_{1}, \ldots, \beta_{i}^{-1} \beta_{i+1} \beta_{i}, \beta_{i}, \ldots, \beta_{n}\right)
$$

Remark

■ $\rho\left(\gamma_{n}\right) \rho\left(\gamma_{n-1}\right) \cdots \rho\left(\gamma_{2}\right) \rho\left(\gamma_{1}\right)=\Delta_{d}^{2}=\left(\sigma_{1} \cdots \sigma_{d-1}\right)^{d}$. Braid Monodromy Factorization.
■ Choice of base point, choice of section $\left(\mathbb{B}_{d}\right)$.

$$
\beta \cdot\left(\beta_{1}, \ldots, \beta_{n}\right)=\left(\beta \beta_{1} \beta^{-1}, \ldots, \beta \beta_{n} \beta^{-1}\right)
$$

- Choice of different geometric bases $\left(\mathbb{B}_{n}\right)$.

$$
\left(\beta_{1}, \ldots, \beta_{i}, \beta_{i+1}, \ldots, \beta_{n}\right) \cdot \sigma_{i}=\left(\beta_{1}, \ldots, \beta_{i}^{-1} \beta_{i+1} \beta_{i}, \beta_{i}, \ldots, \beta_{n}\right)
$$

■ Both actions commute $\left(\mathbb{B}_{n} \times \mathbb{B}_{d}\right)$. Hurwitz Moves.

Theorem

$$
\left\{\left(\Gamma, z_{0}\right)\right\} \leftrightarrow\{\text { Hurwitz class }\}
$$

Questions

■ Which (positive) factorizations are realizable in the algebraic category?

- All theoretical factorizations of a smooth curve are Hurwitz equivalent (Ben Itzak-Teicher), but are there theoretical factorizations of a smooth curve that are not realizable by a smooth curve?

Theorem (Kulikov-Teicher,Carmona)

Braid monodromy class of \mathcal{C} fully determines the topology $\left(\mathbb{P}^{2}, \mathcal{C}\right)$.

Theorem

$$
\left\{\left(\Gamma, z_{0}\right)\right\} \leftrightarrow\{\text { Hurwitz class }\}
$$

Questions

■ Which (positive) factorizations are realizable in the algebraic category?

- All theoretical factorizations of a smooth curve are Hurwitz equivalent (Ben Itzak-Teicher), but are there theoretical factorizations of a smooth curve that are not realizable by a smooth curve?

Theorem (Kulikov-Teicher,Carmona)

Braid monodromy class of \mathcal{C} fully determines the topology $\left(\mathbb{P}^{2}, \mathcal{C}\right)$.
The converse is not known in general. There are two partial converses:

Theorem

$$
\left\{\left(\Gamma, z_{0}\right)\right\} \leftrightarrow\{\text { Hurwitz class }\}
$$

Questions

■ Which (positive) factorizations are realizable in the algebraic category?

- All theoretical factorizations of a smooth curve are Hurwitz equivalent (Ben Itzak-Teicher), but are there theoretical factorizations of a smooth curve that are not realizable by a smooth curve?

Theorem (Kulikov-Teicher,Carmona)

Braid monodromy class of \mathcal{C} fully determines the topology $\left(\mathbb{P}^{2}, \mathcal{C}\right)$.
The converse is not known in general. There are two partial converses:

Theorem (Carmona)

The pair $\left(\mathbb{P}^{2}, \mathcal{C}\right)$ fully determines the braid monodromy class of \mathcal{C} with respect to a projection.

Theorem

$$
\left\{\left(\Gamma, z_{0}\right)\right\} \leftrightarrow\{\text { Hurwitz class }\}
$$

Questions

- Which (positive) factorizations are realizable in the algebraic category?

■ All theoretical factorizations of a smooth curve are Hurwitz equivalent (Ben Itzak-Teicher), but are there theoretical factorizations of a smooth curve that are not realizable by a smooth curve?

Theorem (Kulikov-Teicher,Carmona)

Braid monodromy class of \mathcal{C} fully determines the topology $\left(\mathbb{P}^{2}, \mathcal{C}\right)$.
The converse is not known in general. There are two partial converses:

Theorem (Carmona)

The pair $\left(\mathbb{P}^{2}, \mathcal{C}\right)$ fully determines the braid monodromy class of \mathcal{C} with respect to a projection.

Theorem (Artal,-,-Carmona)

The triple $\left(\mathbb{P}^{2}, \mathcal{C}, L\right)$ fully determines the braid monodromy class of \mathcal{C}.

The homotopy type of $\left(\mathbb{C}^{2}, \mathcal{C}\right)$

$\overline{\mathcal{C}}=\mathcal{C}_{0} \cup \mathcal{C}_{1} \cup \ldots \cup \mathcal{C}_{r}, d_{i}=\operatorname{deg} \mathcal{C}_{i}$
\mathcal{C}_{0} transversal line.
$\mathbb{C}^{2}:=\mathbb{P}^{2} \backslash \mathcal{C}_{0}, \mathcal{C}:=\overline{\mathcal{C}} \cap \mathbb{C}^{2}$
$\pi: \mathbb{C}^{2} \backslash \mathcal{C} \rightarrow \mathbb{P}^{1} \backslash Z_{n}$ generic.
\mathbb{D} a big enough disk containing Z_{n}

The homotopy type of $\left(\mathbb{C}^{2}, \mathcal{C}\right)$

$$
\left(g_{i_{k}} \cdots g_{i_{1}}\right)^{\rho \gamma_{i}}=\left(g_{i_{k}} \cdots g_{i_{1}}\right)
$$

Remark

$$
\left\langle g_{1}, \ldots, g_{d-1}: g_{i}^{\gamma_{j}}=\gamma_{j}^{-1} g_{i} \gamma_{j}, i=1, \ldots, d-1, j=1, \ldots, i_{k(i)}-1\right\rangle
$$

is a presentation of $\pi_{1}\left(\mathbb{C}^{2} \backslash \mathcal{C}\right)$.

The homotopy type of $\left(\mathbb{C}^{2}, \mathcal{C}\right)$

Theorem (Libgober)

The 2-dimensional complex associated with the Zariski presentation has the homotopy type of $\mathbb{C}^{2} \backslash \mathcal{C}$.

Proof.

Lemma

The 2-dimensional complex associated with the Wirtinger presentation of a link $K \subset \mathbb{S}^{3}$ has the homotopy type of $K \backslash \mathbb{S}^{3}$.

Lemma

The 2-dimensional complex associated with the Artin presentation of a link $K \subset \mathbb{S}^{3}$ has the homotopy type of $K \backslash \mathbb{S}^{3}$.

The homotopy type of $\left(\mathbb{C}^{2}, \mathcal{C}\right)$

Example

The homotopy type of $\left(\mathbb{C}^{2}, \mathcal{C}\right)$

Example

$$
\begin{array}{ll}
& {\left[\left(g_{2} g_{1}\right)^{4}, g_{1}\right]=1,} \\
g_{2}=g_{3} \\
\pi_{1}\left(\mathbb{C}^{2} \backslash \mathcal{C}\right)=\left\langle g_{1}, g_{2}, g_{3}, g_{4}:\right. & \left.g_{4}=g_{2} g_{1} g_{2}^{-1}, \quad\right\rangle \equiv \\
& g_{2}=g_{3}, \\
& g_{4}=g_{2} g_{1} g_{2}^{-1}
\end{array}
$$

The homotopy type of $\left(\mathbb{C}^{2}, \mathcal{C}\right)$

Example

$$
\begin{aligned}
& {\left[\left(g_{2} g_{1}\right)^{4}, g_{1}\right]=1, } \\
& g_{2}=g_{3}, \\
& \pi_{1}\left(\mathbb{C}^{2} \backslash \mathcal{C}\right)=\left\langle g_{1}, g_{2}, g_{3}, g_{4}:\right.\left.g_{4}=g_{2} g_{1} g_{2}^{-1}, \quad\right\rangle \equiv \\
& g_{2}=g_{3}, \\
& g_{4}=g_{2} g_{1} g_{2}^{-1} \\
& \equiv\left\langle g_{1}, g_{2}:\left[\left(g_{2} g_{1}\right)^{4}, g_{1}\right]=1,1=1,1=1\right\rangle
\end{aligned}
$$

The homotopy type of $\left(\mathbb{C}^{2}, \mathcal{C}\right)$

Example

$$
\begin{aligned}
& {\left[\left(g_{2} g_{1}\right)^{4}, g_{1}\right]=1, } \\
& g_{2}=g_{3}, \\
& \pi_{1}\left(\mathbb{C}^{2} \backslash \mathcal{C}\right)=\left\langle g_{1}, g_{2}, g_{3}, g_{4}: g_{2} g_{1} g_{2}^{-1}, \quad\right\rangle \equiv \\
& g_{2}=g_{3} \\
& g_{4}=g_{2} g_{1} g_{2}^{-1} \\
& \equiv\left\langle g_{1}, g_{2}:\left[\left(g_{2} g_{1}\right)^{4}, g_{1}\right]=1,1=1,1=1\right\rangle
\end{aligned}
$$

Hence $\mathbb{C}^{2} \backslash \mathcal{C} \stackrel{\text { h.t. }}{=}\left(\mathbb{S}^{3} \backslash K_{2,8}\right) \vee \mathbb{S}^{2} \vee \mathbb{S}^{2}$.

The homotopy type of $\left(\mathbb{C}^{2}, \mathcal{C}\right)$

Questions

1 Does the fundamental group and the Euler characteristic determine the homotopy structure of complements to affine curves?

The homotopy type of $\left(\mathbb{C}^{2}, \mathcal{C}\right)$

Questions

1 Does the fundamental group and the Euler characteristic determine the homotopy structure of complements to affine curves?
2. Not true for general 2-dimensional complexes (Dunwoody).

Braid Action

