# This file depends on the curves we are studying # We consider a projection and we choose representatives # of the braid monodromies such that the braids are grouped together # (defining a partition in the list of the monodromy) # by their conjugation class (which is a topological invariant # of the projection). In order to verify if two braid monodromies # are equivalent, it is enough to consider only Hurwitz moves # which respect this partition. We provide generators of # this group, as a subgroup of the braid group that acts on the monodromy. kj1:=function(lista) return prodtrenzas([1,1],lista); end; kj2:=function(lista) return prodtrenzas([1,2,2,1],lista); end; kj3:=function(lista) return prodtrenzas([2,2],lista); end; kj4:=function(lista) return prodtrenzas([1,2,3,3,2,1],lista); end; kj5:=function(lista) return prodtrenzas([2,3,3,2],lista); end; kj6:=function(lista) return prodtrenzas([3,3],lista); end; kj7:=function(lista) return prodtrenzas([1,2,3,4,4,3,2,1],lista); end; kj8:=function(lista) return prodtrenzas([2,3,4,4,3,2],lista); end; kj9:=function(lista) return prodtrenzas([3,4,4,3],lista); end; kj10:=function(lista) return prodtrenzas([4,4],lista); end; generadores:=[kj1,kj2,kj3,kj4,kj5,kj6,kj7,kj8,kj9,kj10];;