# **Prime Numbers**

#### Pf. Euclid of Alexandria euclid@alexandria.edu

Alexandria University

March 11, 2022

イロト イヨト イヨト イヨト

臣

## Table of contents

- Settings and Motivation
  - What are Prime Numbers
  - Interesting Questions

∢ ≣⇒

## Table of contents

### Settings and Motivation

- What are Prime Numbers
- Interesting Questions

## 2 First Properties

- Pascal Triangle
- The Euler Zeta Function

## Table of contents

### Settings and Motivation

- What are Prime Numbers
- Interesting Questions

## 2 First Properties

- Pascal Triangle
- The Euler Zeta Function

## 3 Main Result

- There Is No Largest Prime Number
- Distribution of Prime Numbers

## Table of contents

### Settings and Motivation

- What are Prime Numbers
- Interesting Questions

## 2 First Properties

- Pascal Triangle
- The Euler Zeta Function

### 3 Main Result

- There Is No Largest Prime Number
- Distribution of Prime Numbers

## Other Results

- Sieve of Eratosthenes
- Goldbach Conjecture

First Properties Main Result Other Results What are Prime Numbers Interesting Questions

# Division

### Definition

An integer number  $d \in \mathbb{Z}$  divides another integer number  $D \in \mathbb{Z}$  if there exists  $k \in \mathbb{Z}$  such that D = dk.

イロト イヨト イヨト イヨト

臣

First Properties Main Result Other Results What are Prime Numbers Interesting Questions

# Division

### Definition

An integer number  $d \in \mathbb{Z}$  divides another integer number  $D \in \mathbb{Z}$  if there exists  $k \in \mathbb{Z}$  such that D = dk.

In this case we write d|D. We also refer to d as a divisor of D.

First Properties Main Result Other Results What are Prime Numbers Interesting Questions

# Prime numbers

### Definition

A number  $p \in \mathbb{Z}$  is called prime if  $p \neq \pm 1$  and  $\{\pm 1, \pm p\}$  are its only divisors.

イロト イヨト イヨト イヨト

臣

First Properties Main Result Other Results What are Prime Numbers Interesting Questions

## Interesting Questions

• How many prime numbers are there?

イロト イヨト イヨト イヨト

臣

Main Result

Other Results

What are Prime Numbers Interesting Questions

# Interesting Questions

- How many prime numbers are there?
- Do they have interesting properties?

Image: A matrix and a matrix

Main Result

Other Results

What are Prime Numbers Interesting Questions

## Interesting Questions

- How many prime numbers are there?
- Do they have interesting properties?
- How easy are they to detect?

• • • • • • • • •

Main Result

Other Results

What are Prime Numbers Interesting Questions

# Interesting Questions

- How many prime numbers are there?
- Do they have interesting properties?
- How easy are they to detect?
- Are they constructible?

irst Properties What are Prime Numbers Main Result Interesting Questions Other Results

# Interesting Questions

- How many prime numbers are there?
- Do they have interesting properties?
- How easy are they to detect?
- Are they constructible?
- Can you make money out of them?

Pascal Triangle The Euler Zeta Function

# Pascal Triangle

#### Theorem

If p is a prime number, then  $\binom{p}{n}$  is a multiple of p.

イロト イヨト イヨト イヨト

Pascal Triangle The Euler Zeta Function

# Pascal Triangle

#### Theorem

If p is a prime number, then  $\binom{p}{n}$  is a multiple of p.

### Proof.

イロト イヨト イヨト イヨト

Pascal Triangle The Euler Zeta Function

# Pascal Triangle

#### Theorem

If p is a prime number, then  $\binom{p}{n}$  is a multiple of p.



イロト イヨト イヨト イヨト

Pascal Triangle The Euler Zeta Function

# Pascal Triangle

#### Theorem

If p is a prime number, then  $\binom{p}{n}$  is a multiple of p.

#### Proof.

$$\binom{p}{n} = \frac{p(p-1)\dots(p-n+1)}{n(n-1)\dots 2}.$$

イロト イヨト イヨト イヨト

Pascal Triangle The Euler Zeta Function

# Pascal Triangle

#### Theorem

If p is a prime number, then  $\binom{p}{n}$  is a multiple of p.

#### Proof.

$$\binom{p}{n} = \frac{p(p-1)\dots(p-n+1)}{n(n-1)\dots 2}.$$

The result follows since p is prime and hence not divisible by any factor in the denominator.

Image: A math a math

Pascal Triangle The Euler Zeta Function

## The Euler Zeta Function

Pf. Euclid Prime Numbers

<ロ> <同> <同> < 同> < 同>

Pascal Triangle The Euler Zeta Function

## The Euler Zeta Function

#### Definition

The Euler Zeta Function is defined as follows

$$heta(s) = 1 + rac{1}{2^s} + rac{1}{3^s} + rac{1}{4^s} + rac{1}{5^s} + \dots$$

イロト イヨト イヨト イヨト

臣

Pascal Triangle The Euler Zeta Function

## The Euler Zeta Function

#### Definition

The Euler Zeta Function is defined as follows

$$heta(s) = 1 + rac{1}{2^s} + rac{1}{3^s} + rac{1}{4^s} + rac{1}{5^s} + \dots$$

Remark

$$\theta(s) = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \frac{1}{5^s} + \dots$$

Pascal Triangle The Euler Zeta Function

## The Euler Zeta Function

#### Definition

The Euler Zeta Function is defined as follows

$$heta(s) = 1 + rac{1}{2^s} + rac{1}{3^s} + rac{1}{4^s} + rac{1}{5^s} + \dots$$

Remark

$$\theta(s) = 1 + \frac{1}{2^{s}} + \frac{1}{3^{s}} + \frac{1}{4^{s}} + \frac{1}{5^{s}} + \dots$$

$$\frac{1}{2^{s}}\theta(s) = \frac{1}{2^{s}} + \frac{1}{4^{s}} + \dots$$

Pascal Triangle The Euler Zeta Function

## The Euler Zeta Function

#### Definition

The Euler Zeta Function is defined as follows

$$\theta(s) = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \frac{1}{5^s} + \dots$$

Remark

$$\begin{array}{rcl} \theta(s) & = & 1 & + & \frac{1}{2^{s}} & + & \frac{1}{3^{s}} & + & \frac{1}{4^{s}} & + & \frac{1}{5^{s}} & + \dots \\ \\ \frac{1}{2^{s}}\theta(s) & = & & \frac{1}{2^{s}} & + & & \frac{1}{4^{s}} & + & & +\dots \\ & & \left(1 - \frac{1}{2^{s}}\right)\theta(s) = 1 + \frac{1}{3^{s}} + \frac{1}{5^{s}} + \frac{1}{7^{s}} + \frac{1}{9^{s}} + \dots \end{array}$$

**Pascal Triangle** The Euler Zeta Function

## The Euler Zeta Function

1

#### Definition

The Euler Zeta Function is defined as follows

$$\theta(s) = 1 + rac{1}{2^s} + rac{1}{3^s} + rac{1}{4^s} + rac{1}{5^s} + \dots$$

Remark

$$\begin{aligned} \theta(s) &= 1 + \frac{1}{2^{s}} + \frac{1}{3^{s}} + \frac{1}{4^{s}} + \frac{1}{5^{s}} + \dots \\ \frac{1}{2^{s}}\theta(s) &= \frac{1}{2^{s}} + \frac{1}{4^{s}} + \dots \\ \left(1 - \frac{1}{2^{s}}\right)\left(1 - \frac{1}{3^{s}}\right)\theta(s) &= 1 + \frac{1}{5^{s}} + \frac{1}{7^{s}} + \frac{1}{11^{s}} + \frac{1}{13^{s}} + \frac{1}{17^{s}} + \dots \end{aligned}$$

Pascal Triangle The Euler Zeta Function

## The Euler Zeta Function

#### Definition

The Euler Zeta Function is defined as follows

$$\theta(s) = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \frac{1}{5^s} + \dots$$

Remark

$$\theta(s) = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \frac{1}{5^s} + \dots$$

$$\frac{1}{2^s}\theta(s) = \frac{1}{2^s} + \frac{1}{4^s} + \dots + \dots$$
$$\prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)\theta(s) = 1$$

イロト イヨト イヨト イヨト

э

Pascal Triangle The Euler Zeta Function

## The Euler Zeta Function

#### Definition

The Euler Zeta Function is defined as follows

$$\theta(s) = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \frac{1}{5^s} + \dots$$

Euler Sieve Property

$$heta(s) = \prod_{p \text{ prime}} \left( rac{1}{1-p^{-s}} 
ight)$$

Image: A mathematical states and a mathem

→ < Ξ →</p>

臣

There Is No Largest Prime Number Distribution of Prime Numbers

イロト イヨト イヨト イヨト

# There Is No Largest Prime Number

The proof uses reductio ad absurdum.

#### Theorem (\_, 300 BC)

There are infinitely many prime numbers.

There Is No Largest Prime Number Distribution of Prime Numbers

・ロト ・回ト ・ヨト

# There Is No Largest Prime Number

The proof uses reductio ad absurdum.

#### Theorem (\_, 300 BC)

There are infinitely many prime numbers.

- Suppose there were finitely many prime numbers.
- ② Consider p the largest prime number.
- Let q = p! be the product of the first p numbers.
- Then q + 1 is not divisible by any of them.
- But q + 1 is greater than p, thus divisible by some prime number . . .

There Is No Largest Prime Number Distribution of Prime Numbers

・ロト ・回ト ・ヨト

# There Is No Largest Prime Number

The proof uses *reductio ad absurdum*.

### Theorem (\_, 300 BC)

There are infinitely many prime numbers.

### Proof.

Suppose there were finitely many prime numbers.

- Onsider p the largest prime number.
- I Let q = p! be the product of the first p numbers.
- Then q + 1 is not divisible by any of them.
- But q + 1 is greater than p, thus divisible by some prime number . . .

There Is No Largest Prime Number Distribution of Prime Numbers

# There Is No Largest Prime Number

The proof uses reductio ad absurdum.

### Theorem (\_, 300 BC)

There are infinitely many prime numbers.

- Suppose there were finitely many prime numbers.
- Onsider p the largest prime number.
- I Let q = p! be the product of the first p numbers.
- Then q + 1 is not divisible by any of them.
- But q + 1 is greater than p, thus divisible by some prime number . . .

There Is No Largest Prime Number Distribution of Prime Numbers

# There Is No Largest Prime Number

The proof uses *reductio ad absurdum*.

### Theorem (\_, 300 BC)

There are infinitely many prime numbers.

- Suppose there were finitely many prime numbers.
- 2 Consider *p* the largest prime number.
- Let q = p! be the product of the first p numbers.
- Then q + 1 is not divisible by any of them.
- But q + 1 is greater than p, thus divisible by some prime number ...

There Is No Largest Prime Number Distribution of Prime Numbers

# There Is No Largest Prime Number

The proof uses reductio ad absurdum.

### Theorem (\_, 300 BC)

There are infinitely many prime numbers.

- Suppose there were finitely many prime numbers.
- 2 Consider *p* the largest prime number.
- Let q = p! be the product of the first p numbers.
- Then q + 1 is not divisible by any of them.
  - But q + 1 is greater than p, thus divisible by some prime number ...

There Is No Largest Prime Number Distribution of Prime Numbers

# There Is No Largest Prime Number

The proof uses *reductio ad absurdum*.

### Theorem (\_, 300 BC)

There are infinitely many prime numbers.

- Suppose there were finitely many prime numbers.
- 2 Consider *p* the largest prime number.
- Let q = p! be the product of the first p numbers.
- Then q + 1 is not divisible by any of them.
- But q + 1 is greater than p, thus divisible by some prime number ... not in the first p numbers!!!

There Is No Largest Prime Number Distribution of Prime Numbers

# There Is No Largest Prime Number

The proof uses *reductio ad absurdum*.

### Theorem (\_, 300 BC)

There are infinitely many prime numbers.

- Suppose there were finitely many prime numbers.
- 2 Consider *p* the largest prime number.
- Let q = p! be the product of the first p numbers.
- Then q + 1 is not divisible by any of them.
- But q + 1 is greater than p, thus divisible by some prime number ... not in the first p numbers!!!

There Is No Largest Prime Number Distribution of Prime Numbers

# There Is No Largest Prime Number

The proof uses *reductio ad absurdum*.

### Theorem (\_, 300 BC)

There are infinitely many prime numbers.

- Suppose there were finitely many prime numbers.
- 2 Consider *p* the largest prime number.
- Let q = p! be the product of the first p numbers.
- Then q + 1 is not divisible by any of them.
- But q + 1 is greater than p, thus divisible by some prime number ... not in the first p numbers!!!

There Is No Largest Prime Number Distribution of Prime Numbers

イロト イヨト イヨト イヨト

臣

## Prime Number Theorem

Let  $\pi(n) := \#\{\text{prime numbers smaller than } n\}.$ 

There Is No Largest Prime Number Distribution of Prime Numbers

イロト イヨト イヨト イヨト

## Prime Number Theorem

Let  $\pi(n) := \#\{\text{prime numbers smaller than } n\}$ . For example  $\pi(10) = 4$ ,  $\pi(100) = 25$ ,...

There Is No Largest Prime Number Distribution of Prime Numbers

## Prime Number Theorem

Let  $\pi(n) := \#\{\text{prime numbers smaller than } n\}$ . For example  $\pi(10) = 4$ ,  $\pi(100) = 25$ ,...

#### Theorem (Prime Number Theorem)

$$\pi(n) \sim \frac{n}{\log(n)}$$

There Is No Largest Prime Number Distribution of Prime Numbers

## Prime Number Theorem

Let  $\pi(n) := \#\{\text{prime numbers smaller than } n\}$ . For example  $\pi(10) = 4$ ,  $\pi(100) = 25$ ,...

#### Theorem (Prime Number Theorem)

$$\pi(n) \sim \frac{n}{\log(n)}$$



Sieve of Eratosthenes Goldbach Conjecture

## Sieve of Eratosthenes, 200 BC

| 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10  |
|----|----|----|----|----|----|----|----|----|-----|
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20  |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30  |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40  |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50  |
| 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60  |
| 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70  |
| 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80  |
| 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90  |
| 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |

イロト イヨト イヨト イヨト

Sieve of Eratosthenes Goldbach Conjecture

## Sieve of Eratosthenes, 200 BC

| X  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10  |
|----|----|----|----|----|----|----|----|----|-----|
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20  |
| 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30  |
| 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40  |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50  |
| 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60  |
| 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70  |
| 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80  |
| 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90  |
| 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |

イロト イヨト イヨト イヨト

Sieve of Eratosthenes Goldbach Conjecture

# Sieve of Eratosthenes, 200 BC

| X  | 2            | 3  | Á          | 5  | ø           | 7  | ø          | 9  | 10         |
|----|--------------|----|------------|----|-------------|----|------------|----|------------|
| 11 | 12           | 13 | 14         | 15 | 16          | 17 | 18         | 19 | 20         |
| 21 | 22           | 23 | 24         | 25 | 26          | 27 | 28         | 29 | ,30        |
| 31 | ,32          | 33 | ,34        | 35 | ,36         | 37 | ,38        | 39 | <i>4</i> 0 |
| 41 | <i>4</i> 2   | 43 | <i>4</i> 4 | 45 | <i>4</i> 6  | 47 | <i>4</i> 8 | 49 | ,50        |
| 51 | , <b>5</b> 2 | 53 | ,54        | 55 | <i>,</i> 56 | 57 | <i>5</i> 8 | 59 | ,60        |
| 61 | <i>6</i> 2   | 63 | ,64        | 65 | <i>,</i> 66 | 67 | <i>6</i> 8 | 69 | 70         |
| 71 | 72           | 73 | 74         | 75 | 76          | 77 | 78         | 79 | 80         |
| 81 | <i>,</i> 82  | 83 | ,84        | 85 | <b>,8</b> 6 | 87 | <u>88</u>  | 89 | 90         |
| 91 | <b>9</b> 2   | 93 | 94         | 95 | 96          | 97 | 98         | 99 | 100        |

イロト イヨト イヨト イヨト

Sieve of Eratosthenes Goldbach Conjecture

## Sieve of Eratosthenes, 200 BC

| X          | 2            | 3          | Á          | 5          | ø           | 7   | ø          | ø           | 10          |
|------------|--------------|------------|------------|------------|-------------|-----|------------|-------------|-------------|
| 11         | 12           | 13         | 14         | 15         | 16          | 17  | 18         | 19          | 20          |
| 21         | 22           | 23         | 24         | 25         | 26          | 27  | 28         | 29          | ,30         |
| 31         | ,32          | ,33        | ,34        | 35         | ,36         | 37  | ,38        | ,39         | <i>4</i> 0  |
| 41         | <i>4</i> 2   | 43         | <i>4</i> 4 | <i>4</i> 5 | <i>4</i> 6  | 47  | <i>4</i> 8 | 49          | ,50         |
| <i>5</i> 1 | , <b>5</b> 2 | 53         | ,54        | 55         | <i>,</i> 56 | ,57 | <i>5</i> 8 | 59          | <i>,</i> 60 |
| 61         | <i>6</i> 2   | <i>6</i> 3 | ,64        | 65         | <i>,</i> 66 | 67  | <i>6</i> 8 | <i>,</i> 69 | 70          |
| 71         | 72           | 73         | 74         | 75         | 76          | 77  | 78         | 79          | <b>8</b> 0  |
| <b>8</b> 1 | <i>,</i> 82  | 83         | ,84        | 85         | <b>,8</b> 6 | 87  | <b>8</b> 8 | 89          | 90          |
| 91         | <b>9</b> 2   | 93         | 94         | 95         | 96          | 97  | 98         | 99          | 100         |

イロト イヨト イヨト イヨト

Sieve of Eratosthenes Goldbach Conjecture

# Sieve of Eratosthenes, 200 BC

| X           | 2            | 3          | Á          | 5            | ø          | 7   | ø          | ø   | 10          |
|-------------|--------------|------------|------------|--------------|------------|-----|------------|-----|-------------|
| 11          | 12           | 13         | 14         | 15           | 16         | 17  | 18         | 19  | 20          |
| 21          | 22           | 23         | 24         | ,25          | 26         | 27  | 28         | 29  | ,30         |
| 31          | ,32          | ,33        | ,34        | ,35          | ,36        | 37  | ,38        | ,39 | <i>4</i> 0  |
| 41          | <i>4</i> 2   | 43         | <i>4</i> 4 | <i>4</i> 5   | <i>4</i> 6 | 47  | <i>4</i> 8 | 49  | ,50         |
| <i>,</i> 51 | , <b>5</b> 2 | 53         | ,54        | , <b>5</b> 5 | <b>56</b>  | ,57 | <i>5</i> 8 | 59  | <i>,</i> 60 |
| 61          | ,62          | <i>6</i> 3 | ,64        | <i>,</i> 65  | <i>6</i> 6 | 67  | 68         | ,69 | 70          |
| 71          | 72           | 73         | 74         | <i>75</i>    | 76         | 77  | 78         | 79  | <b>8</b> 0  |
| 81          | <i>,</i> 82  | 83         | ,84        | ,85          | <b>8</b> 6 | 87  | 88         | 89  | 90          |
| 91          | <b>9</b> 2   | 93         | 94         | ,95          | 96         | 97  | 98         | 99  | 100         |

イロト イヨト イヨト イヨト

Sieve of Eratosthenes Goldbach Conjecture

## Sieve of Eratosthenes, 200 BC

| 1          | 2            | 3          | Á          | 5           | ø           | 7   | ø          | ø           | 10          |
|------------|--------------|------------|------------|-------------|-------------|-----|------------|-------------|-------------|
| 11         | 12           | 13         | 14         | 15          | 16          | 17  | 18         | 19          | 20          |
| 21         | 22           | 23         | 24         | ,25         | 26          | 27  | 28         | 29          | ,30         |
| 31         | ,32          | ,33        | ,34        | ,35         | ,36         | 37  | ,38        | ,39         | <i>4</i> 0  |
| 41         | <i>4</i> 2   | 43         | <i>4</i> 4 | <i>4</i> 5  | <i>4</i> 6  | 47  | <i>4</i> 8 | 49          | ,50         |
| <i>5</i> 1 | , <b>5</b> 2 | 53         | ,54        | ,55         | <i>,</i> 56 | ,57 | <i>5</i> 8 | 59          | <i>,</i> 60 |
| 61         | <i>6</i> 2   | <i>6</i> 3 | ,64        | <i>,</i> 65 | <i>,</i> 66 | 67  | <i>6</i> 8 | <i>,</i> 69 | 70          |
| 71         | 72           | 73         | 74         | 75          | 76          | И   | 78         | 79          | <b>8</b> 0  |
| <b>8</b> 1 | <i>,</i> 82  | 83         | ,84        | ,85         | <b>,8</b> 6 | 87  | <b>8</b> 8 | 89          | 90          |
| 91         | <b>9</b> 2   | 93         | <i>9</i> 4 | ,95         | 96          | 97  | 98         | 99          | 100         |

イロト イヨト イヨト イヨト

Sieve of Eratosthenes Goldbach Conjecture

# Sieve of Eratosthenes, 200 BC

| 1          | 2            | 3          | 4          | 5            | ø          | 7   | ø          | ø           | 10          |
|------------|--------------|------------|------------|--------------|------------|-----|------------|-------------|-------------|
| 11         | 12           | 13         | 14         | 15           | 16         | 17  | 18         | 19          | 20          |
| 21         | 22           | 23         | 24         | ,25          | 26         | 27  | 28         | 29          | ,3Ø         |
| 31         | ,32          | ,33        | ,34        | ,35          | ,36        | 37  | ,38        | ,39         | <i>4</i> 0  |
| 41         | <i>4</i> 2   | 43         | <i>4</i> 4 | <i>4</i> 5   | <i>4</i> 6 | 47  | <i>4</i> 8 | 49          | ,50         |
| <i>5</i> 1 | , <b>5</b> 2 | 53         | ,54        | , <b>5</b> 5 | <b>56</b>  | ,57 | <b>5</b> 8 | 59          | <i>,</i> 60 |
| 61         | <i>6</i> 2   | <i>6</i> 3 | ,64        | <i>,</i> 65  | <i>6</i> 6 | 67  | <i>6</i> 8 | <i>,</i> 69 | 70          |
| 71         | 72           | 73         | 74         | <i>75</i>    | 76         | И   | 78         | 79          | ,80         |
| <b>8</b> 1 | <i>,</i> 82  | 83         | ,84        | ,85          | <b>8</b> 6 | 87  | 88         | 89          | <b>9</b> 0  |
| 91         | <b>9</b> 2   | 93         | 94         | ,95          | 96         | 97  | 98         | 99          | 100         |

イロト イヨト イヨト イヨト

Sieve of Eratosthenes Goldbach Conjecture

# Sieve of Eratosthenes, 200 BC

| 1          | 2           | 3          | 4          | 5           | ø           | 7   | ø          | ø   | 10          |
|------------|-------------|------------|------------|-------------|-------------|-----|------------|-----|-------------|
| 11         | 12          | 13         | 14         | 15          | 16          | 17  | 18         | 19  | 20          |
| 21         | 22          | 23         | 24         | ,25         | 26          | 27  | 28         | 29  | ,30         |
| 31         | ,32         | ,33        | ,34        | ,35         | ,36         | 37  | ,38        | ,39 | <i>4</i> 0  |
| 41         | <i>4</i> 2  | 43         | <i>4</i> 4 | <i>4</i> 5  | <i>4</i> 6  | 47  | <i>4</i> 8 | 49  | ,50         |
| <i>5</i> 1 | ,52         | 53         | ,54        | ,55         | <i>,</i> 56 | ,57 | <i>5</i> 8 | 59  | <i>,</i> 60 |
| 61         | ,62         | <i>6</i> 3 | ,64        | <i>,</i> 65 | <i>6</i> 6  | 67  | 68         | ,69 | 70          |
| 71         | 72          | 73         | 74         | <i>75</i>   | 76          | И   | 78         | 79  | 80          |
| <b>8</b> 1 | <i>,</i> 82 | 83         | ,84        | ,85         | <b>8</b> 6  | 87  | 88         | 89  | 90          |
| 91         | <b>9</b> 2  | <u>9</u> 3 | 94         | 95          | 96          | 97  | 98         | 99  | 100         |

 $11^2 = 121 > 100$ 

イロト イヨト イヨト イヨト

臣

Sieve of Eratosthenes Goldbach Conjecture

# Sieve of Eratosthenes, 200 BC

| 1           | 2            | 3           | Á          | 5            | ø           | 7   | ø          | ø   | 10         |
|-------------|--------------|-------------|------------|--------------|-------------|-----|------------|-----|------------|
| 11          | 12           | 13          | 14         | 15           | 16          | 17  | 18         | 19  | 20         |
| 21          | 22           | 23          | 24         | ,25          | 26          | 27  | 28         | 29  | ,30        |
| 31          | ,32          | ,33         | ,34        | ,35          | ,36         | 37  | ,38        | ,39 | <i>4</i> 0 |
| 41          | <i>4</i> 2   | 43          | <i>4</i> 4 | <i>4</i> 5   | <i>4</i> 6  | 47  | <i>4</i> 8 | 49  | ,50        |
| <i>,</i> 51 | , <b>5</b> 2 | 53          | ,54        | , <b>5</b> 5 | <i>,</i> 56 | ,57 | <i>5</i> 8 | 59  | ,60        |
| 61          | <i>6</i> 2   | <i>,</i> 63 | ,64        | <i>,</i> 65  | <i>,</i> 66 | 67  | 68         | ,69 | 70         |
| 71          | 72           | 73          | 74         | <i>75</i>    | 76          | И   | 78         | 79  | 80         |
| 81          | <i>8</i> 2   | 83          | ,84        | ,85          | <b>,8</b> 6 | ,87 | 88         | 89  | 90         |
| 91          | 92           | 93          | <i>9</i> 4 | 95           | 96          | 97  | 98         | 99  | 100        |

 $11^2 = 121 > 100$ 

イロト イヨト イヨト イヨト

臣

Sieve of Eratosthenes Goldbach Conjecture

## Goldbach Conjecture

#### Goldbach, 1742

Every even integer greater than 2 can be expressed as the sum of two primes.

Sieve of Eratosthenes Goldbach Conjecture

## Local video file



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

Sieve of Eratosthenes Goldbach Conjecture

## External player



イロト イヨト イヨト イヨト

臣

Sieve of Eratosthenes Goldbach Conjecture

# External player (href)



https://www.youtube.com/watch?v=lqKSXk5Xwg8

・ロト ・回ト ・ヨト ・ヨト

Sieve of Eratosthenes Goldbach Conjecture

# remote (YouTube player)

#### https://www.youtube.com/watch?v=lqKSXk5Xwg8

イロト イヨト イヨト イヨト