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What are Prime Numbers
Interesting Questions

Division

Definition

An integer number d ∈ Z divides another integer number D ∈ Z if
there exists k ∈ Z such that D = dk.

In this case we write d |D. We also refer to d as a divisor of D.
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Interesting Questions

Prime numbers

Definition

A number p ∈ Z is called prime if p 6= ±1 and {±1,±p} are its
only divisors.
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Interesting Questions

How many prime numbers are there?

Do they have interesting properties?

How easy are they to detect?

Are they constructible?

Can you make money out of them?
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Pascal Triangle
The Euler Zeta Function

Pascal Triangle

Theorem

If p is a prime number, then
(p
n

)
is a multiple of p.

Proof.

(
p

n

)

=
p(p − 1) . . . (p − n + 1)

n(n − 1) . . . 2
.

The result follows since p is prime and hence not divisible by any
factor in the denominator.
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The Euler Zeta Function

The Euler Zeta Function

Definition

The Euler Zeta Function is defined as follows

θ(s) = 1 +
1

2s
+

1

3s
+

1

4s
+

1

5s
+ . . .
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The Euler Zeta Function

Definition

The Euler Zeta Function is defined as follows

θ(s) = 1 +
1

2s
+

1

3s
+

1

4s
+

1

5s
+ . . .

Remark

θ(s) = 1 + 1
2s + 1

3s + 1
4s + 1

5s + . . .

1
2s θ(s) = 1

2s + 1
4s + + . . .
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The Euler Zeta Function is defined as follows
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Definition

The Euler Zeta Function is defined as follows

θ(s) = 1 +
1
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+
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3s
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Remark

θ(s) = 1 + 1
2s + 1

3s + 1
4s + 1

5s + . . .

1
2s θ(s) = 1

2s + 1
4s + + . . .∏

p prime

(
1− 1

ps

)
θ(s) = 1
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The Euler Zeta Function

The Euler Zeta Function

Definition

The Euler Zeta Function is defined as follows

θ(s) = 1 +
1

2s
+

1

3s
+

1

4s
+

1

5s
+ . . .

Euler Sieve Property

θ(s) =
∏

p prime

(
1

1− p−s

)
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There Is No Largest Prime Number
Distribution of Prime Numbers

There Is No Largest Prime Number
The proof uses reductio ad absurdum.

Theorem ( , 300 BC)

There are infinitely many prime numbers.

Proof.

1 Suppose there were finitely many prime numbers.

2 Consider p the largest prime number.

3 Let q = p! be the product of the first p numbers.

4 Then q + 1 is not divisible by any of them.

5 But q + 1 is greater than p, thus divisible by some prime
number . . . not in the first p numbers!!!
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There Is No Largest Prime Number
Distribution of Prime Numbers

Prime Number Theorem

Let π(n) := #{prime numbers smaller than n}.

For example π(10) = 4, π(100) = 25,. . .

Theorem (Prime Number Theorem)

π(n) ∼ n

log(n)
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Sieve of Eratosthenes
Goldbach Conjecture

Sieve of Eratosthenes, 200 BC

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

112 = 121 > 100
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Goldbach Conjecture

Goldbach, 1742

Every even integer greater than 2 can be expressed as the sum of
two primes.
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