Prime Numbers

Pf. Euclid of Alexandria euclid@alexandria.edu

Alexandria University

March 11, 2022

Table of contents

(1) Settings and Motivation

- What are Prime Numbers
- Interesting Questions

Table of contents

(1) Settings and Motivation

- What are Prime Numbers
- Interesting Questions
(2) First Properties
- Pascal Triangle
- The Euler Zeta Function

Table of contents

(1) Settings and Motivation

- What are Prime Numbers
- Interesting Questions
(2) First Properties
- Pascal Triangle
- The Euler Zeta Function
(3) Main Result
- There Is No Largest Prime Number
- Distribution of Prime Numbers

Table of contents

(1) Settings and Motivation

- What are Prime Numbers
- Interesting Questions
(2) First Properties
- Pascal Triangle
- The Euler Zeta Function
(3) Main Result
- There Is No Largest Prime Number
- Distribution of Prime Numbers
(4) Other Results
- Sieve of Eratosthenes
- Goldbach Conjecture

Division

Definition

An integer number $d \in \mathbb{Z}$ divides another integer number $D \in \mathbb{Z}$ if there exists $k \in \mathbb{Z}$ such that $D=d k$.

Division

Definition

An integer number $d \in \mathbb{Z}$ divides another integer number $D \in \mathbb{Z}$ if there exists $k \in \mathbb{Z}$ such that $D=d k$.

In this case we write $d \mid D$. We also refer to d as a divisor of D.

Prime numbers

Definition

A number $p \in \mathbb{Z}$ is called prime if $p \neq \pm 1$ and $\{ \pm 1, \pm p\}$ are its only divisors.

Interesting Questions

- How many prime numbers are there?

Interesting Questions

- How many prime numbers are there?
- Do they have interesting properties?

Interesting Questions

- How many prime numbers are there?
- Do they have interesting properties?
- How easy are they to detect?

Interesting Questions

- How many prime numbers are there?
- Do they have interesting properties?
- How easy are they to detect?
- Are they constructible?

Interesting Questions

- How many prime numbers are there?
- Do they have interesting properties?
- How easy are they to detect?
- Are they constructible?
- Can you make money out of them?

Pascal Triangle

Theorem

If p is a prime number, then $\binom{p}{n}$ is a multiple of p.

Pascal Triangle

Theorem
 If p is a prime number, then $\binom{p}{n}$ is a multiple of p.

Proof.

Pascal Triangle

Theorem

If p is a prime number, then $\binom{p}{n}$ is a multiple of p.

Proof.

$$
\binom{p}{n}
$$

Pascal Triangle

Theorem

If p is a prime number, then $\binom{p}{n}$ is a multiple of p.

Proof.

$$
\binom{p}{n}=\frac{p(p-1) \ldots(p-n+1)}{n(n-1) \ldots 2}
$$

Pascal Triangle

Theorem

If p is a prime number, then $\binom{p}{n}$ is a multiple of p.

Proof.

$$
\binom{p}{n}=\frac{p(p-1) \ldots(p-n+1)}{n(n-1) \ldots 2}
$$

The result follows since p is prime and hence not divisible by any factor in the denominator.

The Euler Zeta Function

The Euler Zeta Function

Definition

The Euler Zeta Function is defined as follows

$$
\theta(s)=1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}+\ldots
$$

The Euler Zeta Function

Definition

The Euler Zeta Function is defined as follows

$$
\theta(s)=1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}+\ldots
$$

Remark

$$
\theta(s)=1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}+\ldots
$$

The Euler Zeta Function

Definition

The Euler Zeta Function is defined as follows

$$
\theta(s)=1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}+\ldots
$$

Remark

$$
\begin{aligned}
\theta(s) & =1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}+\ldots \\
\frac{1}{2^{s}} \theta(s) & = \\
\frac{1}{2^{s}}+ & \frac{1}{4^{s}}+\ldots
\end{aligned}
$$

The Euler Zeta Function

Definition

The Euler Zeta Function is defined as follows

$$
\theta(s)=1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}+\ldots
$$

Remark

$$
\begin{gathered}
\theta(s)=1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}+\ldots \\
\frac{1}{2^{s}} \theta(s)=\begin{array}{c}
2^{s}
\end{array}+\ldots \\
\left(1-\frac{1}{2^{s}}\right) \theta(s)=1+\frac{1}{3^{s}}+\frac{1}{5^{s}}+\frac{1}{7^{s}}+\frac{1}{9^{s}}+\ldots
\end{gathered}
$$

The Euler Zeta Function

Definition

The Euler Zeta Function is defined as follows

$$
\theta(s)=1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}+\ldots
$$

Remark

$$
\begin{gathered}
\theta(s)=1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}+\ldots \\
\frac{1}{2^{s}} \theta(s)=\begin{array}{c}
2^{s}
\end{array}+\begin{array}{c}
4^{s}
\end{array}+\ldots \\
\left(1-\frac{1}{2^{s}}\right)\left(1-\frac{1}{3^{s}}\right) \theta(s)=1+\frac{1}{5^{s}}+\frac{1}{7^{s}}+\frac{1}{11^{s}}+\frac{1}{13^{s}}+\frac{1}{17^{s}}+\ldots
\end{gathered}
$$

The Euler Zeta Function

Definition

The Euler Zeta Function is defined as follows

$$
\theta(s)=1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}+\ldots
$$

Remark

$$
\begin{gathered}
\theta(s)=1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}+\ldots \\
\frac{1}{2^{s}} \theta(s)=\begin{array}{c}
2^{s} \\
\frac{1}{s}_{s}^{s}+\ldots \\
\prod_{p \text { prime }}\left(1-\frac{1}{p^{s}}\right) \theta(s)=1
\end{array}
\end{gathered}
$$

The Euler Zeta Function

Definition

The Euler Zeta Function is defined as follows

$$
\theta(s)=1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\frac{1}{5^{s}}+\ldots
$$

Euler Sieve Property

$$
\theta(s)=\prod_{p \text { prime }}\left(\frac{1}{1-p^{-s}}\right)
$$

There Is No Largest Prime Number

The proof uses reductio ad absurdum.

Theorem (${ }^{-}, 300 \mathrm{BC}$)
 There are infinitely many prime numbers.

There Is No Largest Prime Number

The proof uses reductio ad absurdum.

Theorem (${ }^{-}, 300 \mathrm{BC}$)
 There are infinitely many prime numbers.

Proof.

(1) Suppose there were finitely many prime numbers (2) Consider p the largest prime number

There Is No Largest Prime Number

The proof uses reductio ad absurdum.

Theorem (${ }_{-}, 300 \mathrm{BC}$)

There are infinitely many prime numbers.

Proof.

(1) Suppose there were finitely many prime numbers.

There Is No Largest Prime Number

The proof uses reductio ad absurdum.

Theorem (${ }^{-}, 300 \mathrm{BC}$)

There are infinitely many prime numbers.

Proof.

(1) Suppose there were finitely many prime numbers.
(2) Consider p the largest prime number.

There Is No Largest Prime Number

The proof uses reductio ad absurdum.

Theorem (${ }_{-}, 300 \mathrm{BC}$)

There are infinitely many prime numbers.

Proof.

(1) Suppose there were finitely many prime numbers.
(2) Consider p the largest prime number.
(3) Let $q=p$! be the product of the first p numbers.
(5) But $q+1$ is greater than p, thus divisible by some prime
number

There Is No Largest Prime Number

The proof uses reductio ad absurdum.

Theorem (${ }^{-}, 300 \mathrm{BC}$)

There are infinitely many prime numbers.

Proof.

(1) Suppose there were finitely many prime numbers.
(2) Consider p the largest prime number.
(3) Let $q=p$! be the product of the first p numbers.
(9) Then $q+1$ is not divisible by any of them.
(5) But $q+1$ is greater than p, thus divisible by some prime
number

There Is No Largest Prime Number

The proof uses reductio ad absurdum.

Theorem (${ }^{-}, 300 \mathrm{BC}$)

There are infinitely many prime numbers.

Proof.

(1) Suppose there were finitely many prime numbers.
(2) Consider p the largest prime number.
(3) Let $q=p$! be the product of the first p numbers.
(9) Then $q+1$ is not divisible by any of them.
(0) But $q+1$ is greater than p, thus divisible by some prime number

There Is No Largest Prime Number

The proof uses reductio ad absurdum.

Theorem (${ }^{-}, 300 \mathrm{BC}$)

There are infinitely many prime numbers.

Proof.

(1) Suppose there were finitely many prime numbers.
(2) Consider p the largest prime number.
(3) Let $q=p$! be the product of the first p numbers.
(9) Then $q+1$ is not divisible by any of them.
(0) But $q+1$ is greater than p, thus divisible by some prime number ... not in the first p numbers!!!

There Is No Largest Prime Number

The proof uses reductio ad absurdum.

Theorem (_, 300 BC)

There are infinitely many prime numbers.

Proof.

(1) Suppose there were finitely many prime numbers.
(2) Consider p the largest prime number.
(3) Let $q=p$! be the product of the first p numbers.
(9) Then $q+1$ is not divisible by any of them.
(6) But $q+1$ is greater than p, thus divisible by some prime number ... not in the first p numbers!!!

Prime Number Theorem

Let $\pi(n):=\#\{$ prime numbers smaller than $n\}$.

Prime Number Theorem

Let $\pi(n):=\#\{$ prime numbers smaller than $n\}$.
For example $\pi(10)=4, \pi(100)=25, \ldots$.

Prime Number Theorem

Let $\pi(n):=\#\{$ prime numbers smaller than $n\}$.
For example $\pi(10)=4, \pi(100)=25, \ldots$

Theorem (Prime Number Theorem)

$$
\pi(n) \sim \frac{n}{\log (n)}
$$

Prime Number Theorem

Let $\pi(n):=\#\{$ prime numbers smaller than $n\}$.
For example $\pi(10)=4, \pi(100)=25, \ldots$

Theorem (Prime Number Theorem)

$$
\pi(n) \sim \frac{n}{\log (n)}
$$

Sieve of Eratosthenes, 200 BC

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Sieve of Eratosthenes, 200 BC

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Sieve of Eratosthenes, 200 BC

1	2	3	4	5	6	7	\varnothing	9	10
11	122	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	$\not 22$	33	34	35	36	37	$\not 88$	39	40
41	42	43	44	45	46	47	48	49	50
51	$\boxed{ } 2$	53	$\boxed{ } 4$	55	56	57	58	59	60
61	$\boxed{62}$	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Sieve of Eratosthenes, 200 BC

1	2	3	4	5	6	7	\varnothing	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	$\not 22$	33	34	35	36	37	78	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Sieve of Eratosthenes, 200 BC

1	2	3	4	5	6	7	\varnothing	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	72	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Sieve of Eratosthenes, 200 BC

1	2	3	4	5	6	7	\varnothing	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	72	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	71	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Sieve of Eratosthenes, 200 BC

1	2	3	4	5	6	7	\varnothing	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	72	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	71	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Sieve of Eratosthenes, 200 BC

1	2	3	4	5	6	7	\%	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Sieve of Eratosthenes, 200 BC

1	2	3	4	5	6	7	\varnothing	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	$\not 22$	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	71	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

$11^{2}=121>100$

Goldbach Conjecture

Goldbach, 1742
Every even integer greater than 2 can be expressed as the sum of two primes.

Local video file

Pf. Euclid Prime Numbers

External player

Pf. Euclid

Prime Numbers

External player (href)

https://www.youtube.com/watch?v=lqKSXk5Xwg8

remote (YouTube player)

https://www.youtube.com/watch?v=lqKSXk5Xwg8

