Arithmetic Zariski pairs with possibly non-isomorphic fundamental groups

Enrique Artal, José Ignacio Cogolludo Departamento de Matemáticas, IUMA, Facultad de Ciencias, Universidad de Zaragoza

Topology and Combinatorics

Let $C \subset \mathbb{P}^2 =: \mathbb{P}^2(\mathbb{C})$ be a plane projective curve.

- **Topological type of** *C*: Homeomorphism type of (\mathbb{P}^2, C)
- **Combinatorial type of** *C*: Homeomorphism type of (*R*(*C*), *C*), *R*(*C*) a regular neighbourhood of *C*. Completely determined by a weighted graph.

Zariski pairs

Zariski pair: Two curves having the same combinatorics but different topological types. **Arithmetic Zariski pair:** A Zariski pair (C_1, C_2) such that

- $C_i = \{f_i(x, y, z) = 0\}$
- $f_i(x, y, z) \in \mathbb{K}[x, y, z]$, \mathbb{K} a number field
- $\exists \sigma \in \operatorname{Gal}(K/\mathbb{Q})$ such that $f_2 = f_1^{\sigma}$.

Galois-conjugate non-homeomorphic algebraic varieties exist [5, 1] and so do arithmetic Zariski

Invariants

The following invariants are widely used to prove that two curves form a Zariski pair

- $\pi_1(\mathbb{P}^2\setminus C)$
- Alexander polynomial of *C*
- Characteristic varieties of C

They are not valid for arithmetic Zariski pairs since $\pi_1(\mathbb{P}^2 \setminus C_i)$ have isomorphic profinite completions

pairs [3, 4].

Braid monodromy

- $P := [0:1:0] \in \mathbb{P}^2, P \in L := \{z = 0\}$
- The tangent cone of *C* at *P* is contained in *L*.
- $f(x,y) := y^n + \sum_{j=1}^n f_j(x)y^{n-j} = 0$, reduced normalized affine equation of *C*.
- $D := \{t \in \mathbb{C} \mid f(t, y) = 0 \text{ has } < n \text{ solutions}\}, \#D := r.$

If $t \in \mathbb{C} \setminus D$ then f(t, y) = 0 has exactly *n* roots and a natural morphism $\nabla : \pi_1(\mathbb{C} \setminus D; t_0) \to \mathbb{B}_n$ is defined: the braid monodromy.

- $\nabla \leftrightarrow \tau \in (\mathbb{B}_n)^r$
- $\tau_1, \tau_2 \in (\mathbb{B}_n)^r$ represent the same braid monodromy if and only if they are in the same orbit by the action of $\mathbb{B}_n \times \mathbb{B}_r$:
 - \mathbb{B}_n acts by simultaneous conjugation.
 - \mathbb{B}_r acts by Hurwitz moves.

Main Tool

Definition. The fibered curve C^{φ} for a braid monodromy is a triple formed by $(C, L, \{L_t\}_{t \in D})$ where $L_t := \{x = tz\}$

Theorem ([2]). Let C_1, C_2 be two curves with fibered curves C_i^{φ} for some braid monodromies. Suppose there exists an oriented homeomorphism $\Phi : \mathbb{P}^2 \to \mathbb{P}^2$ such that $\Phi(C_1^{\varphi}) = C_2^{\varphi}$ (preserving orientations). Then C_1 and C_2 have the same braid monodromy.

Strategy. Given two combinatorially equivalent curves with different braid monodromies, their fibered curves form a Zariski pair.

How can we prove that two elements in $(\mathbb{B}_n)^r$ are not in the same orbit? Work with a finite representation $\mathbb{B}_n \to G$ and the action of $G \times \mathbb{B}_r$ on G^r (with finite orbits!).

Example. Let $\rho : \mathbb{B}_n \to \operatorname{GL}(n-1, \mathbb{Z}[t^{\pm}1])$ the reduced Burau representation. Replace $\mathbb{Z}[t^{\pm}1]$ by either \mathbb{Z}/m or \mathbb{F}_{p^k} (specializing *t* to a unit).

Explicit examples

Results

First pair $Z_{1,\pm}$: Curves consisting of three concurrent lines (L_{∞}, L_1, L_2) , a quintic C_5 with two singular points Q, R and a smooth conic C_2 : (C_5, Q) of type \mathbb{D}_6 and (C_5, R) of type \mathbb{A}_4 , the tangent branches of Q are tangent to $L_1, (C_5 \cdot L_{\infty})_R = 5$. The line L_2 is bitangent to C_5 and C_2 is tangent to C at Q, R and passes through one of the bitangencies.

Second pair $Z_{2,\pm}$: Curves consisting of three concurrent lines: L_{∞} , L_1 , L_2 a quintic C_5 with one singular point Q, M a line: (C_5, Q) has local equation $u^4 = v^5$ and is tangent to L_{∞} . The lines L_1, L_2 are bitangent to C_5 and M_1 passes through Q and one of the bitangencies of L_1 .

Theorem. Any curve described in the examples is equivalent to:

 $Z_{1,\pm} \quad x(x-1)(y^5 - 5xy^3 + 5x^2y - 2x^3)(y^2 - \frac{3\pm\sqrt{5}}{2}x) = 0$ $Z_{2,\pm} \quad (y^5 - 5y^3 + 5y - 2x)(x^2 - 1)(y - \frac{1\pm\sqrt{5}}{2}) = 0$

Each pair of curves forms a **Zariski pair**. Analogously for Z_{3,\mathbb{Z}_3} .

- 1. **Braid monodromies** can be computed from their real pictures:
 - for $Z_{1,\pm}$: $(\Delta_7, \sigma_2\sigma_3\sigma_2\sigma_6)$, $(\Delta_7, \sigma_5\sigma_6\sigma_5\sigma_3) \in \mathbb{B}_7^2$
 - for $Z_{2,\pm}$: $(\sigma_1\sigma_2\sigma_1\sigma_4, \sigma_3\sigma_5), (\sigma_3\sigma_4\sigma_3\sigma_1, \sigma_2\sigma_5) \in \mathbb{B}_7^2$
- 2. Use Main Tool Theorem (for the Burau representation on \mathbb{F}_3) to check that $Z_{1,\pm}$ and $Z_{2,\pm}$ are two arithmetic Zariski pairs. These results also show that Z_{3,\mathbb{Z}_3} is a Zariski triple.

One can also study the fundamental groups of the complements:

Theorem. Consider $G_i := \pi_1(\mathbb{C}^2 - Z_{3,i})$, i = 1, 2, 3. The infinite group G_3 is not isomorphic to both G_1 and G_2 .

1. Using the space of local systems on G_i , one finds for each *i* a unique $\rho_i : G_i \to \mathbb{Z}/10$ such that if $K_i := \ker \rho_i$ then $\operatorname{rank} K_i/K'_i = 10$.

Third triple Z_{3,\mathbb{Z}_3} : Add a line passing through Q and a bitangency of L_2 .

Open Questions

Are the fundamental groups of the three arithmetic Zariski pairs non-isomorphic?

- 2. $\Gamma_j(K_i)$ lower central series of K_i .
- 3. $\Gamma_2(G_i)/\Gamma_3(G_i) \cong \mathbb{Z}^6 \times \mathbb{Z}/5$ for $i = 1, 2, \Gamma_2(G_3)/\Gamma_3(G_3) \cong \mathbb{Z}^6$

References

- [1] H. Abelson, *Topologically distinct conjugate varieties with finite fundamental group*, Topology 13 (1974), 161–176.
- [2] E. Artal, J. Carmona, and J.I. Cogolludo, *Braid monodromy and topology of plane curves*, Duke Math. J. **118** (2003), no. 2, 261–278.
- [3] _____, *Effective invariants of braid monodromy*, Trans. Amer. Math. Soc. **359** (2007), no. 1, 165–183.
- [4] E. Artal, J. Carmona, J.I. Cogolludo, and M. Marco, *Topology and combinatorics of real line arrangements*, Compos. Math. **141** (2005), no. 6, 1578–1588.
- [5] J.-P. Serre, *Exemples de variétés projectives conjuguées non homéomorphes*, C. R. Acad. Sci. Paris Sér. I Math. **258** (1964), 4194–4196.