Arithmetic Zariski pairs with possibly non-isomorphic fundamental groups

Enrique Artal, José Ignacio Cogolludo
 Departamento de Matemáticas, IUMA, Facultad de Ciencias, Universidad de Zaragoza

Topology and Combinatorics

Let $C \subset \mathbb{P}^{2}=: \mathbb{P}^{2}(\mathbb{C})$ be a plane projective curve.

- Topological type of C : Homeomorphism type of $\left(\mathbb{P}^{2}, C\right)$
- Combinatorial type of C : Homeomorphism type of $(R(C), C), R(C)$ a regular neighbourhood of C. Completely determined by a weighted graph.

Zariski pairs

Zariski pair: Two curves having the same combinatorics but different topological types.
Arithmetic Zariski pair: A Zariski pair $\left(C_{1}, C_{2}\right)$ such that

- $C_{i}=\left\{f_{i}(x, y, z)=0\right\}$
- $f_{i}(x, y, z) \in \mathbb{K}[x, y, z], \mathbb{K}$ a number field
- $\exists \sigma \in \operatorname{Gal}(K / \mathbb{Q})$ such that $f_{2}=f_{1}^{\sigma}$.

Galois-conjugate non-homeomorphic algebraic varieties exist [5, 1] and so do arithmetic Zariski pairs [3, 4].

Invariants

The following invariants are widely used to prove that two curves form a Zariski pair

- $\pi_{1}\left(\mathbb{P}^{2} \backslash C\right)$
- Alexander polynomial of C
- Characteristic varieties of C

They are not valid for arithmetic Zariski pairs since $\pi_{1}\left(\mathbb{P}^{2} \backslash C_{i}\right)$ have isomorphic profinite completions

Braid monodromy

- $P:=[0: 1: 0] \in \mathbb{P}^{2}, P \in L:=\{z=0\}$
- The tangent cone of C at P is contained in L.
- $f(x, y):=y^{n}+\sum_{j=1}^{n} f_{j}(x) y^{n-j}=0$, reduced normalized affine equation of C.
- $D:=\{t \in \mathbb{C} \mid f(t, y)=0$ has $<n$ solutions $\}, \# D:=r$.

If $t \in \mathbb{C} \backslash D$ then $f(t, y)=0$ has exactly n roots and a natural morphism $\nabla: \pi_{1}\left(\mathbb{C} \backslash D ; t_{0}\right) \rightarrow \mathbb{B}_{n}$ is defined: the braid monodromy.

- $\nabla \leftrightarrow \tau \in\left(\mathbb{B}_{n}\right)^{r}$
- $\tau_{1}, \tau_{2} \in\left(\mathbb{B}_{n}\right)^{r}$ represent the same braid monodromy if and only if they are in the same orbit by the action of $\mathbb{B}_{n} \times \mathbb{B}_{r}$:
- \mathbb{B}_{n} acts by simultaneous conjugation.
- \mathbb{B}_{r} acts by Hurwitz moves.

Explicit examples

First pair $Z_{1, \pm}$: Curves consisting of three concurrent lines (L_{∞}, L_{1}, L_{2}), a quintic C_{5} with two singular points Q, R and a smooth conic $C_{2}:\left(C_{5}, Q\right)$ of type \mathbb{D}_{6} and $\left(C_{5}, R\right)$ of type \mathbb{A}_{4}, the tangent branches of Q are tangent to $L_{1},\left(C_{5} \cdot L_{\infty}\right)_{R}=5$. The line L_{2} is bitangent to C_{5} and C_{2} is tangent to C at Q, R and passes through one of the bitangencies.

Second pair $Z_{2, \pm}$: Curves consisting of three concurrent lines: L_{∞}, L_{1}, L_{2} a quintic C_{5} with one singular point Q, M a line: $\left(C_{5}, Q\right)$ has local equation $u^{4}=v^{5}$ and is tangent to L_{∞}. The lines L_{1}, L_{2} are bitangent to C_{5} and M_{1} passes through Q and one of the bitangencies of L_{1}.

Third triple $Z_{3, \mathbb{Z}_{3}}$: Add a line passing through Q and a bitangency of L_{2}.

Open Questions

Are the fundamental groups of the three arithmetic Zariski pairs non-isomorphic?

Thanks

iii Felicidades, Javier!!!

Main Tool

Definition. The fibered curve C^{φ} for a braid monodromy is a triple formed by $\left(C, L,\left\{L_{t}\right\}_{t \in D}\right)$ where $L_{t}:=\{x=t z\}$

Theorem ([2]). Let C_{1}, C_{2} be two curves with fibered curves C_{i}^{φ} for some braid monodromies. Suppose there exists an oriented homeomorphism $\Phi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ such that $\Phi\left(C_{1}^{\varphi}\right)=C_{2}^{\varphi}$ (preserving orientations). Then C_{1} and C_{2} have the same braid monodromy.

Strategy. Given two combinatorially equivalent curves with different braid monodromies, their fibered curves form a Zariski pair.

How can we prove that two elements in $\left(\mathbb{B}_{n}\right)^{r}$ are not in the same orbit? Work with a finite representation $\mathbb{B}_{n} \rightarrow G$ and the action of $G \times \mathbb{B}_{r}$ on G^{r} (with finite orbits!).

Example. Let $\rho: \mathbb{B}_{n} \rightarrow \mathrm{GL}\left(n-1, \mathbb{Z}\left[t^{ \pm} 1\right]\right)$ the reduced Burau representation. Replace $\mathbb{Z}\left[t^{ \pm} 1\right]$ by either \mathbb{Z} / m or $\mathbb{F}_{p^{k}}$ (specializing t to a unit).

Results

Theorem. Any curve described in the examples is equivalent to:

$$
\begin{aligned}
& Z_{1, \pm} \quad x(x-1)\left(y^{5}-5 x y^{3}+5 x^{2} y-2 x^{3}\right)\left(y^{2}-\frac{3 \pm \sqrt{5}}{2} x\right)=0 \\
& Z_{2, \pm} \quad\left(y^{5}-5 y^{3}+5 y-2 x\right)\left(x^{2}-1\right)\left(y-\frac{1 \pm \sqrt{5}}{2}\right)=0
\end{aligned}
$$

Each pair of curves forms a Zariski pair. Analogously for $Z_{3, \mathbb{Z}_{3}}$.

1. Braid monodromies can be computed from their real pictures:

- for $Z_{1, \pm}:\left(\Delta_{7}, \sigma_{2} \sigma_{3} \sigma_{2} \sigma_{6}\right),\left(\Delta_{7}, \sigma_{5} \sigma_{6} \sigma_{5} \sigma_{3}\right) \in \mathbb{B}_{7}^{2}$
- for $Z_{2, \pm}$: $\left(\sigma_{1} \sigma_{2} \sigma_{1} \sigma_{4}, \sigma_{3} \sigma_{5}\right),\left(\sigma_{3} \sigma_{4} \sigma_{3} \sigma_{1}, \sigma_{2} \sigma_{5}\right) \in \mathbb{B}_{7}^{2}$

2. Use Main Tool Theorem (for the Burau representation on \mathbb{F}_{3}) to check that $Z_{1, \pm}$ and $Z_{2, \pm}$ are two arithmetic Zariski pairs. These results also show that $Z_{3, \mathbb{Z}_{3}}$ is a Zariski triple.

One can also study the fundamental groups of the complements:
Theorem. Consider $G_{i}:=\pi_{1}\left(\mathbb{C}^{2}-Z_{3, i}\right), i=1,2,3$. The infinite group G_{3} is not isomorphic to both G_{1} and G_{2}.

1. Using the space of local systems on G_{i}, one finds for each i a unique
$\rho_{i}: G_{i} \rightarrow \mathbb{Z} / 10$ such that if $K_{i}:=\operatorname{ker} \rho_{i}$ then $\operatorname{rank} K_{i} / K_{i}^{\prime}=10$.
2. $\Gamma_{j}\left(K_{i}\right)$ lower central series of K_{i}.
3. $\Gamma_{2}\left(G_{i}\right) / \Gamma_{3}\left(G_{i}\right) \cong \mathbb{Z}^{6} \times \mathbb{Z} / 5$ for $i=1,2, \Gamma_{2}\left(G_{3}\right) / \Gamma_{3}\left(G_{3}\right) \cong \mathbb{Z}^{6}$

References

[1] H. Abelson, Topologically distinct conjugate varieties with finite fundamental group, Topology 13 (1974), 161-176.
[2] E. Artal, J. Carmona, and J.I. Cogolludo, Braid monodromy and topology of plane curves, Duke Math. J. 118 (2003), no. 2, 261-278.
[3] , Effective invariants of braid monodromy, Trans. Amer. Math. Soc. 359 (2007), no. 1,
[4] E. Artal, J. Carmona, J.I. Cogolludo, and M. Marco, Topology and combinatorics of real line arrangements, Compos. Math. 141 (2005), no. 6, 1578-1588.
[5] J.-P. Serre, Exemples de variétés projectives conjuguées non homéomorphes, C. R. Acad. Sci. Paris Sér. I Math. 258 (1964), 4194-4196.

