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1. Definitions and settings

Definition 1.1. Let K be a field, n ∈ N. A hyperplane arrangement is a finite
collection of hyperplanes in one of the following cases:

(1) Linear hyperplanes of a K-vector space V of dimension n: central arrange-
ment.

(2) Affine hyperplanes of a K-affine space E of dimension n: affine arrange-
ment.

(3) Projective hyperplanes of a K-projective space P(V ) of dimension n: pro-
jective arrangement.

These three concepts are closely related. Let us identify V and E with Kn.
Note that central arrangement is a particular case of an affine arrangement. If we
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consider the standard embedding Kn ↪→ P(Kn+1) =: Pn(K), adding the hyper-
plane at infinity H∞ := Pn(K) \ Kn to the collection we construct a projective
arrangement from an affine arrangement. Finally, a projective arrangement in
Pn(K) is essentially the same object as a central arrangement in Kn+1.

Definition 1.2. Let A be a hyperplane arrangement. The complement M(A) of
the arrangement is the complement of

⋃A in the ambient space.

Remark 1.3. Let A be a central arrangement; it is obvious that M(A) coincides
as both central and affine arrangement. If A is an affine arrangement and A∞ is
the projective arrangement obtained adding H∞, then M(A) = M(A∞). Finally,
if A is a non-empty projective arrangement and Ã is the corresponding central
arrangement, then there is a natural identification M(Ã)↔M(A)×K∗.

The combinatorics of an arrangement A is the poset S(A) of all the intersections
of elements in A, with respect to reverse inclusion. The combinatorics catch the
properties of A not depending on the actual equations of the hyperplanes. The
main goal is to detect which properties of the arrangement depend only on the
combinatorics.

In this notes K = C and the properties we are looking for are of topological
type. Note that we may chose other fields with topological structure, specially R
or the p-adic number field. We prefer the complex numbers since in this case the
arrangement is codimension-2 topological subspace of the ambient space.

Example 1.4. Let A be a central arrangement in Cn. Orlik and Solomon defined
an graded algebra A(A) which depends only on S(A). They proved that A(A) is
isomorphic to H∗(M(A);Z) as Z-algebra [23, 22].

This result opened an intensive research in order to find which topological in-
variants are combinatorial. In 1994, G. Rybnikov found two arrangements with the
same combinatorics and such that the fundamental groups of their complements
are non-isomorphic. This result was finally published in [24], see also [5]. There are
other examples of arrangements with different topology and same combinatorics:
in [4], two combinatorially-equivalent arrangements had different homeomorphism
type for (P2(C),A). Though π1(M(A)) is not a combinatorial invariant, it is
one of the most important topological invariants of the hyperplane arrangements.
Zariski-Lefschetz theory shows that for computing fundamental groups we can
restrict our attention to the case of line arrangements.

Theorem 1.5 (Zariski-Lefschetz [27]). Let X be a quasi-projective smooth variety
in P2(C) of dimension n. Let H be a generic hyperplane. Then the morphism
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πj(X ∩H)→ πj(X) induced by the injection is an isomorphism for j < n− 1 and
epimorphism for j = n− 1.

Corollary 1.6. The fundamental group of a hyperplane arrangement is also the
fundamental group of a line arrangement.

2. Zariski-van Kampen method and braid monodromy

For technical reasons it is better to consider affine arrangements instead of
projective arrangements. Let A := {L̄0, L̄1, . . . , L̄n} be a line arrangement in P2.
We fix a line L̄∞ as line at infinity and consider C2 = P2 \ L̄∞; we will denote
Lj := L̄j ∩ C2. There are several natural choices for L̄∞.

(L∞1) We may choose L̄∞ = L̄0; in this case we will denote A0 := {L1, . . . , Ln}
the associated affine line arrangement. Note that M(A) = M(A0).

(L∞2) Choose a generic L̄∞ t
⋃A. In this case the associated line arrangement

is denoted as A∞ := {L0, L1, . . . , Ln}. Of course, M(A) 6= M(A∞) but:
(a) The topological type of M(A∞) does not depend on the particular

choice of L̄∞.
(b) As it will be proved later, the group π1(M(A∞)) is a central extension

of π1(M(A)) by Z.

Now, we will fix A := {L1, . . . , Ln} an affine arrangement in C2. We consider
the set of multiple points of the arrangement:

P := {P ∈ C2 | ∃i < j s.t. P ∈ Li ∩ Lj}.

For P ∈ P , we denote mP := #{L ∈ A | P ∈ L}. In order to apply Zariski-van
Kampen method we need to consider the projection π : C2 → C, (x, y) 7→ x. This
projection depends on the choice of coordinates x, y.

Definition 2.1. The coordinates (and hence the projection) are said to be generic
if no line Lj is vertical and if (x, y1), (x, y2) ∈ P then y1 = y2.

Remark 2.2. Later on we will also consider non-generic projections.

2.1. Fibered arrangements.

Definition 2.3. Let A = {L1, . . . , Ln} be an affine arrangement in generic coor-
dinates and let P = {(x1, y1), . . . , (xr, yr)}. The fibered arrangement associated to
A is

Aϕ := A ∪ {Vxi | i = 1, . . . , r}, Vt := {x = t}.
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Proposition 2.4. Let B := {x1, . . . , xr}. The restriction π| : M(Aϕ) → C \ B
is a locally trivial fibration, the fiber is homeomorphic to F := C \ {n points}. In
particular, the long exact homotopy sequence induces a short exact sequence

1 = π2(C \ B)→ π1(F )→ π1(M(Aϕ))→ π1(C \ B)→ 1.

Definition 2.5. Let X be a quasi-projective smooth variety, and let A1, . . . , Ar ⊂
X be irreducible hypersurfaces. Let Y := X \⋃r

j=1Ai and p ∈ Y . A meridian of
Ai in π1(Y ; p) is obtained as follows:

• Fix a smooth point pi ∈ Ai of
⋃r
j=1Ai.

• Fix a small closed disk Di centered at pi transversal to Ai such that⋃r
j=1Ai ∩ Di = {pi}.

• Let δi be the loop based at qi which runs along ∂Di counterclockwise.
• Let αi be a path in Y from p to qi.

Then, αi · δi ·α−1
i is such a meridian. The conjugacy class of such a meridian does

not depend on the above choices.

αi

X

δi

Ai
αi · βi · α−1

i

p

Figure 1. Meridian

Proposition 2.4 allows to produce a finite presentation of the group π1(M(Aϕ));
we need to fix bases of the free groups in the extremities of the short exact sequence.

Definition 2.6. A geometric basis of the free group π1(C \ {t1, . . . , tr}; t0) is a
basis of meridians µ1, . . . , µr (µi meridian of ti) such that (µr · . . . · µ1)−1 is a
meridian of ∞.

It is useful to have a compact model of M(Aϕ). Let tx � 0 such that B ⊂ D̊tx .
Consider also ty such that |yj| � ty and⋃

A ∩ (Dtx × Dty) ⊂ ∂Dtx × D̊ty .

The inclusion (Dtx × Dty) \
⋃Aϕ ↪→ M(Aϕ) is a homotopy equivalence. Let

p := (tx, ty) and denote F := Vtx \
⋃A.

Let us fix a geometric basis µ1, . . . , µn of the free group π1(F ; p) and a geometric
basis α1, . . . , αr of π1(C\B; tx). Let us lift α1, . . . , αr to α̃1, . . . , α̃r in the line y = ty.
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t0

µ1

µ2µ3µ5

µ6

µ4

(µ6 · . . . · µ1)

Figure 2. Geometric basis for r = 6

tx

p

Dtx

{tx} × Dty ⊂ Vtx

x1x2x3x4

α ∈ π1(C \ B; tx)

α̃ ∈ π1(M(Aϕ; p)

Dtx × Dty

Figure 3. Polydisk model

Lemma 2.7. The elements µ1, . . . , µn and α̃1, . . . , α̃r generate π1(M(Aϕ); p).

We state a general result (due to Fujita [14]) which will be necessary to compute
π1(M(A)) from π1(M(Aϕ)).

Lemma 2.8. Let us consider the notation of Proposition 2.4. Consider the spaces
Y := X \ ⋃r

j=1Aj, Z := X \ ⋃r
j=s+1Aj, 1 ≤ s ≤ r. The inclusion Y ↪→ Z

induces an epimorphism π1(Y )→ π1(Z). Its kernel is generated by the meridians
of A1, . . . , As.

Idea of the Proof. First, we recall that π1 = πC
∞

1 . The surjectivity follows from
transversality of mappings S1 → Z with respect to Aj, 1 ≤ j ≤ s. The description
of the kernel follows from transversality of mappings D2 → Z with respect to Aj,
1 ≤ j ≤ s. �

Proposition 2.9. Let A be an affine line arrangement.

(1) π1(M(A); p) is generated by µ1, . . . , µn.
(2) µ∞ := (µn · . . . · µ1)−1 is a meridian of L̄∞ in π1(M(A); p).
(3) If L̄∞ t

⋃A then µ∞ is central in π1(M(A); p).
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Remark 2.10. Proposition 2.9(1) is a particular case of the surjectivity statement
of Theorem 1.5. Proposition 2.9(3) is the centrality statement of (L∞2)(b).

Proof. The statement (1) is a direct consequence of Lemmas 2.7 and 2.8. The
statement (2) comes from the genericity condition; since the projection point [0 :

1 : 0] /∈ ⋃A, then the result follows.
Let us prove the statement (3). Let E := C2 \ (D̊tx× D̊ty) and set Ě := E \⋃A.

By Lemma 2.8 the map π1(Ě; p) � π1(M(A); p). The space Ě is homeomorphic
to (C \ {n− 1 points})×D∗; the meridian µ∞ corresponds to the boundary of the
factor D∗. �

Remark 2.11. In orden to describe the group π1(M(Aϕ)) (and hence π1(M(A)))
we only need the conjugation action of α̃j on π1(F ; p) ⊂ π1(M(A); p).

2.2. Braid action on free groups.
Consider α ∈ π1(C \ B; tx) ≡ π1(Dtx \ B; tx) represented by a closed loop

α : [0, 1] → Dtx \ B as in Figure 3. We represent (α([0, 1]) × Dty) \
⋃A in a

cylinder where the top and bottom bases are identified, see Figure 4. The lift α̃ is
represented as an upward vertical path in Figure 4.

. . .

. . .

∇(α)
. . .

. . .

p

{tx} × Dty
α̃

α̃× Dty

∇(α) ∈ PBn

p

Figure 4. Action of the braid α

Let β ∈ π1(F ; p) (F is represented by the identified bases of the cylinder in
Figure 4). Let us consider the loop α̃−1 · β · α̃. This loop is homotopic to a loop
in the top basis, i.e. it may be represented as an element in π1(F ; p). This new
loop depends on the trace of A. A more precise description can be done using
the homotopy equivalence between the complement of A in the cylinder and the
punctured bases. In order to describe this conjugation we need to introduce the
braid groups and their action on free groups.

Let Xn := {x ∈ Cn | xi 6= xj, 1 ≤ i < j ≤ n} (the complement of the
braid arrangement). The symmetric group Σn acts freely by entry-permutation
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on Xn. The quotient Xn/Σn is naturally identified with Yn := {f(t) ∈ C[t] |
f monic without multiple roots, deg f = n}.

Definition 2.12. The fundamental group ofXn is the braid group Bn in n strands,
while the fundamental group of Yn is the pure braid group PBn in n strands.

The group Bn admits the well-known Artin presentation

Bn :=

〈
σ1, . . . , σn−1

∣∣∣∣∣ [σi, σj] = 1
1<i+1<j<n

, σi · σi+1 · σi = σi+1 · σi · σi+1
1≤i<n−1

〉
.

It is identified with the homotopy classes of n (non-intersecting) paths in C such
that the sets of starting and ending points coincide. The pure braid group consists
of classes where all paths are loops.

For the sake of simplicity let us fix the point x := (x1, . . . , xn), xi := −i, as
base point for the fundamental group. With this identification the generator σi
is represented as in Figure 5. The group Bn acts naturally on the free group Fn

σi

xi−1xi+2 xi+1 xi

0 1

√
−1

C

Figure 5.

generated by µ1, . . . , µn. It is defined as follows:

Fn × Bn → Fn
(µ, τ) 7→ µτ .

where

µ
σj
i :=


µi+1 if i = j

µi+1µiµ
−1
i+1 =: µi+1 ∗ µi if i = j + 1

µi if i 6= j, j + 1.

This action can be understood geometrically identifying Fn with the fundamental
group π1(C \ {x1, . . . , xn};x0), x0 := −(n + 1), where µ1, . . . , µn is a geometric
basis, see Figure 6.

The trace of A in this cylinder defines a braid ∇(α). Moreover, a morphism
∇ : π1(C \ B; tx)→ PBn ⊂ Bn is defined where Bn is the braid group in n strands
while PBn is the pure braid group. With these arguments we can finally state
Zariski-van Kampen Theorem.
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Ai
µi

σi

µi+1 = µi
σi µi+1µiµ

−1
i+1 = µi+1

σi

Ai
µi+1

Figure 6.

Theorem 2.13. The groups π1(M(Aϕ); p) and π1(M(A); p) admit the following
finite presentations:

(1) π1(M(Aϕ); p) = 〈µ1, . . . , µn, α̃1, . . . , α̃r | µα̃ji = µ
∇(αj)
i 〉.

(2) π1(M(A); p) = 〈µ1, . . . , µn | µi = µ
∇(αj)
i 〉.

Example 2.14. Let A be an affine arrangement of n lines through (0, 0) ∈ C2.
In this case B = {0}; hence π1(C\B) = 〈α | −〉 where α meridian of 0. It is easily
seen that ∇(α) = ∆2

n; this element is known as the full-twist and is a generator of
the center of Bn. A straightforward computation yields

µ
∆2
n

i = (µn · . . . · µ1) · µi · (µn · . . . · µ1)−1.

Hence π1(M(A)) = 〈µ1, . . . , µn | [µ1, . . . , µn] = 1〉, where [µ1, . . . , µn] = 1 is the
set of relations:

[µn · . . . · µ1, µi] = 1, 1 ≤ i < n.

Remark 2.15. For any arrangement A, the behavior of Example 2.14 is the local
behavior ∀P ∈ P .

2.3. Puiseux braid monodromy.

Proposition 2.16. ∀j ∈ {1, . . . , r}, ∇(αj) = τ−1
j ·∆2

aj ,bj
·τj, where 1 ≤ aj < bj ≤ n

and ∆2
aj ,bj

is the full-twist involving the bj − aj + 1 strands from aj to bj.

Proposition 2.17. Let µi,j := µ
τj
i . Then, the set of relations µi = µ

∇(αj)
i for

fixed j, can be replaced by [µ1,j, . . . , µn,j] = 1.

Proof. Let us fix j ∈ {i, . . . , r}. The set of relations µi = µ
∇(αj)
i , i = 1, . . . , n is

equivalent to the set of relations µ = µ∇(αj) for all µ ∈ π1(F ). This is true since
µ1, . . . , µr is a basis of π1(F ).
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τ ∈ Bn

Vxj
Vx′

j
Vtx

Figure 7.

Since the action of τj defines an automorphism of π1(F ), it is also equivalent to
the set of relations µτj = (µ

∆2
aj,bj )τj for all µ ∈ π1(F ). The, it is also equivalent to

µ
τj
i = (µ

∆2
aj,bj

i )τj , aj ≤ i < bj, since for the other terms the relation is trivial.
Note that geometrically µi,j correspond to a basis of π1(F ) in Vx′j . �

Example 2.18. In Figure 8, we see how the basis of the fiber changes before and
after a point of multiplicity 5.

µ1

µ2

µ3

µ4

µ5

µ5 ≡ µµ4µ3µ2µ1

5 = µ
(∆2

5)−1

1

µ5 ∗ µ4 ≡ µµ3µ2µ1

4 = µ
(∆2

5)−1

2

(µ5µ4) ∗ µ3 ≡ µµ2µ1

3 = µ
(∆2

5)−1

3

µµ1

2 = µ
(∆2

5)−1

4

µ1 = µ
(∆2

5)−1

5

Figure 8.

Let us see how it applies to complexified real arrangements.

Example 2.19. Let us consider a complexified real arrangement. Its braid mon-

tx

p

1 ∈ B4
∆1,3

∆1,3

∆3,4

∆3,4

∆2,3

∆2,3

∆1,2

∆1,2

Figure 9.
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odromy is defined by

∇(α1) =∆2
1,3(2.1)

∇(α2) =∆1,3 ∗ σ2
3(2.2)

∇(α3) =(∆1,3σ3) ∗ σ2
2(2.3)

∇(α4) =(∆1,3σ3σ2) ∗ σ2
1(2.4)

The computation is made from the real picture. How this affects to the funda-
mental group is shown in Figure 10.

µ3

µµ1

2

µ1

µ4

[µ1, µ2, µ3] = 1
[µ1, µ4] = 1

[µµ1

1 , µ4] = 1
[µ3, µ4] = 1

Figure 10.

The following result is well-know and a proof is derived from the above tech-
niques.

Theorem 2.20. (P2,A) generic arrangement (all points in P are of multiplic-
ity 2). Then, π1(M(A)) is abelian.

Proof. Choose A with real equations and L̄∞ ∈ A. From the real picture, all
commutators of generators appear. There is an alternative proof: A can be chosen
as a generic plane section of the coordinate arrangement in Pn and the complement
is homeomorphic to (C∗)n. This is particularly interesting; since (C∗)n is aK(π, 1)-
space, the homology of the group is recovered. �

2.4. Wiring diagram.
Arvola [8] gave the following procedure to compute π1(M(A)) for an affine

arrangement. Choose a normally embedded simple piecewise C∞ arc Γ : R → C
(identified with its image) such that {tx}∪B ⊂ Γ (tx is the image of a big enough
real number) and such that no vertex of Γ is in B.

Definition 2.21. The wiring space is the pair (Γ× C,
⋃A ∩ (Γ× C)).

The wiring space contains essentially all the topological information of the pair
(C2,

⋃A). More precisely, if

Γ̃ := Γ ∪
⋃
xi∈B

Dε(xi)
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then (C2,
⋃A) has the same homotopy type as (Γ̃× C,

⋃A ∩ (Γ̃× C)).
Note that

⋃A ∩ (Γ × C) is a union of real lines. Under genericity conditions
we may choose a projection πΓ : C → R such that for ΠΓ := (1Γ, πΓ) : Γ × C →
Γ×R ≡ R2 we have that ΠΓ(

⋃A∩ (Γ×C)) is a union of n lines in R2 with two
types of crossing points :

• The image of P : real crossings.
• Some transversal double points called virtual crossings. As in knot theory
we draw continuously the upward branch.

tx

δ+5

γ1γ2

γ3

γ4γ5

δ−5
δ+4 δ+3 δ+2

δ+1δ−4 δ−3

δ−2

δ−1

Figure 11. Γ and associated paths

Definition 2.22. The wiring diagram is the pair (R2,ΠΓ(
⋃A ∩ (Γ × C))) with

the information on virtual crossings.

Example 2.23. The real picture of a complexified real arrangement is a wiring
diagram with no virtual crossing.

From Γ̃ we recover r arcs {γj}rj=1 (in Γ) and 2r cercle arcs {δ±j }rj=1. From
the wiring diagram we associate to γj a braid ηj ∈ Bn (coming from the virtual
crossings); again from the diagram we associate to each δ±j the braid ∆aj ,bj (where
aj, bj depends on the position of the corresponding multiple point). These braids
determine the braid monodromy.

2.5. Generic and non-generic braid monodromy.

Definition 2.24. Let A := {L̄1, . . . , L̄n} be a projective arrangement. The
generic braid monodromy of A is the braid monodromy of A∞: represented by an
element ∇(A) ∈ (Bn)r, r := #P∞.

Proposition 2.25. The fundamental group π1(M(A)) is obtained as the quotient
of π1(M(A∞)) by the normal subgroup generated by 〈µn · . . . · µ1〉.

More properties can be deduced from generic braid monodromy.

Proposition 2.26 ([17]). The braid monodromy ∇(A) determines the homotopy
type of M(A∞).
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A braid monodromy ∇(A) is not well-defined. Simultaneous conjugation by an
element of Bn yields an equivalent braid monodromy and the same happens if a
Hurwitz action is applied. The Hurwitz action of the ith-Artin generator of Br is
defined as:

(τ1, . . . , τr) 7→ (τ1, . . . , τi−1, τi+1, τi+1 ∗ τi, τi+2, . . . , τr).

Remark 2.27. A generic braid monodromy ∇(A) is also useful to compute invari-
ants via braid representations as it was proved by A. Libgober [18].

Sometimes it is either easier or more interesting to compute non-generic braid
monodromies. A braid monodromy can be non-generic for various reasons:

(NG1) If L̄∞ 6t A: (τ1, . . . , τr)→ (τ1, . . . , τr, (τr · . . . · τ1)−1∆2
n).

(NG2) If several multiple points are on the same vertical line then decompose the
corresponding braids in pairwise commuting braids.

(NG3) If there are some vertical lines in A∞, the first step is to compute the braid
monodromy of the arrangement without vertical lines without changing the
projection. How to obtain a generic braid monodromy is explained in [7].
Using wiring diagrams we can also obtained a generic braid monodromy.
It is enough to turn slightly a wiring diagram and make non-parallel the
vertical lines.

Figure 12. From non-generic to generic braid monodromy
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3. Characteristic varieties and twisted cohomology

Let us consider A = {L̄0, L̄1, . . . , L̄n} a line arrangement in P2. In this section
we will denote PA := {L̄i ∩ L̄j | 0 ≤ i < j ≤ n}. We may use A0 in order to
compute π1(M(A)). In general, it is difficult to get properties from a presentation
of π1(M(A); p).

Using Alexander duality or Theorem 2.13 we can see that H1(M(A);Z) ∼= Zn.
From now on, we use multiplicative notation for this homology group. A free
generator system is given by t1, . . . , tn, ti ≡ µi mod π1(M(A))′. To keep the
symmetry from the elements of the line arrangement, recall that (µn · · · · · µ1)−1

is a meridian of L̄0. Then t0 := (t1 · . . . · tn)−1 is the homology class of a meridian
of L̄0.

The abelianization map ab : π1(M(A); p) → H1(M(A);Z) ∼= Zn defines a
covering ρ : M̃(A) → M(A) which is called the universal abelian covering. Since
the deck automorphism group of ρ is canonically identified with H1(M(A);Z),
we denote t1, . . . , tn : M̃(A) → M̃(A) the generators of this deck automorphism
group (for those elements canonically related with their homonyms).

The homology and cohomology groups H1(M̃(A);C) and H1(M̃(A);C) are
canonically ΛC-modules, where ΛC := C[t±1

1 , . . . , t±1
n ].

The space M(A) has the homotopy type of a finite CW -complex K(A) of di-
mension 2. Let us consider C∗(A) := C(K(A);C) its chain complex, and consider
also C∗(A) the dual cochain complex.

Lifting the cells of K(A), we obtain a CW -complex K̃(A) having the same ho-
motopy type as M̃(A). We consider also the chain complex C̃∗(A) := C(K̃(A);C)

and its dual cochain complex C̃∗(A). By construction, C̃∗(A), C̃∗(A) are free
ΛC-modules. Moreover, dimCC∗(A) = rankΛC C̃∗(A), respecting the graduation.

3.1. Twisted cohomology.
The cells induce a graded (arbitrarily ordered) basis B of C∗(A). With this

basis, the complex

C∗(A) : 0→ C0(A)
A1→ C1(A)

A2→ C2(A)→ 0

is determined by matrices A1, A2 with Z-coefficients.
In the same way, we can define a graded basis B̃ of C̃∗(A) as free ΛC-module;

each element of B̃ is an arbitrary lift of an element of B. Hence the complex

C̃∗(A) : 0→ C̃0(A)
Ã1→ C̃1(A)

Ã2→ C̃2(A)→ 0
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is determined by matrices Ã1, Ã2 with ΛC-coefficients. Note that ΛC is the ring of
Laurent polynomials in t1, . . . , tn with complex coefficients. The evaluation of the
matrix Ãi at tj = 1, 1 ≤ j ≤ n, yields Ai.

Definition 3.1. The character torus of A is defined as:

T(A := H1(M(A);C∗) = Hom(H1(M(A);Z),C∗) = Hom(π1(M(A)),C∗).

A character ξ ∈ T(A) induces an evaluation map evξ : ΛC → C which induces
a ΛC-module structure on C denoted by Cξ. It also induces a local system of
coefficients Cξ, which has associated a cohomology group H1(M(A);Cξ) which
depends only on π1(M(A)).

Definition 3.2. The twisted cohomology H1(M(A);Cξ) is obtained from the com-
plex C̃∗(A)⊗ΛC Cξ which is obtained by the evaluation of Ã1, Ã2 using evξ.

3.2. Characteristic varieties.

Definition 3.3. The characteristic varieties of A are: Vk(A) := {ξ ∈ T(A) |
dimCH

1(M(A);Cξ) ≥ k}.

Remark 3.4. Note that the characteristic varieties of A depend only on M(A); we
may define the characteristic varieties of a CW -complex. Moreover, it depends
only on the fundamental group, and it may be define for a group. For a finitely
generated group, characteristic varieties are subspaces of a finite dimensional torus.
It is not hard to see that they are algebraic varieties defined by equations with
integer coefficients. Nevertheless, for the fundamental groups of quasi-projective
varieties some restrictions on their properties exist.

Theorem 3.5 ([1, 20, 6]). The irreducible components of Vk(A) are subtori trans-
lated by torsion elements.

This theorem is a consequence of the following Arapura’s result, which was
refined later by Artal-Cogolludo-Matei.

Theorem 3.6 ([1, 6]). If Σ ⊂ Vk(A) is an irreducible component one of the
following (non-exclusive) situations happen:

(1) There exists Φ : M(A) → X morphism onto an orbifold X and an irre-
ducible component ΣX of Vk(X) such that Σ = ρ∗(ΣX).

(2) Σ is an isolated torsion point.

Corollary 3.7. It is enough to know H1(M(A);Cξ) for ξ unitary (or torsion).
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We are going to combine this with Sakuma’s formula [25]. Let ξ ∈ T(A) be
a character of order h and let ρξ : Mξ(A) → M(A) be the h-fold cyclic covering
associated to ξ. We denote by ξ̃ : Mξ(A) → Mξ(A) the order-h deck automor-
phism of ρξ. Let ξ̃∗ : H`(Mξ(A);C)→ H`(Mξ(A);C) be the linear automorphism
induced by ξ̃. We denote H`

ξ := ker(ξ̃∗ − exp(2iπ
h

) · 1H`(Mξ(A);C))

Proposition 3.8. H1
ξ
∼= H1(M(A);Cξ).

As a consequence of Corollary 3.7 and Proposition 3.8 we obtain the following
result which guarantees the algebraic nature of characteristic varieties of arrange-
ments (in fact, of quasi-projective manifolds).

Corollary 3.9. Vk(A) depends on the Betti numbers of some quasi-projective
smooth varieties.

3.3. Cohomology of projective and quasi-projective smooth varieties.
We apply the general theory of quasi-projective varieties to our case. Let

Mξ(A) ⊂ Xξ(A) be a smooth projective completion such that Dξ(A) := Xξ(A) \
Mξ(A) is a normal crossing divisor. We choose this completion such that ρξ ex-
tends to a branched covering ρξ : Xξ(A) → P2. For this covering, ρ−1

ξ (
⋃A) =

Dξ(A). We denote by Dξ(A) the set of irreducible components of Dξ(A).
Let us recall what Pure Hodge Theory implies, see for example [15]. There is a

decomposition

(3.1) H1(Xξ(A);C) ∼= H1(Xξ(A);OXξ(A))⊕H0(Xξ(A); Ω1
Xξ(A))

such that
H1(Xξ(A);OXξ(A)) ∼= H0(Xξ(A); Ω1

Xξ(A)).

Deligne’s Mixed Hodge Theory for quasi-projective varieties [10] implies the fol-
lowing decomposition:

(3.2) H1(Mξ(A);C) ∼= H1(Xξ(A);OXξ(A))⊕H0(Xξ(A); Ω1
Xξ(A) log(Dξ(A))).

The first terms of the direct sum decompositions of (3.1) and (3.2). The second
terms can be related using Poincaré residues. Let us consider the following short
exact sequence of sheaves:

(3.3) 0→ Ω1
Xξ(A) → Ω1

Xξ(A) log(Dξ(A))→
⊕

D∈Dξ(A)

i∗OD → 0.

Let us consider two exact sequences associated to the first terms of the associated
long exact sequence:

(3.4) 0→ H0(Xξ; Ω1
Xξ

)→ H0(Xξ; Ω1
Xξ

log(Dξ))→ H(A)→ 0,
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(3.5) 0→ H(A)→
⊕
D⊂Dξ

H0(D;OD)→ H1(Xξ; Ω1
Xξ

) ⊂ H2(Xξ;C),

where H(A) is the cokernel of the first map (and by exactness, the kernel of the
second one).

We deduce the following formulæ:

(F1) dimH1(Xξ;C) = 2 dimH1(Xξ;OXξ).

(F2) dimH1(Mξ;C)=2 dimH1(Xξ;OXξ)+dim ker

⊕
D∈Dξ

C〈D〉 → H2(Xξ;C)

.

(F3) dimH1(M(A);Cξ) = dimH1(Xξ;OXξ)ξ + dimH1(Xξ;OXξ)ξ̄ + dξ, where

dξ := dim ker

⊕
D∈Dξ

C〈D〉 → H2(Xξ;C)

ξ

and the superscript ξ means

the eigenspace relative to ξ.

The two first terms in (F3) give depend only on Xξ, namely its sum coincides
with dimH1(Xξ;C)ξ, while the term dξ may depend on the quasi-projective vari-
ety M(A).

Theorem 3.10 ([16]). If ξ is fully ramified then H1(Xξ;C)ξ = H1(Mξ;C)ξ.

4. Computation of the projective terms

The two first terms in (F3) give depend only on Xξ and we will refer to them
as the projective terms, since its sum coincides with dimH1(Xξ;C)ξ. The term dξ

may depend on the quasi-projective variety M(A) and it will be called the quasi-
projective term.

Definition 4.1. A character ξ ∈ T(A) is fully ramified if ξ(tj) 6= 1, ∀j ∈
{0, . . . , n}. For a general caracter we denote by Aξ := {L̄j | ξ(tj) 6= 1} the
ramification locus and by Aξ0 := {L̄j | ξ(tj) = 1} the unramification locus.

Theorem 4.2 ([16]). If ξ is fully ramified then H1(Xξ;C)ξ = H1(Mξ;C)ξ.

Hence, for fully ramified characters ξ, the projective terms determine at which
characteristic varieties the character ξ belongs.

In [19], Libgober gives a procedure to compute dimH1(Xξ;C)ξ which will be
explained in a slightly different way than in the original sources where the general
case of an algebraic plane curve is treated. The case of line arrangements is simpler.

Let us fix from now on a unitary character ξ ∈ T(A); in fact we only need to
consider torsion characters but the exposition is essentially the same.
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Definition 4.3. The real representative of ξ is given by (r0, r1, . . . , rn) ∈ [0, 1)n+1

such that ξ(tj) = exp(2iπrj). The level of ξ is `(ξ) := r0 + · · · + rn ∈ Z (recall
that

∏n
i=0 ti = 1).

Definition 4.4. Let P ∈ PA. Denote

rP :=
∑
P∈Lj

rj and sP := max{0, brP c − 1}.

The ideal of quasiadjunction of P with respect to ξ is JP,ξ :=MsP
P , whereMP is

the maximal ideal of the local ring OP2,P .

Theorem 4.5 ([19]). The dimension of dimH1(Xξ;OXξ)ξ equals

dim coker

(
σξ : H0(P2;OP2(`(ξ)− 3))→

⊕
P∈P

OP2,P/JP,ξ
)
.

The map σξ is defined as follows. Choose a line L̄∞ disjoint to PA. We identify
this line as the line at infinity and we choose coordinates x, y for C2. Then

H0(P2;OP2(k)) = {f ∈ C[x, y] | deg f ≤ k}, for any k.
The map σk consists of considering the germ of holomorphic function of a poly-
nomial at any P ∈ PA. Note that in particular, P(kerσξ) is identified the space of
curves of degree `(ξ)−3 passing through P with multiplicity at least sP , ∀P ∈ PA.

Remark 4.6. If mP = 2 then JP,ξ = OP2,P . We can restrict our attention to
P>2,A := {P ∈ PA | mP > 2}. For P ∈ P>2,A, the bound mP − 1 > sP holds.

The source and the target of σξ are of combinatorial nature. On the other side,
cokerσξ and kerσξ are determined each other. Since kerσξ consist of the space of
curves of degree `(ξ) − 3 passing through P ∈ P>2 with multiplicity at least sP .
In particular, dim ker σξ is not a priori a combinatorial invariant and the same
happens for the projective terms.

Example 4.7. Let A = {L̄0, . . . , L̄n} be an arrangement with only one multiple
point P ∈ L̄i. Consider a character ξ fully ramified of level `. In this case,
sP = `− 1 and

dim coker
(
σξ : H0(P2;OP2(`− 3))→ OP2,P/M`−1

P

)
= `− 1.

Note that `(ξ̄) = n+ 1− `.

Example 4.8. Let us consider the Ceva arrangement consisting of the six lines
passing through 4 points P1, . . . , P4, in general position. Let us consider a char-
acter ξ; the images of the meridians of the lines are t, s, u ∈ C∗, tsu = 1, as in
Figure 13. We assume that `(ξ) = 4. Then, sPi = 1 and
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t

ts su u

Figure 13. Ceva arrangement

dim coker
(
σξ : H0(P2;OP2(1))→ C4

)
= 1.

Example 4.9. Let us consider the Pappus arrangement A given by

xz(4x− y + 2z) = 0

y(x− y − z)(2x+ y + 2z) = 0

(x− y)(2x+ y + z)(y + 2z) = 0.

The set PA consists of nine double points and nine triple points. Let us consider
the character ξ defined by ξ(µi) := exp(2iπ 2

3
). Its level is ` = 6 and sP = 1 for all

triple points. Note that

dim coker
(
σξ : H0(P2;OP2(3))→ C9

)
= 1.

This example was studied in [2]. In this paper another arrangement of nine lines
is studied, with the same number of double and triple points and where σξ is
surjective.

Example 4.10. Let us consider the Hesse arrangement, i.e. the lines joining the
nine inflection points of a smooth cubic, which admits the following equation

xyz(x3y3z3 − 27(x3 + y3 + z3)3) = 0.

It has 9 quadruple points and 12 double points. Let us consider the character ξ
defined by ξ(µi) := −1. Then ` = 6, sP = 1 and

dim coker
(
σξ : H0(P2;OP2(3))→ C9

)
= 1.

4.1. Quasi-adjunction polytopes. This concept is introduced in [19], in order
to study all fully-ramified character in finite time.

Let us consider the semi-open cube K := [0, 1)n+1. In this cube we will consider
the level cubes K` := K ∩ {r0 + · · ·+ rn = `}, ` ∈ {1, . . . , n}.

Let us fix a point P ∈ P>2 and associate the following subsets

KP,k :=

{
∑

P∈Lj rj < 2} if k = 0

{k + 1 ≤∑P∈Lj rj < k + 2} if 1 ≤ k < mP − 1
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These subsets have the following property. Let ξ be a character and let (r0, . . . , rn)

be its real representative. Then:

(r0, . . . , rn) ∈ KP,k ⇐⇒ JP,ξ =Mk
P ,

For a fixed `, the sets {KP,k | P ∈ PA} induce a finite partition of K`. The
partition subsets are called the quasi-adjunction polytopes.

Proposition 4.11. Two characters in the same quasi-adjunction polytope share
the map σξ.

Remark 4.12. The structure of characteristic varieties impose conditions on the
polytopes containing a character ξ and its conjugate ξ̄, which may impose condi-
tions on the position of the points in P>2.

What is behind this section is the following. The information about fully-
ramified characters can be obtained studying cyclic ramified coverings of P2, fol-
lowing the ideas of Zariski [26], Esnault-Viehweg [11, 12, 13], Libgober [16], Loeser-
Vaquié [21] and the author [3].

5. Coordinate components and quasi-projective term

Let A := {L̄0, L̄1, . . . , L̄n} be a line arrangement in P2. Let us consider the
torus T(A); using the coordinates (t0, t1, . . . , tn) we consider T(A) as the subtorus∏n

i=0 ti = 1 in (C)n+1. Let ∅ 6= J ⊂ {0, 1, . . . , n}; let us consider the subarrange-
ment AJ := {L̄j | j ∈ J}. Note that the torus T(AJ) is in a natural way a
subtorus of T(A), namely

T(AJ) = T(A) ∩ TJ , TJ := {(t0, t1, . . . , tn) ∈ Cn+1 | ti = 1 if i /∈ J}.
Moreover, it is clear that Vk(AJ) ⊂ Vk(A) but it as we will see in general Vk(AJ) $
Vk(A) ∩ TJ .

Definition 5.1. Let Σ be an irreducible component of Vk(A). The component is
said to be:

(1) Coordinate if Σ is contained in TJ for some ∅ 6= J $ {0, 1, . . . , n}.
(2) Non-coordinate if it is not coordinate.
(3) Non-essential coordinate if Σ is an irreducible component of Vk(AJ) for

some ∅ 6= J $ {0, 1, . . . , n}.
(4) Essential coordinate if it is coordinate but not non-essential.

In order to compute the characteristic varieties of A, we may apply induction
on the number of lines. For n = 0 it is clear that the characteristic varieties are
empty. Let us assume that n > 0. Non-coordinate components are computed using
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Section 4 and non-essential coordinate components are assumed to be computed
using induction hypothesis. We need only to compute the essential coordinate
components.

Remark 5.2. Let us consider the irreducible components of Vk(A)∩TJ . There are
three types of components: essential and non-essential coordinate components in
TJ and intersection with TJ of irreducible components not contained in TJ .

From now on we fix a torsion character ξ ∈ T(A) (of order h) and we assume
that it is not fully-ramified, i.e., Aξ0 is non-empty. For simplicity, we will assume
that Aξ0 = {L̄m, . . . , L̄n}, for some m < n.

Recall that M(A) = Xξ \Dξ and Dξ is the set of irreducible components of Dξ.
Let us show how Xξ is constructed. Let π : Y → P2 the blowing-up of P>2,A. The
divisor

⋃ Ã := π−1(
⋃A) is a normal crossing divisor and M(A) = Y \⋃ Ã. Its

irreducible components are:

• L̃j, 0 ≤ j ≤ n, strict transforms of the lines in A;
• EP , P ∈ P>2,A, the exceptional components of π.

Lemma 5.3. The intersection of the components of Ã is given by:

(1) E2
P = −1;

(2) (L̃j)
2 = 1− aj, aj := #{P ∈ P>2 | P ∈ L̄j};

(3) for i 6= j, L̃i ∩ L̃j 6= ∅ ⇐⇒ L̄i ∩ L̄j /∈ P>2;
(4) for P 6= Q, EP ∩ EQ = ∅.
(5) EP ∩ L̃i 6= ∅ ⇐⇒ P ∈ L̄i.

Lemma 5.4. For P ∈ P>2,A, the homology class of a meridian of EP is given by
tP :=

∏
P∈L̄j tj ∈ H1(M(A);Z).

Definition 5.5. Let B ∈ Ã. The neighboring subgroup GB of B is the subgroup of
C∗ generated by ξ(tB) and ξ(tC) for the components C ∈ Ã such that C ∩B 6= ∅.
The neighboring index is nB := # im ξ

#GB
= h

#GB
.

We defined ρξ as a branched covering Xξ → P2. It is more useful now to
consider ρξ as a branched covering Xξ → Y . This map is constructed in two steps.
First we consider the normal model of the branched covering of Y with respect
to ξ; this normal model has some isolated singular points which are quotient
singularities. The space Xξ is the minimal resolution of the normal model. The
divisor Dξ = ρ−1

ξ (
⋃ Ã) is a normal-crossing divisor.

The set Dξ has three types of elements:

• A1, . . . , As, satisfying that ρξ(Aj) is a point, ∀j = 1, . . . , s.
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• For B ∈ Ã, ρ̂−1
ξ (B) ⊂ Dξ, where ρ̂−1

ξ means strict transform.

Definition 5.6. We say that B ∈ Ã is said unramified if ξ(tB) = 1, and inner
unramified if it is unramified and it is also the case for all its neighbors. We denote
by Uξ ⊂ Ã the set of the inner unramified components.

Remark 5.7. A component B ∈ Ã is unramified if it is the strict transform of L̄i ∈
Aξ0 or it is the exceptional component of some P ∈ P≥2,A such that

∏
P∈L̄i ti = 1.

In order to be inner unramified the following conditions must be fulfilled:

• B = EP and all the lines through P are in Aξ0.
• B = L̃i, all the lines intersecting L̄i at double points are in Aξ0 and all the
points P ∈ P≥2,A ∩ L̄i satisfies tP = 1.

The intersection form on H2(Xξ;Z) induces a non-degenerate hermitian form
in H2(Xξ;C). For this hermitian form, the decomposition in eigenspaces for ξ̃ is
orthogonal.

Lemma 5.8. There is an isomorphism Uξ := C〈Uξ〉 ≡
(⊕
D∈Dξ

C〈D〉
)ξ

, given by

B ↔ 1√
h

h∑
j=1

exp

(
−2iπ

j

h

)
Bj.

The induced hermitian form on C〈Uξ〉, denoted by ·ξ, is non-degenerate.

Notation 5.9. ΓUξ denotes the dual graph of Uξ.

Proposition 5.10. If ΓUξ is a tree, then ·ξ coincides with the restriction of the
usual intersection form in Uξ.

Example 5.11. For which characters ξ, is Uξ formed by the green lines? ξ(t1) =

x ∈ C∗ =⇒ ξ(t2) = x−1 =⇒ ξ(t3) = x =⇒ ξ(t4) = x−1

·ξ :

(
−1 1

1 −1

)
Let us study the twisted intersection form when ΓUξ is not a tree. Fix TUξ a

maximal tree. The edges of ΓUξ correspond to pairs B,C such that B ·C = 1; the
oriented edge from B to C is denoted by

−−→
BC.

If
−−→
BC * TUξ then it defines a cycle γB,C ∈ H1(ΓUξ ;Z) which is well-defined

mod ker ξ (γC,B = γ−1
B,C).
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L̄1
L̄2

L̄3

L̄4

Figure 14. Ceva arrangement

−1 −1

Figure 15. ΓUξ

B ·ξ C =


0 if B · C = 0

B · C if either B = C or
−−→
BC ⊂ TUξ

ξ(γB,C)(B · C) if
−−→
BC * TUξ

For an order in Uξ consider the matrix A(Uξ) of this twisted hermitian product
on Uξ.

Example 5.12. Let us study now the extended Ceva arrangement.

L̄1
L̄2

L̄3
L̄4

Figure 16. Extended Ceva arrangement

For which characters ξ, is Uξ formed by the green lines? ξ(t1) = x ∈ C∗

=⇒ ξ(t2) = x−1 =⇒ ξ(t3) = x =⇒ ξ(t4) = x−1 x = x−1 = −1, ρ 2-fold cover.

Theorem 5.13. corankA(Uξ) = dim ker

⊕
D⊂Dξ

C〈D〉 → H2(Xξ,C)

ξ

.
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L̄1
5 L̄1

6

L̄1
7

L̄2
5 L̄2

6

L̄2
7

(a)

L̄1
5

L̄1
6L̄1

7

L̄2
5 L̄2

6 L̄2
7

(b)

L̄5
L̄6

L̄7

(c)

Figure 17. Steps

−1 −1

−1

Figure 18. ΓUξ

• The key point in the proof is Hodge Index Theorem, and the fact that the
positive part is included in the eigenspace for 1.
• The matrices A(Uξ) are not a priori combinatorial invariants.
• One can proceed conversely. Fix a subset U ⊂ Ã and consider the charac-
ters ξ for which U = Uξ and look for ξ such that corankA(Uξ) > 0.
• Look for isolated characters!
• Not isolated for Ceva arrangement.
• Corank 2 for extended Ceva Arrangement [9].
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