
CHARACTERISTIC CLASSES

ENRIQUE ARTAL

In this text X is a topological space which is Hausdorff and paracompact, and in most
cases admits a countable basis. We will deal mostly with differentiable (or complex ana-
lytic) manifolds, and with CW -complexes. In the previous lectures, the concept of vector
bundle has been defined. The goal of these notes is to define Euler, Chern and Pontrja-
gin characteristic classes in different ways, in particular from classifying spaces, and their
relationship with K-theory.

The readers should already have notions on vector bundles, K-theory, singular homology
and cohomology (including cup-products).

1. About characteristic classes

We can see a characteristic class of vector bundles as a map from the set of K-vector
bundles (K = R,C) over a nice topological space X (mostly a connected manifold, differ-
entiable or analytic) to the cohomology ring of X over a ring (usually Z or a field). This
map must be compatible with pull-backs. If p is a characteristic class, π : E → X is a
vector bundle and f : Y → X is continuous, then p(f ∗E) = f ∗(p(E)).

Such a characteristic class is said to be stable if for E1, E2 vector bundles, p(E1⊕E2) =

p(E1)^p(E2). Note that in that case, if we replace H∗(X;R) by its completion Ĥ∗(X;R)

(i.e., replace the direct sum of homogeneous cohomology groups by the cartesian product)
and we assume that p(E) is invertible in H∗(X;R) (basically its zero-part is invertible
in R) the characteristic class descends to the K-theory of X if we replace its cohomology
ring by its completion in order to define p(−E).

We will follow several approaches for the definitions which should converge to compatible
ones. Let X be a paracompact space. Let us recall that the set of isomorphisms classes
of n-vector bundles is in bijection with the set [X,Gr(n,∞)] of homotopy classes of maps
from X to the infinite Grasmannian.

Theorem 1.1. The cohomology ring of Gr(n,∞) is isomorphic to Z[c1, . . . , cn], where
deg cj = 2j.

This provides a simple way to define characteristic classes, after a precise choice of signs
for the generators of the ring. The jth-Chern characteristic class cj(E) ∈ H2j(X;Z) of a
complex vector bundle π : E → X (of rank n) defined by a map f : X → Gr(n,∞) is
defined as f ∗(cj) (if j ≤ n, and 0 if j > n). This definition obviously satisfies the first
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requirement and if we define the total Chern class as 1(= c0(E)) +
∑n

j=1 cj(E) we will
prove later that it descends to the K-theory.

This definition is not so much useful neither for computations nor for guessing their
properties. This is why it may be useful to get other insights.

The second family of characteristic classes are Pontrjagin ones. Let π : E → X be an
R-vector bundle of rank n. It determines a complex vector bundle EC such that its fibers
are Ex ⊗R C; from the structural group point of view, we extend GL(n;R) ↪→ GL(n;C).

Recall that given a complex vector bundle E1, we can consider its conjugate Ē1 (where
multiplication by ±

√
−1 is exchanged). Using a hermitian metric, we have that Ē1

∼= E∗1 ;
we will see later that cj(Ē1) = (−1)jcj(E1).

Since EC ∼= ĒC, we deduce that 2c2j+1(EC) = 0 (they will vanish if there is no 2). The
jth-Pontrjagin class of E is defined as pj(E) := (−1)jc2j(EC).

We finish this part with some ideas about the Euler class the construction of the Euler
class. Let π : E → X be a rank n oriented R-vector bundle. In this introduction we
consider only the case n = 2. Let us start with the case n = 2. Let us assume that X is
a CW -complex. Since π is orientable we can fix a trivialization in the 1-skeleton X1. Let
e be a 2-cell, and let fe : B̄2 → X be the attaching map. Since f ∗e (E) is a trivial bundle
(B̄2 is contractible) we can take a nowhere vanishing section of f ∗e (E); if we denote by Ee
the restriction of this bundle to S1, the restriction of the section defines ge : S1 → Ee. On
the other since E is trivial over X1 we have another trivialization he : f ∗e (E)S1 → S1 ×R2.
Normalizing the image of πR2 ◦ he ◦ ge, we obtain a map ρe : S1 → S1.

We define the cochain c : C2(X)→ Z by c(e) := − deg ρe; it is a cocycle and a different
choice of trivialization over X1 provides a cobordant cocycle, so its cohomology class is
well-defined and it is called the Euler class of E, denoted by e(E) ∈ H2(X;Z).

Remark 1.2. If E is a real oriented vector bundle of rank n > 2 over a CW -complex
X and it admits a trivialization over the 2-skeleton, then it admits also a trivialization
over the (n− 1)-skeleton and the same kind of arguments hold to provide the Euler class
e(E) ∈ Hn(X;Z). We will use the Thom isomorphism to define the Euler class without
this restriction.

Example 1.3. Let us consider the tautological line bundle over P1, i.e., E := {(p, `) ∈
C2 × P1 | p ∈ `}, with the restriction of the second projection. Let Cx := {[x : y] ∈ P1 |
y 6= 0} = {[x : 1] ∈ P1 | x ∈ C}; we define in the same way Cy for x 6= 0. We have the
charts,

([x : y], t) ∈ Cx × C→
((

x

y
t, t

)
, [x : y]

)
, ([x : y], t) ∈ Cy × C→

((
t,
y

x
t
)
, [x : y]

)
.
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The change of charts is given by

([x : y], t)

((
xt

y
, t

)
, [x : y]

) (
[x : y],

xt

y

)
Φx Φy

and the transition function Cx ∩ Cy → GL(1;C) = C∗ is given by [x : 1] 7→ x. In order to
simplify the computation of the Euler class we fix the following CW -complex decomposition
of P1: one cell e0 of dimension 0, the point [−1 : 1], one cell e1 of dimension 1, the arc
{[exp(

√
−1πu) : 1] | u ∈ (−1, 1)}, and two cells of dimension 2, e2

x := {[x : 1] | |x| ≤ 1}
and e2

y := {[1 : y] | |y| ≤ 1}. If we identify B̄2 with {x ∈ C | |x| ≤ 1}, the attaching maps
are given by:

u ∈ [−1, 1]
fe17−→ [exp(

√
−1πu) : 1], x ∈ B̄2

f
e2x7−→ [x : 1], y ∈ B̄2

f
e2y7−→ [1 : y],

The bundle is trivialized over the 1-skeleton:

([x : 1], t) 7→ ((tx, t), [x : 1])

For the cell e2
x the pull-back is

{(x, (s, t), [x : 1]) ∈ S1 × C× P1 | s = tx}

and as a nonvanishing section we can consider x 7→ (x, (x, 1), [x : 1]). The map ρe2x is given
by x 7→ 1, of degree 0.

For the cell e2
y the pull-back (restricted to the boundary) is

{(y, (s, t), [1 : y]) ∈ S1 × C× P1 | t = sy}

and the restriction of the nonvanishing section is given by y 7→ (y, (1, y), [1 : y]). The map
ρe2y is given by

y 7→ (y, (1, y), [1 : y]) 7→ ([y−1 : 1], y) 7→ y.

The cocycle is defined by c(e2
x) = 0, c(e2

y) = −1, i.e., the image of fundamental (positive
class) of P1 is −1.

1.4. More on oriented vector bundles of rank 2. Let π : E → X such a bundle,
where X is a CW -complex. Let us restrict our attention to the 2-skeleton; for simplicity,
we assume X = X2. Recall that we can trivialize E over the 1-skeleton X1, in particular,
this fiber bundle will come as the pull-back of a fiber bundle over X2/X1 which is a bouquet
of a number of S2. So, we are interested in understanding rank 2 oriented vector bundles
over S2; since we can assume these bundles to be riemannian, they are identified with
vector bundles. If we identify S2 ≡ P1(C) ≡ C ∪ {∞}, the Euler class can be interpreted
as follows. Let sx : B̄2 → E, sy : (C \ B2) ∪ {∞} → E be nowhere vanishing sections.
We orient S1 ⊂ C as the boundary of B̄2. Let x ∈ S1; note that sy(x)

sx(x)
can be interpreted
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as a complex number ρ(x); let m := deg ρ. Then, the Euler class is m1̌, where 1̌ is the
positively oriented generator of H2(S2,Z).

1.5. Chern classes from Euler class of line bundles. Let π : E → X be a rank n
C-vector bundle. It is not hard to define the projectivized bundle πP : P(E) → X. As a
set, it is

∐
x∈X P(Ex), i.e., its fibers are complex projective spaces of dimension n− 1. Its

transition functions are modelled on PGL(n;C). We can consider the pull-back P∗π(E).
As a vector subbundle of this one we have the tautological bundle

τ(E) :=
∐
x∈X

{(v, `) ∈ Ex × P(Ex) | v ∈ `}.

The natural map πτ : τ(E)→ P(E) is a line bundle and let x := −e(τ(E)) ∈ H2(P(E);Z)

the Euler class.

Theorem 1.6. The cohomology ring H∗(P(E);Z) is a free H∗(X;Z)-module with basis
1, x, . . . , xn−1.

This theorem provides an alternative definition of Chern classes. Since xn is an element
of H∗(P(E);Z), we have a relation

xn + c1(E)xn−1 + · · ·+ cn−1(E)x+ cn(E) = 0,

where the coefficients are the Chern classes.

2. Infinite grasmannians

We have already defined the infinite Grasmannians GrK(r,∞) (K = R,C) as an inductive
limit lim−→GrK(r, n+ r). We are going to present them as CW -complex in order to compute
their cohomology. We borrow to J. Milnor the following definitions.

Definition 2.1. An open n-cell (or n-cell for short) is a topological space homeomorphic
to an open ball Bn in Rn. A closed n-cell is a topological space homeomorphic to an closed
ball B̄n in Rn.

Definition 2.2. A finite CW -complex consists of a Hausdorff topological space X with a
finite partition of X as union of n-cells such that

(CW1) For each cell e (of dimension ne) there exists a continuous map fe : B̄ne → X which
carries Bne homeomorphically onto e (the characteristic map of e).

(CW2) For each cell e its closure ē = fe(B̄ne) satisfies that ē \ e is a disjoint union of cells
of dimension < ne.

Definition 2.3. A CW -complex consists of a Hausdorff topological space X with a par-
tition of X as union of n-cells satisfying (CW1), (CW2) and
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(CW3) Each point of X is contained in a finite union of cells which form a closed finite
CW -complex (such finite unions will be called finite CW -subcomplex ).

(CW4) The space X is homeomorphic to the inductive union of its finite CW -complex, i.e.
U ⊂ X is open if and only if U ∩K is open in K for any finite CW -subcomplex K.

The k-skeleton of a CW -complex is the subcomplex obtained from the union of all cells
of dimension ≤ k. Let us recall the construction of the cellular chain complex. We orient
(arbitrarily) all the cells of X. Let us fix first a cell e of dimension n. The property (CW2)
provides a map fe| : Sn−1 → Kn−1. Let e′ be a cell of dimension n − 1. For this cell
we construct the space Sn−1

e′ which is obtained from Kn−1 by collapsing to a point the
closures of the cells of Kn−1 distinct from e′; the notation comes from the fact that it
is homeomorphic to Sn−1 (with a cell decomposition with two cells, e′ and the collapsed
point). The previous map induced a new one ge,e′ : Sn−1 → Sn−1

e′ . Since both spheres are
oriented, the degree of the map is well-defined and we define deg(e, e′) := deg ge,e′ . The
cellular chain complex C∗(X,Z) of X is the free abelian group with basis the cells of the
decomposition. This group is graduated by the dimensions of the cells. The boundary is
defined by

Cn(X;Z) Cn−1(X;Z)

e
∑
e′

deg(e, e′)e′

∂

Remark 2.4. Note that Cn(X;Z) is naturally isomorphic to Hn(Kn, Kn−1;Z) (Kn−1 =

∅). Moreover, δ : Cn(X;Z) → Cn−1(X;Z) is the connexion morphism of the long exact
sequence of the triple (Kn, Kn−1, Kn−2). The following diagram explains why we get a
complex

Hn−1(Kn−1;Z)

Hn(Kn, Kn−1;Z) Hn−1(Kn−1, Kn−2;Z) Hn−2(Kn−2, Kn−3;Z)

Hn−2(Kn−2;Z)

i∂

∂

∂

∂

i

The cochain complex is the dual one.

Let us construct a CW -complex structure on the infinite Grasmannian. Let us fix in
K∞ an infinite flag

0 ⊂ K ⊂ K2 ⊂ · · · ⊂ Kn ⊂ . . .
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Given H ∈ GrK(r,∞), there is a sequence of integers

dimK(H ∩ {0}) ≤ dimK(H ∩K) ≤ dimK(H ∩K2) ≤ · · · ≤ dimK(H ∩Kn) ≤ . . .

This sequence starts from 0 and ends in r, while the gap between two terms is either 1

or 0. The Schubert symbol of H isa sequence σ := (σ1, . . . , σr) of integers, such that
0 < σ1 < · · · < σr, representing the r places where dimK(H ∩ Kn) jumps. Sometimes it
is better to consider the sequence η = (ηi := σi − i)ri=1, where 0 ≤ η1 ≤ · · · ≤ ηr. If we
see the elements of K∞ as sequences (with only a finite number of non-zero entries), the
Schubert symbol of H determines a unique basis (v1, . . . , vr) as follows:

• v1 = (∗, . . . , ∗, 1︸ ︷︷ ︸
σ1 entries

, 0, . . . ).

• v2 = (∗, . . . , ∗, 0︸ ︷︷ ︸
σ1 entries

, ∗, . . . , ∗, 1

︸ ︷︷ ︸
σ2 entries

, 0, . . . ).

• We proceed in the same way. Each vector has ηi free entries.

Hence the set Σσ of subspaces with fixed Schubert symbol σ is parametrized by K|η|, where
|η| = η1 + · · ·+ ηr.

Exercise 1. Show that Σσ is homeomorphic to K|η|.

Lemma 2.5. Let H ∈ GrK(r,∞) and let σ̃ be its Schubert symbol. Then, H ∈ Σ̄ if and
only if η̃ ≤ η, i.e., η̃i ≤ ηi.

Proof. Since the finite Grasmannians GrK(r,N), r ≤ N , are closed in GrK(r,∞), then we
can work in a finite Grasmannian, for N ≥ max(σ ∪ σ̃). Recall that GrK(r,N) is the
quotient by right action of GL(r;K) of

{A ∈ Mat(N × r;K) | RankA = r}.

Each H ∈ GrK(r,N) admits a unique echelon representative. The Schubert symbol rep-
resents the steps of the echelon. An open neighborhood of H is given by the subspaces
for which the minor associated to σ̃ is non-zero. This open set is in bijection with the
matrices which are the identity on these rows. As a necessary condition for H ∈ Σ̄σ, there
must be subspaces with this Schubert symbol in this open set. It is easily seen that the
symbols present in this open set are those greater or equal than σ̃ and that all of them
have elements close to H. �

Sketch of the proof of Theorem 1.1. The CW -complex structure has cells only in even di-
mension, in particular the homology is isomorphic to the cell chain complex, and the
cohomology is dual to the cell cochain complex.
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Let us sketch first the proof for the projective space, i.e. P(C∞) = Gr(1,∞). We know
that H2j(P(C∞);Z) ∼= Z and the odd terms vanish. Let us denote by t ∈ H2(P(C∞);Z)

such that t(P1) = 1.
We proceed as follows. If X is an oriented compact manifold of real dimension n with no

torsion in its homology, given α ∈ Hk(X;Z) = Hom(Hk(X;Z),Z), we consider its Poincaré
dual a := PD(α) ∈ Hn−k(X;Z), defined by the property α(b) = a · b. The relationship of
Poincaré duality with cup product is defined as follows:

α^ β = PD−1(PD(α) · PD(β))

For the previous case, it is enough to compute t2 = t^t in H2(PN(C);Z) for N � 1. Note
that PD(t) = H, the class of a hyperplane (of dimension N − 1). Choosing two generic
such hyperplanes, we see that H1 ·H2 = S a projective subspace of codimension 2 which
is the Poincaré dual of t2. We check in this way that H∗(P(C∞);Z) is isomorphic to Z[t],
where tn is homogeneous of degree 2n and tn(Pn(C)) = 1.

Let us go to the general case. For a Schubert symbol σ, let cσ be the dual cochain and
aσ the corresponding cycle (it is the closure of the cell). For two such symbols σ′, σ′′, let
us compute its cup product cσ′ ^ cσ′′ . Let us choose N � 1 such that the cells of σ′, σ′′

are contained in GrC(n,N). Let us consider the Poincaré dual for the cochains cσ′ , cσ′′ .
The cell decomposition is associated to the choice of a basis (v1, . . . , vN) of CN . We can

fix a hermitian product for which it is an orthonormal basis. Let us consider the symbol

σ⊥ := (N + 1− σr−j+1)rj=1,

and construct the cell associated to the basis (vN , . . . , v1). From the matrix point of view,
the cells of σ and σ⊥ consist of upper echelon matrices for σ and lower ones for σ⊥ with
common boundary. We claim that the cells intersect at only one point. Note that the sum
of the dimensions of the cell is∑

j=1

σj +
r∑
j=1

(N + 1− σr−j+1)− r(r + 1) = r(N + 1)− r(r + 1) = r(N − r),

the dimension of the Grasmannian. Now, we want to compute the intersection of the
closures of the cells for (σ′)⊥ and (σ′′)⊥, using again reversed bases for each one of them.
Let us study the dimension of the common vectors in each position. In the jth-position,
the first cell provides dimension N + 1 − σ′r−j+1 − j, the second one N + 1 − σ′′r−j+1 − j,
and the total space has dimension N (N � r). Then, the dimension of the intersection is

(N + 2 + r − j − σ′r−j+1 − σ′′r−j+1)rj=1.

We claim now that this intersection can be seen as the closure of a cell with this symbol.
The dual of this cell is given by

(σ′j + σ′′j − j)rj=1.
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If σ is the corresponding symbol, note that η = η′ + η′′.
For a Schubert symbol σ, we denote cσ = c̃η. We have proved that c̃η′^c̃η′′ = c̃η′+η′′ . It

implies that H∗(GrC(r,∞);Z) is a polynomial ring in the variables c̃j := c̃ηj for j = 1, . . . , r

where
ηj := (0, . . . , 0︸ ︷︷ ︸

r−j times

, 1, . . . , 1︸ ︷︷ ︸
j times

).

The closure Pj for the cell for ηj is isomorphic to the Grasmannian of hyperplanes in
C(r + 1)/Cr−j, isomorphic to a projective space of dimension j. For the orientations, we
impose that c̃j(Pj) = (−1)j. �

3. Principal bundles

Definition 3.1. Let G be a Lie group. A G-principal bundle is a map π : P → X, locally
trivial bundle, such that there is a right free action of G on P such that

P

X P/G

πGπ

∼=

Note that in the case of vector bundles the fibers are naturally vector spaces while the
fibers of a principal bundle are homeomorphic to G but they are not Lie groups, since
there is no neutral element, they are G-torsor spaces.

Remark 3.2. If a G-principal bundle π : P → X admits a section s : X → P , then π is a
trivial bundle. Note that X ×G→ P , (x, g) 7→ s(x) · g is a trivialization.

Example 3.3. Let π : E → X be a vector bundle of rank n. For each x ∈ X, let Fx be the
set of ordered bases (frames) of Ex. There is a natural right action Fx × GL(n,R) → Fx
such that ((

v1 . . . vn

)
, A
)
7→
(
v1 . . . vn

)
· A,

where the frames are intepreted as row matrices with vector entries.
We can induce a topological structure on F :=

∐
x∈X Fx as usual. Let πF : F → X the

natural projection. Let U be a trivializing open set for π, i.e., we have a homeomorphism
ΦU : U × Rn → π−1(U). Let vi : U → π−1(U), the local section given by vi(x) = Φ(x, ei).
Then, v : U → π−1

F (U), given by v(x) = (v1(x) . . . vn(x)) is a local section of F for which
ΦU(x, t) = v(x) · t (where t ∈ Rn is seen as a column vector). Moreover

Φ̃U : U ×GL(n,R)→ π−1
F (U), (x,A) 7→ v(x) · A.

If ΦV : V ×Rn → π−1(V ) is another trivialization we can define in the same a local section
w : V → π−1

F (V ). Recall that the transition functions ΦV,U : U ∩ V → GL(n;R) are
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determined by the following property (for any x ∈ U ∩ V ):

(x, t) v(x) · t = w(x) · ΦV,U(x)︸ ︷︷ ︸
v(x)

·t (x,ΦV,U(x) · t).ΦU ΦV

In the same way:

(x,A) v(x) · A = w(x) · ΦV,U(x)︸ ︷︷ ︸
v(x)

·A (x,ΦV,U(x) · A)
Φ̃U ΦV

The frame bundle of E is a GL(n;K)-principal bundle.

3.4. Reduction of the structural group. Note that the frame bundle of E contains
essentially all the information contained in E. But in most cases this information can be
encoded using smaller groups.

Assume that π : E → X is a real vector bundle of rank n endowed with a riemannian
metric, i.e., with a scalar product 〈•, •〉x of Ex, such that for any pair of sections s, t :

U → E (over an open set U ⊂ X), the map x ∈ U 7→ 〈s(x), t(x)〉x is continuous (or
differentiable, or real analytic,. . . ).

Then, we can work with orthonormal frames, i.e., orthonormal bases of Ex, x ∈ X. The
above discussion can be rephrased if GL(n;K) is replaced by O(n;R). Not only, the group
is simpler, but it captures the extra structure.

If we consider a rank n complex bundle with a hermitian metric, the reduction is done
to U(n).

3.5. Oriented bundles. Recall that an orientation of a finite dimensional R-vector space
stands for the choice of an ordered basis (up to basis change of positive determinant). A
real vector bundle is orientable if it is possible to choose an orientation for each Ex such
that the bundle can be locally trivialized by charts determining local sections of positive
frames. In that case a rank n real bundle admits a GL+(n;R)-reduction. If it is riemannian,
the reduction can be done to SO(n;R).

Other functorial properties admit an interpretation in terms of reduction, i.e., the ex-
istence of a volume form on each fiber (compatible with trivializations) is an SL(n;K)-
reduction. The projectivization of a bundle can be understood in terms of reduction to
PGL(n;K).

On the other side we can also extend the group. For example, any O(n;R)-principal
bundle naturally induces a GL(n;R)-principal bundle (for the associated riemannian vec-
tor bundle it amounts to forget the metric). In the same way a GL(n;C)-principal bun-
dle induces a GL(2n;R)-principal bundle (for the associated riemannian vector bundle it
amounts to forget the multiplication by

√
−1).
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3.6. Lifting of a principal bundle. Let H,G be two Lie groups, with an epimorphism
ρ : H → G. A G-principal bundle π : PG → X can be lifted to an H-principal bundle
(via ρ) if there is a bundle morphism (over 1X : X → X) equivariant with respect to ρ.

It can be done if the transition functions ΦV,U : U ∩ V → G can be lifted to ΨV,U :

U ∩ V → H, ρ ◦ ΨV,U = ΦV,U , such that the cocycle condition is preserved. For example,
recall that for SP(n;R) is the two-fold cover of SO(n;R). A spin structure of a riemannian
vector bundle is related with the existencie of lifting of the orthogonal principal bundle to
the spin group.

3.7. Universal principal bundles. Let us fix G = GL(r;R). For N ≥ r, we consider the
Stiefel manifold V (r,N) defined as {V = (v1, . . . , vr) ∈ (RN)r ≡ Mat(N×r;R) | RankV =

r}. We can also define V (r,∞) :=
⋃
N≥r V (r,N) with the limit topology. There is a natural

map π : V (r,∞) → Gr(r,∞), where π(V ) is the subspace generated by v1, . . . , vr. We
interpret the elements of V (r,∞) as matrices with r columns and rows in bijection with N
such the number of nonvanishing rows is finite. We denote by τ+ : V (r,∞)→ V (r,∞) the
map that shifts downward (one place) all the rows, adding a zero row in the first place.

Lemma 3.8. Let H : V (r,∞) × [0, 1] given by H(V, t) := (1 − t)V + tτ+(V ). It is a
continuous homotopy relating 1V (r;∞) and τ+.

Proof. We need to check thatH is well-defined, i.e., if V ∈ V (r;∞), then RankH(V, t) = r,
for t ∈ (0, 1). Let us take N such that all the rows of V vanish starting from N . Then, we
can see V and H(V, t) as N × r matrices. Let w1, . . . , wN be the row vectors. We know
that dimR〈w1, . . . , wN−1〉 = r. The rows of H(V, t) are

(1− t)w1, (1− t)w2 + tw1, . . . , (1− t)wN−1 + twN−2, twN−1

which generate the same subspace of dimension r. �

Let V0 be the matrix whose first r rows are the identity and the next ones vanish.

Lemma 3.9. Let K : V (r,∞)× [0, 1] given by H(V, t) := (1− t)τ r+(V ) + tV0. It is a con-
tinuous homotopy relating τ+ and a constant map. In particular, V (r,∞) is contractible.

The fact that V (r,∞) is important. Let us check some hidden consequence.

Proposition 3.10. Let π : P → X be a G-principal bundle. Then there is a continuous
map f : X → Gr(r,∞) such that P = f ∗(V (r,∞)). In particular the isomorphism types
of G-principal bundles over X is in bijection with [X,Gr(r,∞)]

Proof. It is enough to consider the map for the associated vector bundle constructed as
E := P ×G Rn where

P ×G Rn := (P ×G)/(p · g, v) ≡ (p, g · v). �
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We are going to construct universal principal bundles for arbitrary Lie groups. Fix a
Lie group G and consider the cone Cone(G) := (G× [0, 1])/G× {0}. Its elements will be
written as t · g (if t = 0, the value of g is irrelevant). We define

EGn := {〈t1 · g1, . . . , tn · gn〉 ∈ Cone(G)n |
n∑
i=1

ti = 1}.

There is a natural right G-action 〈t1 ·g1, . . . , tn ·gn〉·g := 〈t1 ·g1g, . . . , tn ·gng〉 and let BGn :=

EGn/G, whose elements (equivalence classes) will be denoted by [t1 · g1 : · · · : tn · gn]. Let
us check that π : EGn → BGn is a principal bundle. If Ui ⊂ BGn is the open set for which
ti > 0, note that an element of Ui can be written as [t1 · g1 : · · · : ti · 1 : · · · : tn · gn], and
there is an obvious trivialization.

As usual we consider the union of these objects with inductive limit topology to construct
EG, BG. Using the same kind of ideas as before, it is easily seen that EG is contractible.

Theorem 3.11. Let πP : P → X be a G-principal bundle. Then there is map f : X → BG

such that P ∼= f ∗(EG).

Proof. Let {Uα}α∈A be a locally finite open covering of X for which P is trivial over any Uα.
We assume also the existence of a partition of unity {ρα}α∈A supported by the covering.
Given any finite subset I ⊂ A, we associate the open set

WI := {x ∈ X | ρi(x) > ρj(y) whenever i ∈ I, j ∈ J}.

Let Wm the union of the open sets WI for I such that #I = m. From the properties of the
partitions of a unity each WI is contained in any Ui (for i ∈ I), Wm is a disjoint union of
the sets WI , and {Wm}m∈N. The family Wm is locally finite and a new partition of unity
{ρm}m∈N can be defined. Note that P trivializes over each Wm.

Let Φm : Wm × G → π−1
P (Wm) be a trivialization. For p ∈ π−1

P (Wm), let ϕm(p) :=

πG(Φ−1
m (p)). Then, we define

F (p) := 〈ρm(πP (p)) · Φm(p)〉m∈N;

note that we need to have a value of Φm(p) if p /∈ Wm. The map F is clearly equivariant
for the actions of G and the result follows. �

Remark 3.12. With standard techniques we can prove that two principal bundles are iso-
morphic if and only they come from isotopic maps. As a consequence the bases of two
universal G-principal bundles are homotopic. Since EG is contractible this is the case
for any one. There is a shift between the homotopy groups of G and those of BG. Any
contractible principal bundle is universal.
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4. Thom isomorphism theorem and Euler class

In this section π : E → X is an oriented R-vector bundle of rank r. If V is an R-vector
space of dimension r, we recall that an orientation is the choice of an ordered basis up to
a change of basis of positive determinant. Let us interpret it from a cohomology point of
view. Let V0 := V \ {0}. From the long exact cohomology sequence of pairs, we have that
Hn(V, V0;Z) is isomorphic to Hn−1(V0;Z); if we set in V a scalar product this is isomorphic
to H̃n−1(Sn−1;Z) ∼= Z. A choice of a generator is related with the choice of an orientation.
For example, if we choose the orientation of a basis (v1, . . . , vn), it is given by a cocyle
determined by its value equal to 1 on the simplex generated by (0, v1, . . . , vn) translated by
its barycenter. Let en be the chosen generator for V = Rn with the positive orientation.
We denote by E0 := E \ {0x | x ∈ X}.

Lemma 4.1. For n ≥ 1, the map Hj(B;Z)→ Hn+j(B×Rn, B×Rn
0 ;Z) given by c 7→ c×en

is an isomorphism.

Proof. Let us start with n = 1, and the cohomology sequence of triples for (B × R, B ×
R0, B× (0,∞)). Note that the middle terms Hn(B×R, B× (0,∞)) clearly vanish and he
have isomorphisms

Hj(B × R0, B × (0,∞))→ Hj+1(B × R, B × R0)

Working with the first pair we have that in this sequence the last map is surjective, and
then it is short

Hj(B × R0, B × (0,∞))→ Hj(B × R0)→ Hj(B),

implying that the first space is isomorphic to Hj(B). It is not hard to see that the
isomorphism can be expressed as in the statement. If U is an open set of B, we prove that

Hj(B,U)→ Hj+1(B × R, U × R ∪B × R0), c 7→ c× e1,

is an isomorphism, following Künneth formula. Let us prove the case n > 1. Note that en =

e1× · · · × e1. From induction hypothesis the map Hj(B)→ Hj+n−1(B×Rn−1, B×Rn−1
0 ),

c 7→ c × en−1, is an isomorphism. Replacing B 7→ B × Rn−1, U 7→ B × Rn−1
0 , we have an

isomorphism Hj+n−1(B×Rn−1, B×Rn−1
0 )→ Hj+n(B×Rn, B×Rn−1

0 ×R∪B×Rn−1×R0)

and the result follows. �

Theorem 4.2 (Thom isomorphism Theorem). There is exactly one cohomology class u ∈
Hn(E,E0;Z) which restricts to the orientation class on each fiber. Moreover, Hj(E;Z) is
isomorphic to Hj+n(E,E0;Z) via c 7→ c ∪ u.

This theorem implies in particular that Hj(E,E0;Z) = 0 if j < n.
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Proof. We proof first for E trivial. The isomorphism result has been stated. We need to
prove the existence and uniqueness of u. Note that 1 × en satisfies the property and is
clearly unique.

Let us assume that X = B′ ∪ B′′ open sets such that the statement is true for the
bundles over B′, B′′ and B′ ∩ B′′, denoted by E ′, E ′′ and E∩. Let u′, u′′, u∩ be the classes
of the statement. Note that

0 = Hn−1(E∩, E∩0 )→ Hn(E,E0)→ Hn(E ′, E ′0)⊕Hn(E ′′, E ′′0 )→ Hn(E∩, E∩0 )

By uniqueness the images of u′ and u′′ on Hn(E∩, E∩0 ) are u∩, and u exists ad is unique.
The isomorphism statement comes from Mayer-Viétoris and the five lemma. In particular,
we can prove the statement for compact X. Since it works also for arbitrary disjoint
unions, it can be extended to paracompact spaces. �

Definition 4.3. The Thom class is the unique class u ∈ Hn(E,E0;Z) of the Theorem.
The Euler class e(E) ∈ Hn(X;Z) is the unique class such that i∗u = π∗e(E)

We state the Gysin sequence Theorem. It is a direct consequence of Thom isomorphism
Theorem.

Theorem 4.4. There exists a long exact sequence of cohomology

· · · → Hj(X)
^e(E)−→ Hj+n(X)

π∗0−→ Hj+n(E0)→ . . .

Example 4.5. Let us consider the tautological line bundle studied in Example 1.3. It is
not hard to see that E0 has the homotopy type of S3. Hence the Gysin sequence gives

H1(S3)
=0

→ H0(S2)
∼=Z

^e(E)−→ H2(S2)
∼=Z

π∗0−→ H2(S3)
=0

We need only to decide if the Euler class represents the positive or the negative generator
of H2(S2;Z). Recall that e(E) = i∗(u) ∈ H2(E;Z), where u is the Thom class, whose
restriction to any fiber corresponds to its complex orientation; by Poincaré duality it
corresponds to the dual of the fiber, i.e., with the image of the zero section, identified with
S2. Let c be the positive generator of H2(S2;Z) ≡ H2(E;Z); we know that e(E) = εc,
ε = ±1 and that c(S2) = F · S2 = 1, if F is a fiber of the bundle. Then

ε = e(E)(S2) = S2 · S2 = −1.

In particular, both definitions of Euler class match.

Proposition 4.6. If f : Y → X is continuous then e(f ∗(E)) = f ∗(e(E)). In particular,
if E is trivial the e(E) = 0.

Proposition 4.7. Let −E be the same bundle with the opposite orientation. Then,
e(−E) = −e(E). In particular, if n is odd, then 2e(E) = 0.
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The last statement comes from the fact that multiplying by −1 is an isomorphism from
E to −E if n is odd.

Proposition 4.8. Let E ′, E ′′ two oriented vector bundles. Then e(E ′ × E ′′) = e(E ′) ×
e(E ′′). If the base space coincides then e(E ′ ⊕ E ′′) = e(E ′)^ e(E ′′).

In terms of Thom classes the equality involve a sign for the product of ranks. It does
not affect since this Euler class are annihilated by 2 if the ranks are odd.

Proposition 4.9. If E admits a nowhere vanishing section, then e(E) = 0.

Proof. Let E1 be the subbundle defined by the section; using a riemannian metric, we
can consider its orthogonal E2, i.e., E = E1 ⊕ E2, where E1 is trivial. Then e(E) =

e(E1)^ e(E2) = 0. �

Example 4.10. Let us consider the tautological universal bundle π : τC(1,∞)→ PC(∞);
denote τC(1,∞) as τ for short. We are going to see that its Euler class coincides with
−c1. It is enough to study the tautological bundle over P1(C). We need more knowledge
to identify the Euler class for the tautological universal bundle over a Grasmannian.

Proposition 4.11. Let E1, E2 be two complex line bundles over X. Then, c1(L1 ⊗ L2) =

c1(L1) + c2(L2).

Proof. It is straightforward for line bundles over P1 and it extends to arbitrary CW -
complex. �

5. Chern classes à la Bott-Tu

We are going to prove Theorem 1.6 which is a particular case of Leray-Hirsch Theorem.

Proof of Theorem 1.6. Let U ∈ X be an open set and consider the map

ΨU : H∗(U)〈1, x, . . . , xn−1〉 → H∗(P(E)|U ,Z)

such that ΨU(cxj) := π∗P(c)xj. We follow the same ideas as in the proof of Thom isomor-
phism Theorem: prove it first for trivializing open sets, second for decomposition in two
open sets such that the theorem holds for them and their intersection, third for disjoint
unions of trivializing open sets. �

Example 5.1. From this definition the naturality goes easily. If f : Y → X is a map,
then from the naturality of the Euler class, if y is the Euler class of the tautological bundle
over P(f ∗(E)) then y = f ∗x. Then, 0 = f ∗(

∑n
j=0 cj(E)xn−j) =

∑n
j=0 f

∗(cj(E))yn−j.

Example 5.2. If L is a line bundle, then X = P(L). By the definition of the class x we
have x+ c1(L) = 0, c1(L) = e(L).
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Theorem 5.3. Let E = E1 ⊕ E2. Then c(E) = c(E1)^ c(E2).

Proof. Denote by ni the ranks of the bundles. Let us consider the projectivized bundles
P(E) ⊃ P(E1),P(E2); note that P(E1) ∩ P(E2) = ∅. Moreover, by standard projective
geometry U1 := P(E) \ P(E1) ' P(E2) and U2 := P(E) \ P(E2) ' P(E1).

Let x, x1, x2 be the opposite of the Euler classes of the corresponding tautological bun-
dles. By naturality, if ij : P(Ej) ↪→ P(E) are the inclusions, then i∗j(x) = xj. Let us
consider the classes

Ci :=
n∑
j=0

cj(Ei)x
n−j ∈ Hni(P(E);Z)

By definition i∗j(Cj) = 0; hence it lifts to a class

Dj ∈ Hnj(P(E),P(Ej);Z) = Hnj(P(E), U3−j;Z).

The following exact sequence

Hn1(P(E), U2;Z)×Hn2(P(E), U1;Z) Hn1+n2(P(E), U1 ∪ U2;Z) ≡ 0

Hn1(P(E);Z)×Hn2(P(E);Z) Hn1+n2(P(E);Z)

^

^

implies that C1 ^C2 = 0 and the result follows. �

Corollary 5.4. Let E = L1 ⊕ · · · ⊕ Ln, splitting of E as Whitney sum of line bundles.
Then

c(E) =
n∏
j=1

c(Lj) =
n∏
j=1

(1 + c1(Lj)).

In particular, the top Chern class is the Euler class.

Definition 5.5. Let E be complex vector bundle over X. We say that f : Y → X is a
splitting map if f ∗(E) decomposes as Withney sum of line bundles and f ∗ : H∗(X;Z) →
H∗(Y ;Z) is injective.

Proposition 5.6. Any complex vector bundle has a splitting map (e.g, the flag associated
bundle).

Proof. We proceed by induction of the rank n. If n = 1, the result is obvious. Assume
n > 1. We are going to use 1.6. Consider πP : P(E)→ X; recall that π∗P defines an injection
of H∗(X;Z) into H∗(P(E);Z). Let us consider the pull-back π̃ : π∗P(E)→ P(E). We have
considered that tautological line subbundle τ(E) ⊂ π∗P(E); using a hermitian metric we
can construct the orthogonal subbundle Q such that π∗P(E) = τ(E) ⊕ Q, where Q is a
complex bundle of rank n− 1 over P(E). By induction, there is a map f : Y → P(E) such
that f ∗(Q) splits and f ∗ : H∗(P(E);Z)→ H∗(Y ;Z) is injective. Then, πP ◦ f : Y → X is
a split map. �
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Remark 5.7. We can be more explicit on the space Y . Given a (complex) vector space of
dimension n, a flag of V is a chain of subspaces 0 = H0 ⊂ H1 ⊂ . . . Hn−1 ⊂ Hn = V ,
dimCHj = j. The space F (V ) of all the flags of V is called the flag space of V and it
is a complex variety of (complex) dimension n(n−1)

2
. Under the presence of a hermitian

scalar product we can identify a flag with an ordered decomposition of V as direct sum of
1-dimensional subspaces.

Since GL(n;C) acts on F (Cn), we can define for a C-vector bundle π : E → X of rank n
the associated flag bundle F (E). Since it is constructed as a tower of projective bundles,
H∗(X;Z) is identified as a subring of H∗(F (E);Z) and E splits over F (E).

5.8. Splitting principle. If a polynomial identity for Chern classes of complex vector
bundles holds for Withney sums of line vector bundles, then it holds for any vector bundle.

Let us illustrate this principle for the result that top Chern class is Euler class, already
proved for decomposable bundles. Let π : E → X be a complex bundle of rank n, and let
f : Y → X be a splitting map. Then,

f ∗e(E) = e(f ∗E) = cn(f ∗(E)) = f ∗(cn(E)) =⇒ e(E) = cn(E).

Proposition 5.9. c1(E) = c1(detE).

Proof. Let us prove it for a splitted bundle E = L1 ⊕ · · · ⊕Lr. Note that detE =
∧r E =

L1 ⊕ · · · ⊕ Lr. Then,

c1(detE) =
r∑
j=1

c1(Lj) = c1(E). �

Proposition 5.10. Let E be a complex vector bundle. Then cj(Ē) = (−1)jcj(E).

Proof. It is enough to prove it for decomposable bundles. If L is a line bundle, using a
hermitian metric we have that L̄ ∼= L∗; since L ⊗ L∗ is a trivial bundle, we have that
c(L̄) = 1− c1(L). The result follows easily. �

5.11. Todd class. Consider the analytic function

Td(x) :=
x

1− e−x
= 1 +

1

2
x+

1

12
x2 − 1

720
x4 + . . .

The total Todd class for a line bundle L is defined as Td(L). If E = L1 ⊕ · · · ⊕ Lr then
the Todd class of E is TD(E) :=

∏r
j=1 Td(Lj):

Td(E) = 1 +
1

2

r∑
j=1

c1(Lj) +
1

12

r∑
j=1

c1(Lj)
2 +

1

4

∑
1≤i<j≤r

c1(Li)c1(Lj) + · · · =

1 +
1

2
c1(E) +

1

12
c1(E)2 − 1

12
c2(E) + . . .

The splitting principle allows to extend the definition to any bundle. The Todd class
appears in a natural way in Riemann-Roch formula.
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5.12. Chern character. We apply the ideas in the construction of the Todd class. For
a decomposable character E = L1 ⊕ · · · ⊕ Lr, we define

ch(E) :=
r∑
j=1

exp(c1(Lj)) = r+c1(E)+
1

2
(c1(E)2−2c2(E))+

1

3!
(c1(E)3−3c1(E)c2(E))+ . . .

The extension comes from the Splitting Principle. Note that ch(E ⊕ F ) = ch(E) +

ch(F ) and ch(E ⊗ F ) = ch(E) ^ ch(F ). Note that the Chern character defines a ring
homomorphism K(X)→ H∗(X;Q).

We finish this section with the characterization of the cohomology ring H∗(GrC(r,∞)).
Let Fr be the flag bundle of the tautological bundle. For simplicity a hermitian form is
used in C∞ in order to deal with n-tuples of subspaces of dimension 1 instead of sequence
of subspaces. We can see Fr as a subspace of P(C∞)r, namely the set of r-tuples whose
sum is of dimension r. A combination of r downard shifts, the top-addition of the identity,
allows to see that the inclusion is a homotopy equivalence.

Let πj : P(C∞)r → P(C∞) the jth projection. Let us denote by Lj := π∗j (τ1), and let
tj := −cj(τ1). Then,

H∗(Fr,Z) = H∗(P(C∞)r;Z) = Z[t1, . . . , tr], deg tj = 2.

The map πF : Fr → GrC(r,∞) is splitting for τr, and π∗F (τr) = L1 ⊕ · · · ⊕ Lr so
π∗(c(τr)) =

∏r
j=1 = (1− tj), i.e., cj(τr) is identified with the jth-symmetric polynomial (up

to (−1)j).
Since any permutation map in the variables keeps everything, we have that the ring

H∗(GrC(r,∞)) is inside the symmetric polynomials by the permutation of the variables,
generated by cj(τr), then

Hj(GrC(r,∞);Z) = Z[c1(τr), . . . , cr(τr)].

Let us explain an alternative proof from Milnor’s book. We fix in C∞ a hermitian scalar
product; let us consider Gysin sequence:

· · · → Hj−2r(GrC(r,∞))
^cr(τr)−→ Hj(GrC(r,∞)) −→ Hj((τr)0)→ . . .

Let us study the space (τr)0, its elements are of the form (S, v), S subspace with dimS = r,
v ∈ S, v 6= 0. From such an element we can construct the subspace S⊥v , the orthogonal
to v in S, dimS⊥v = r − 1. We construct a map F : (τr)0 → GrC(r − 1,∞)). Let us see
what a fiber is. We fix T subspace, dimT = r − 1; its preimages are of the form (S, v),
where v is a non-zero vector orthogonal to T and S = T ⊕ C〈v〉. Hence the fiber has the
homotopy type of S∞, which is contractible. Since F is a fiber bundle, we rewrite the exact
sequence

· · · → Hj−2r(GrC(r,∞))
^cr(τr)−→ Hj(GrC(r,∞)) −→ Hj(GrC(r − 1,∞))→ . . .
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Let us study the last map. We start from the the tautological bundle τr; if π0 is the
projection defined over (τr)0, then π∗0(τr) is given by (S, v, w), dimS = r, v, w ∈ S, v 6= 0.
This is equivalent to the data (S⊥v , v, w−

〈v,w〉
‖v‖2 v), 〈v, w〉, i.e., π∗0(τr) is isomorphic to F ∗ of the

Whitney sum of τr−1 and the trivial line bundle. As a consequence, the last map satisifies
cj(τr) 7→ cj(τr−1) for j < r. For j < 2r the map Hj(GrC(r,∞)) −→ Hj(GrC(r − 1,∞)) is
an isomorphism.

6. Pontrjagin characteristic classes

In this section, we deal with R-vector bundles. We recall two concepts from linear
algebra. Let V be a C-vector space of dimension n. We can define another vector space V̄ ,
where the underlying R-vector space is the same as the one of V but for v ∈ V̄ , we have√
−1·v = −

√
−1v (the last product as element in V ). Of course, since it is a C-vector space

of the same dimension, V, V̄ are isomorphic, but they are not naturally isomorphic (if we
perform a basis change in V with matrix A, the change in V̄ is given by Ā). Nevertheless,
if we fix a hermitian metric in V , then V̄ and V ∗ = HomC(V,C) are naturally isomorphic.

Hence, if π : E → X is a complex vector bundle, we can define a its conjugated as
π̄ : Ē → X, where the real bundle structures coincide but for each x ∈ X, Ēx = Ex. From
the point of view of transition functions, we take the conjugate matrices. Note that Ē and
E∗ are isomorphic if the base is paracompact, since a hermitian metric on E exists.

The other operation is the complexification. Let V an R-vector space of dimension n.
Then VC := V ⊗RC is a complex vector space of dimension n. Its elements are of the form
v +
√
−1w for v, w ∈ V . It is not hard to see that the map v +

√
−1w 7→ v −

√
−1w is an

isomorphism of V and V̄ .
Hence, if π : E → X is a real vector bundle, we can define a its complexified as

πC : EC → X, (EC)x = (Ex)C. We have performed a reduction of structural group, from
GL(n;R) to GL(n;C). In this case E, Ē and E∗ are isomorphic.

Note that cj(EC) = cj(ĒC) = (−1)jcj(EC). We have then 2c2k+1(E) = 0, in particular,
it will vanish if there is no 2-torsion.

Definition 6.1. The jth-Pontrjagin characteristic class of E is pj(E) := (−1)jc2j(EC).
The total Pontrjagin class is p(E) :=

∑
j≥0 pj(E).

It is obvious that Pontrjagin classes behave nicely for pull-backs. For Whitney sums the
equality p(E1 ⊕ E2) = p(E1)^ p(E2) holds only up to 2-torsion. It is an equality if E2 is
a trivial bundle (the total Pontrjagin class of a trivial bundle is 1).

Example 6.2. The total Pontrjagin class of the tangent bundle to a sphere SN is 1. Recall
that the Whitney sum of the tangent bundle and the normal bundle (trivial) is trivial.
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Let V be a C-vector space of dimension n. Let VR its realification (we forget the complex
structure), an R-vector space of dimension 2n. Consider now its complexification (VR)C.
The original multiplication by

√
−1 defines a morphism J : (VR)C → (VR)C, such that J2

is minus the identity. Let V± be the eigenspace for ±
√
−1; note that (VR)C = V+ ⊕ V−,

where

V+ = {v −
√
−1J(v) | v ∈ V } ∼= V, V+ = {v +

√
−1J(v) | v ∈ V } ∼= V̄ .

Hence (VR)C ∼= V ⊕ V̄ .
Let us consider a complex vector bundle E. Then

c2j+1((ER)C) = c2j+1(E ⊕ Ē) =

2j+1∑
k=0

(−1)kck(E) · c2j+1−k(E) = 0,

and

c2j((ER)C)=c2j(E⊕Ē)=

2j∑
k=0

(−1)kck(E)·c2j−k(E)=(−1)jcj(E)2+2

j∑
k=1

(−1)j+kcj−k(E)·cj+k(E),

i.e.,

pj(ER) = cj(E)2 + 2

j−1∑
k=0

(−1)(k)cj−k(E) · cj+k(E).

7. Chern-Weil definition of Chern classes

In this section X is a C∞ manifold and π : E → X a C∞ C-vector bundle of rank n.
Given this bundle we denote E j(E) the space of j-forms with values in E. In particular,
E0(E) = C∞(E), the space of sections of the bundle. Note that all these definitions keep
their meaning for open sets of X. In particular, if U ⊂ X is an open set where E trivializes,
this means that there exists hi ∈ C∞(E|U) such that ∀x ∈ U , hx := t(h1(x), . . . , hn(x)) is
a basis of Ex. In this way, a section or a form on U can be expressed as

s =
r∑
j=1

fjhj ∈ C∞(E|U), hj ∈ C∞(U), ω =
r∑
j=1

ωjhj ∈ E j(E|U), ωj ∈ E j(U).

Definition 7.1. A connexion on X is C-linear map ∇ : C∞(E) → E1(E) such that if
f ∈ C∞(X) and s ∈ C∞(E), then ∇(fs) = df ⊗ s+ f∇s.

Let us compute the local form of a connexion. Let U be a trivializing open set with h
(a column matrix of sections) a local basis of sections. Then, the connexion is determined
by

∇h = ωhh, ωh ∈ Mat(n; E1(U))
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and the product means matrix multiplication. Let k be another basis such that k = gh.
A similar formula with ωk exists, let us see the relationship:

ωkk = ∇k = ∇gh = dg ⊗ h+ gωh ⊗ h = (dg · g−1 + gωhg
−1)h.

As a consequence, ωk = dg · g−1 + gωhg
−1.

The definition of the connexion can be extended to C-linear maps ∇ : E j(E)→ E j+1(E),
where for α ∈ E j(X) and s ∈ C∞(E), we have

∇(α⊗ f) = dα⊗ f + (−1)jα∇(f).

More generally, if α ∈ E j(X), and η ∈ E i(E), then

∇(α⊗ η) = dα ∧ η + (−1)jα∇η ∈ E i+j(E).

We computate the curvature of the connexion as ∇2. Let us express it in local equations:

∇2h = ∇(ωh ⊗ h) = (dωh − ωh ∧ ωh)⊗ h = Ωh ⊗ h,

where ω ∧ ω stands for matrix and wedge product combined. Note that 0 = d(g · g−1) =

dg · g−1 + gd(g−1). Then,

dωk − ωk ∧ ωk = d(dg · g−1 + gωhg
−1)− (dg · g−1 + gωhg

−1) ∧ (dg · g−1 + gωhg
−1) =

dg(g−1)dg(g−1) + dg ∧ ωhg−1 + g ∧ dωhg−1+

g ∧ ωh(g−1)dg(g−1)− dg(g−1)dg(g−1)− dg ∧ ωhg−1 − gωhg−1dg · g−1 − gωh ∧ ωhg−1 =

g(dωh − ωh ∧ ωh)g−1 =⇒ Ωk = gΩhg
−1.

All these computations are local and depend on the bases h, k. Consider det(In−Ωh); since
the entries are forms of even degree, the wedge products commute and the determinant is
well defined. Moreover since det(In − Ωh) = det(In − Ωk), the expression is well-defined
on X without dependence on the local frames. Let us denote

det

(
In −

1

2
√
−1π

Ω

)
= c∇0 + c∇1 + · · ·+ c∇n−1 + c∇n , c∇j ∈ E2j(X), c∇0 = 1.

Example 7.2. Let us consider the tautological fiber bundle τ over P1(C). We consider
the following two charts, U+ = D2 (the open disk of radius 2) and U− = {∞} ∪ (C \ D̄ 1

2
).

We consider the sections s± ∈ C∞(τ|U±), given by

s+(x) = ((x, 1)[x : 1]), s(x) = ((1, x−1)[x : 1]).

Let U := U+ ∩ U−. On U , we have s+ = xs−. We want to choose a connexion such that
∇s− = 0. It imposes a condition for ∇s+, namely

(∇s+)|U = dx⊗ s−|U =
dx

x
⊗ s−|U .
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We can choose a form ω+ ∈ E1(U+) such that ω+ = dx
x

on U . In our case, Ω+ = 0 and
Ω+ = dω+. It is a well defined 2-form and note that it closed. In particular it determines
an element [c1] = [ ω

2
√
−1π

] in the de Rham cohomology group H2(P1;C). Let us compute
its integral over the fundamental class:∫

P1

c1 =
−1

2
√
−1π

=
−1

2
√
−1π

∫
D̄1

dω= −1

2
√
−1π

∫
S1

dx

x
= −1.

This situation is not particular to this example.

Theorem 7.3. Under the previous notations:

(1) c∇j is a closed form;
(2) if ∇0,∇1 are 2-connexions, c∇0

j and c∇1
j define the same de Rham cohomology class.

Before the proof of the theorem we introduce some notation. Let P : Mat(n;C) → C
be a polynomial such that P (AB) = P (BA) (or equivalently P (ABA−1) = P (B) for any
invertible matrix A); it will be called a symmetric polynomial. Any of these polynomials can
be expressed as follows. There exists a symmetric function Q : (Mat(n;C)n → C which can
be expressed in terms of traces of products of the entries such that P (A) = Q(A, . . . , A).

Given such a polynomial P we define P ′ : Mat(n;C)→ Mat(n;C) such that

P ′(A) :=

(
∂P

∂Aji
(A)

)
1≤i,j≤n

Lemma 7.4. The matrices P ′(A) and A commute.

Proof. The derivative of a function P (A(t)) at t = 0 is given by tr(P ′(A(0)) ·A′(0)), using
the chain rule. For any matrices A,B, we have P (A(In + tB))− P ((In + tB)A) vanishes.
It is also the case for its derivative with respect to t, for t = 0, hence

trP ′(A)AB = trP ′(A)BA = trAP ′(A)B.

Since tr(AB) is a symmetric non-degenerated paring, we deduce that P ′(A)A = AP ′(A).
�

Proof of the Theorem 7.3. Note first that dP (Ω) = tr(P ′(Ω)dΩ). On the other hand dω =

ω ∧ Ω− Ω ∧ ω. Then

dP (Ω) = tr(ω ∧ Ω− Ω ∧ ω)

For the second part note that ∇t = (1−t)∇0+t∇1 can be interpreted either as a connexion
in X × R or a family of connexions in X. If its interpreted in X × R, it determines a de
Rham class Ct ∈ H∗(X ×R); the maps iε : X → X ×R, ε = 0, 1, are homotopic, and then
[P (Ω0)] = i∗0Ct = i∗1Ct = [P (Ω1)]. �
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Definition 7.5. The Chern-Weil characteristic classes (jrm th and total) are defined as
follows. The total class is the class of det(In − Ω), and the jrm th is the homogeneous
component of degree 2j (i.e. in H2j(X;C)).

The following theorem is easy.

Theorem 7.6. The Chern-Weil characteristic classes satisfy:

(1) They behave well with respect to pull-backs.
(2) c(L1 ⊕ · · · ⊕ Ln) = (1 + c1(L1)) · · · · · c1(Ln).
(3) The Chern-Weil first class of the tautological bundle over P1(C) is the opposite of

the positive generator of H1(P1(C);Z).

In particular they match with the map H∗(X;Z) → H∗(X;C) with respect to the usual
Chern classes.
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