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Introduction

As it stated in [10], Professor Abhyankar became interested in the theory of dicritical
divisors around 2008. This terminology came from the theory of dynamical systems
and had been applied by several authors to the study of meromorphic functions (or,
equivalently, pencils of curves), having problems in affine algebraic geometry in mind.
At our knowledge, this term was use at least since Dulac [8, 9].

Most probably, Ram Abhyankar immediately understood that he had already en-
countered these divisors (under other names) starting from the fifties, but he decided to
come back to the subject. He was not very happy with the topological arguments but
his goal was to understand every detail in order to translate the topological intuition
to algebraic statements. The first part of the process was to understant statements
that were valid for the ring of convergent power series in two variables with complex
coefficients. Most of them could be translated to the ring of formal power series but his
main goal was to figure out which results could be stated and proved in more general
settings, namely to drop completness, to allow positive characteristic. The main test for
such a statement was to check it in the mixed characteristic case. Besides his interest
for dicritical components, he understood the importance of the concept of curvettes (see
[14] for some history on this concept)

In this note we will try to explain the topological ideas Abhyankar was interested
in, their algebraic translation, namely explaining the topological meanings of dicritical
divsors and curvettes. We finish the paper with some comments on how does it work
when we replace complex coefficients by arbitrary coefficients, including finite fields.
We illustrate these ideas through some explicit examples. We will restrict ourselves to
the 2-dimensional case, which, by the way, was the place of our common works with
Abhyankar. It was planned to pursue the study in higher dimension.
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1. Resolution of a meromorphic germ and special pencils

Unless explicitely stating the opposite, we will work over the complex numbers, but
most results should be true in a more general setting after some tuning.

Let F be a germ of meromorphic function in the neighbourhood of the origin in C2.
More precisely, F := f

g
, where f, g ∈ C{X, Y }, g 6= 0. The algebraic counterpart of this

setting is that R := C{X, Y } is a 2-dimensional local ring and, hence, F is an element
of its fraction field Q(R). Of course, it is not complete, but it shares many properties
of complete local rings, see [3, §4]. It is well-known that R is a factorial domain and
f, g can be chosen pairwise coprime. From the algebraic point view, the study of F is
related to the study of the ideal I = 〈f, g〉 and its integral closure (which are somewhat
fat points).

In order to apply a more geometric language, we may choose a small neighbourhood
∆ of the origin in C2. This neighbourhood will be theoretically fixed but we may require
to choose a smaller one if needed. We require that representatives of the germs f, g are
defined in ∆ and also that the intersection of their zero loci contains at most the origin.
All the arguments below do not depend on the particular choice of ∆ as far as the
above properties are fullfilled. For the sake of simplicity, we still denote by f, g, F the
corresponding representatives on ∆.

Whereas f, g are holomorphic functions ∆ → C, the meromorphic function F can
be seen as a rational map ∆ 99K P1, where P1 is naturally identified with C ∪ {∞}.
In general, F is a well-defined morphism only on ∆ \ {0}. More precisely, F defines a
morphism on ∆ if and only if either f, g are units, i.e., I = R. From now on we are
interested in the case where F is not well defined at the origin, i.e., f, g ∈ M(R) =

〈X, Y 〉, the maximal ideal of R. The main classical result is the following one, see
e.g. [12].

Theorem 1.1. There exists a proper birational morphism π : Z → ∆ (the composition
of a sequence of blow-ups over the origin of ∆), which is an isomorphism outside the
origin, and such that the pull-back of F extends to a well-defined morphism F : Z → P1

called a resolution of F .

An embedded resolution of a pair of (the closure of) generic fibers of F yields such a
resolution, by the way the minimal resolution, since the main goal is to separate fibers.
Let π−1(0) =: E =

⋃r
j=1Ej be the exceptional divisor of π, Ej being its irreducible

components. Note that each Ej is isomorphic to P1 and hence the morphism πj :=

π|Ej
: Ej → P1 gives a well-defined rational function (up to a choice of coordinates

in Ej).
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Definition 1.2. An irreducible component Ej of E is a dicritical divisor of F if πj
is non-constant (i.e., surjective) and it is a constant divisor if πj is constant. The
multiplicity of a divisor Ej is the degree of πj (a divisor is constant if and only if its
multiplicity vanishes).

The dicritical divisors are essentially canonical. Two resolutions are related by a
birational map which defines a natural bijection between the sets of dicritical divisors
of both extensions of F .

Example 1.3. Let f = y2, g = x3. We start by blowing-up the origin, i.e.,

∆1 := {((x, y), [u : v]) ∈ ∆× P1 | xv = yu}.

This space needs two charts to be covered. Let us study one of them:

(x1, y1) 7→ ((x1, x1y1), [1 : y1]) .

The extension of F is given by:

(x1, y1) 7→ ((x1, x1y1), [1 : y1]) 7→ (x1, x1y1) 7→
x21y

2
1

x31
=
y21
x1

Note the extension fails to be defined at the origin of this chart. It is not difficult to
see that it is well-defined at the other chart. This first blowing-up has a exceptional
divisor E1 (with self-intersection −1); the equation of E1 in the chosen chart is x1 = 0.
Outside the origin, the restriction of the extension to E1 is ∞-constant.

We proceed by blowing-up the origin of the chart. As before, there are two charts
and we focus our attention in one of them since the extension will be well-defined on
the other one:

(x2, y2)→ (x2y2, y2) 7→
y22
x2y2

=
y2
x2
.

Again, the extension of F is not defined at the origin of this chart. The new exceptional
divisor E2, with self-intersection −1, is defined by y2 = 0, while the strict transform
of E1 is defined by x2 = 0 and has self-intersection −2. For the sake of simplicity,
strict transforms will keep the notation of the original divisor. Note that E2 becomes
0-constant.

(2)

(3)

π1

(3) (2)

E1 π2

(3)

(2)

E1

E2

π3
(3) (2)

E3

E2

Figure 1. Sequence of blowing-ups.
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An easy computation shows that the blowing-up at the origin of the chart solves F ,
i.e., we have a resolution π : ∆3 → ∆ such that E = E1 ∪ E2 ∪ E3 where E3 is the
last exceptional component and it is dicritical of of multiplicity 1. This normal crossing
divisor is represented as usual by its dual graph weighted with the self-intersections, see
Figure 2. Note that in this case the resolution of F involves more blowing-ups than the
resolution of fg = y2x3 = 0.

E1

−3

E2

−2

E3

−1

Figure 2. Dual graph of the exceptional divisor for the resolution of y2

x3
.

Example 1.4. Next example is a little more involved. Let

f0 :=
((
y2 − x3

)2 − x5y)3 +
(
y2 − x3

)3
x4y4, f1 = y2 + x3,

and

g0 =
(
y2 − x3

)3 − x8y, g1 =
((
y2 − x3

)2 − x5y)2 +
(
y2 − x3

)
x4y4.

We set f = f0f1 and g = g0g1.

E1

−3

E3

−3

E5

−3

E7

−1

E2

−2

E4

−2

E6

−2

Figure 3. Dual graph of the exceptional divisor for the resolution of f
g
.

We proceed as in Example 1.3 to compute a resolution of F , using a composition
of seven blowing-ups. Let F̃ : ∆̂ → P1 be the extension and E :=

⋃7
j=1Ej be the

exceptional divisor, indexed by the order of the blowing-ups. The dual graph with
self-intersections is in Figure 3. The components behave as follows:

• E3, E5, E7 are dicritical divisors, all of them of multiplicity 1.
• E1 is 1-constant.
• E2 is −1-constant.
• E4 is 2-constant.
• E6 is −2-constant.
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−2
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−2
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E6
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−1

E9

−1f1

g0
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f0

Figure 4. Dual graph of the exceptional divisor for the resolution of fg = 0.

The resolution of fg = 0 is a non-minimal resolution of F . Note that in the minimal
resolution of fg = 0, see Figure 4, E8 is ∞-constant and E9 is 0-constant.

We end this section with an interesting particular example of meromorphic functions
(or pencils of germs), the so-called special pencils.

Definition 1.5. A meromorphic function F ∈ Q(R) is an special pencil if g is the power
of a smooth function of R, i.e., a regular generator of the maximal ideal. For the sake
of simplicity, we may assume g = xm.

Example 1.6. Special pencils were introduced in [12], see also [10], since they appear
in a natural way from polynomial maps. Let f ∈ C[X, Y ] be non-constant polynomial.
The map f : C2 → C is non proper; if deg f = d and f̃(x, y, z) is the homogeneization
of f , then f̃

zd
: P2 99K P1 is a rational map extending f (using the canonical inclusion

C2 ↪→ P2 via (x, y) 7→ [x : y : 1]). This map is well-defined outside a finite numbers of
points in the line at infinity L∞ := P2 \ C2; around these points the extension behaves
as a special pencil.

These pencils were extensively studied in [12, 6, 2, 3]. By this definition, the ∞-fiber
plays a special role. In [12], the authors proved that, for special pencils (arising from
polynomial maps), the maps πj over the dicritical components was a polynomial map
(the preimage of ∞ was reduced to ∞). This result has been extended for any special
pencil (and for more general regular local rings) in [6] using Newton techniques, see [7]
for a down-to-earth explanation.

2. Curvettes

The following problem was addressed in [5] (translated from algebraic to topological
language).

Problem 2.1. Let π : Z → ∆ be the composition of a sequence of blowing-ups. Let
us pick up a subset W of the exceptional divisors and a family of multiplicities MW :=
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{mW}W∈W . Does there exist a meromorphic function F having exactly the divisors in
W as dicritical divisors with multiplicities MW?

The answer given by Abhyankar and Heinzer is positive with no restriction. A similar
question arises for special pencils. In that case, a necessary condition must be imposed
due to [1, Proposition 3.5], see (2.2); in [4, Theorem 8.2], Abhyankar and Heinzer proved
that the condition is also sufficient.

Later on, in [3] Abhyankar and the first author reproved both results with a more
geometrical flavour. While the statements are still algebraic, the intuition come from
the topological (analytic) case. In particular, the cited condition (2.2) for special pencils
rely on an algebraic invariant c(R, V,W ), V,W ∈ W , (which is not obviously symmetric
from the definition in [1]), and which is translated into (2.3) in terms of intersection
numbers; in particular, the invariant is symmetric in V,W .

These proofs strongly use the idea of curvette, algebraicly developed in [2, 3], see also
the interesting work of Moyano [14] for some history of the term, which comes from
the term curvetta of the Italian school of algebraic geometry. The topological notion of
curvette is defined as follows. Consider π : W → ∆ ⊂ C2 a composition of blowing-ups
(over 0), and let π−1(0) =: E =

⋃r
j=1Ej be the exceptional divisor. Let p ∈ Ej be

a regular point of E (i.e. it is not a crossing point) and let Γp be the germ at p of a
smooth germ transversal to Ej. The image π(Γp) defines a Weil divisor (restricting ∆ if
necessary) and hence a Cartier divisor; in fact π(Γp) is the zero locus of an irreducible
δp ∈ R. If up = 0, up ∈ Q(R), is a local equation of Ej around p, then γp := π∗(δp)

u
Nj
p

(for

a suitable Nj independent of p) defines an equation of Γp.

Definition 2.2. The germ of curve Γp is called a curvette of Ej at p. Following [2], we
will call δp a root curvette of Ej (based at p). By abuse of notation γp ∈ Q(R) is also
called a curvette. The number Nj is independent of p and it is denoted by Ej(γp); in
fact, the divisor Ej corresponds to a valuation of Q(R) positive on M(R).

Example 2.3. Let us consider Example 1.3. Note that x is a root curvette of E1, y is
a root curvette of E2, and y2 − tx3, t ∈ C∗, is a curvette of E3. Let us consider now
Example 1.4. The germs x, y, f1 are root curvettes for E1, E2, E3, respectively, as above.
As we can check in Figure 4 g1, g0, f0 are curvettes of E7, E8, E9, respectively.

Remark 2.4. Note that an irreducible curve is the root curvette of infinitely many
divisors.

Let us explain the geometric idea in order to prove the existence of a meromorphic
germ with a prescribed set of dicritical divisors (counted with multiplicity). For each
component W = Ej(W ) ∈ W we choose two packets of mW root curvettes (eventually
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counted with multiplicity), say δW,j, δ̃W,j, 1 ≤ j ≤ mW , with the unique condition that
the set of base points of the two packets are disjoint. intersection points of the two sets
of the root curvettes with Ew are disjoint. With this settings, we define:

(2.1) f =
∏
W∈W

mW∏
j=1

δW,j, g =
∏
W∈W

mW∏
j=1

δ̃W,j.

Then, F = f
g
is a function satisfying the desired property.

In the case of a special pencil, g = δm, for some smooth curve δ = 0 and f is
constructed as in (2.1) (with the only restriction that the curvettes of f are disjoint to
the strict transform of δ = 0). Abhyankar condition is:

(2.2) mW (δ) =
∑
V ∈W

mW c(R, V,W ).

The definition of the invariant c(R, V,W ) can be found in [1] and is quite algebraic.
All the terms in (2.2) can be interpreted in terms of intersection theory which is by the
way a key ingredient for the topological proof.

Definition 2.5. Let f, g ∈ R be coprime. Then, the intersection number of f, g (or the
divisors defined by the functions) is given by

{f = 0} · {g = 0} = f · g = dimCR/〈f, g〉.

General definition of intersection theory of surfaces can be found in [13]. Note that
these definitions apply to complex surfaces and also to more algebraic settings (with
arbitrary base fields). Let us state two properties which are essential for the proof.

Proposition 2.6. Let X be a surface and let A,B be two divisors in X where the
intersection (A ·B)X is defined. Then

(1) If π : Y → X is a proper birational morphism, then

(A ·B)X = (π∗(A) · π∗(B))Y .

(2) [11, Proposition 3.8] If A is the divisor of a meromorphic function and B is a
smooth compact divisor then (A ·B)X = 0.

With these results it is easy to prove that for generic choices of root curvettes δW , δ̃W :

(2.3) ({δ = 0}·π(ΓW )) = (δ ·δW ) = W (δ), (π(ΓV ) ·π(ΓW )) = (δV ·δW ) = c(R, V,W ).

The idea is simple. Let us compute the second intersection number. Note that

π∗(π(ΓV )) = ΓV +
r∑
j=1

mEj
(V )Ej
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where mEj
(V ) = Ej(π(ΓV )) and it turns out to be equal to c(R, V,Ej). Then:

δV · δW =

(
ΓV +

r∑
j=1

mj(V )Ej

)
·

(
ΓW +

r∑
j=1

mj(W )Ej

)

=ΓV ·

(
ΓW +

r∑
j=1

mj(W )Ej

)
=

r∑
j=1

mj(W )(ΓV · Ej) = mW (V ).

In particular, mW (V ) = mV (W ) and they coincide with the intersection number of
the corresponding root curvettes. With the same ideas we have the following Lemma
relating intersection form and valuation theory.

Lemma 2.7. For any germ f ∈ R, Ej(f) = {f = 0} · δEj
, where δEj

is a generic
curvette of Ej.

Remark 2.8. The intersection matrix (Ei · Ej) is negative definite and unimodular.

To prove the statement we follow several steps.

Step 1. A component Ej is 0-constant if and only if Ej(f) > Ej(g) and ∞-constant if
and only if Ej(f) < Ej(g). In particular for our candidate function F all the components
Ej are either dicritical or t-components for some t ∈ C∗

Step 2. The function F is well-defined on Z. The main point is that any connected
component of a fiber of a resolution of F must contain the strict transform of a curve.
It is a direct consequence of Remark 2.8 and Proposition 2.6(1).

Step 3. As a consequence, the dicritical divisors are the expected ones.

Remark 2.9. In fact, for Abhyankar-Heinzer Problem 2.1, we could proceed separately
for each component. Namely, we could find functions FW such that W is the unique
dicritical component (with multiplicity 1). For a suitable choice of these functions, the
product

∏
W∈W F

nW
W answers positively the question.

Example 2.10. Note that neither Example 1.3 nor Example 1.4 follow this strategy,
since the fibers at 0,∞ are not composed by root curvettes. Nevertheless, af+bg

cf+dg
for a

generic invertible complex matrix A := ( a bc d ) is obtained as above.

3. Remarks on positive and mixed characteristic

Most techniques and definitions used in §2 can be refined to be applied (with some
minor technical modifications) to any local regular ring of dimension 2, say for example
R = K[[X, Y ]]. The actual computations and answers to Problem 2.1 work when the
residual field K is infinite, or at least when there are enough curvettes with distinct
base points, more precisely enough points in P1(K). In principle, it might work also
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in the finite field case, because, actually there are infinitely many points but we have
to be careful with the multiplicities of the points, see [2], if K is not algebraic closed.
The intersection matrices for the strict transforms of exceptional divisors of a sequence
of blowing-ups have been studied in [14]. In this case, these matrices are still negative
definite but it may fail to be unimodular if we blow up on points whose residual field is
an algebraic extension of K.

As stated in [10] a similar question to Problem 2.1 remains open in the case of finite
residual fields. There is an obvious obstruction to extend the idea of the proof in §2 even
in the case of Fq[[X, Y ]] (q a prime power): we may have not enough curvettes based
at distinct points, since in that case the projective plane P2(Fq) has only q + 1 points
with residual field Fq and any other point will have multiplicities due to the index of its
residual field over Fq.

Example 3.1. Does there exist a pencil in F2[[X, Y ]] such that its unique dicritical
divisor is E3 like in Figure 2? If the multiplicity m of the dicritical divisor is greater
than 1, we can apply the method of §2; consider a curvette over the unique rational
free point in E3 (with multiplicity m) for one function and a curvette with multiplicity
over a point whose residual field is F2m (which contributes with multiplicity m). This
argument does not work for m = 1. Nevertheless, the answer is also yes in this case,
Example 1.3 over F2 is an example. In this case the triple curvette of E1 and the double
curvette of E2 have also the behavior of curvettes over E3.

The study of these generalized curvettes was one of the dramatically truncated goals of
the joint work of Abhyankar and the first author. We end this work with a partial result
which uses these generalized curvettes. If we consider the sequence of blow-ups of an
irreducible germ, we can prove that there is an F ∈ Q(R) such that the last exceptional
component is the only dicritical with multiplicity one, even if it may be impossible to
construct it using curvettes. Intersection form allows to find some generalized curvettes.
The general case remains open since now the comment in Example 2.10 does not apply
if the field is small.

Proposition 3.2. The answer to Problem 2.1 is positive for K[[X, Y ]] for any K if
#W = 1.

Sketch of the proof. The sequence of blowing-ups to reach a divisor W corresponds to
the minimal resolution of an irreducible element of R. IfK is infinite or ifK = Fq, q > 2,
it is not hard to adapt the techniques of §2; the dual graph looks like in Figure 3 and, in
the finite case, for the last componentW we have at least q−1 ≥ 2 free points to attach
curvettes. The problem is that for F2, only one point is free. The valency of W in the
dual graph is two, at least one of the connected subgraphs obtained erasing W is linear.
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Let us consider a curvette Γ of the last component of this subgraph. Using intersection
theory it is not hard to prove that if d is the determinant of the interesection matrix
of the subgraph, then if δ is the corresponding root curvette, then δd is a generalized
curvette. �

Example 3.3. As we have pointed out if the base field is small, the general case
cannot be obtained by multiplying suitable solutions for each particular dicritical. The
main difficulty comes from the word suitable, since it is not possible in general to find
functions such that almost all non-dicritical components are t-constant for t ∈ K∗. For
example, consider divisors like in Figure 3 and look for F ∈ Q(R) such that E3, E5, E7

are dicritical divisor of multiplicity one. It is clear that we cannot find F using curvettes
when K = F2. Moreover, the reduction of F mod 2 does not work. We can proceed
using Figure 4. We keep for g curvettes of E7, E8; for f we pick up a curvette for E9

but we canoot keep a curvette for E3 (no free point). As in Proposition 3.2, we can
replace this unexisting curvette by a double curvette of E2. It is a straightforward to
check that it works.
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