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Introduction

The main goal of braid monodromy is to study the topology of algebraic curves, both affine
and projective. This is very useful in studying the topology of projective complex surfaces, which
was the primary aim of O. Zariski in the foundational paper [Zar29]. This study was also the
starting point of braid monodromy by B. Moishezon [Moi81, Moi83, Moi85].

Let C ⊂ C2 be an affine curve defined as the zero locus of a non-zero reduced polynomial
f(x, y) ∈ C[x, y] of degree d. We will suppose also that C has no vertical asymptote (including
vertical components), i.e., f is monic as polynomial in y. Let df (x) ∈ C[x] be the y-discriminant
of f(x, y). Let W := {t ∈ C | df (t) 6= 0}. A vertical line Lt : {x = t} intersects C at exactly d

points if and only if t ∈ W .
If C̄ ⊂ P2 is a reduced projective plane curve, we obtain the affine situation by considering a

point and a line L through P ; for generic choices of P,L and coordinates such that P = [0 : 1 : 0]
and L has equation z = 0. We identify C2 with P2 \ L via (x, y) 7→ [x : y : 1] and we obtain in
this way an affine curve C := C̄ ∩ C2.

Braid monodromy is intuitively obtained as follows. Let ? ∈ W and consider a closed path α

in W based at ?; the intersections of the vertical lines over this path with C define in a natural
way a geometric braid starting and ending in y? := {y ∈ C | f(?, y) = 0}.

The ideas of Zariski and van Kampen are the key point of the definition of braid monodromy.
Zariski gave a method to compute the fundamental group G of the complement of an affine
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or projective curve which was completed by van Kampen. The first point is that if one takes
a generic line L, then the fundamental group of L \ C generates G. Zariski showed how to
construct monodromy relations using the above motions and van Kampen proved that they
were a complete system of relations.

We can give the following short history of this invariant:

• Implicitely involved in Zariski-van Kampen for the computation of the fundamental
group of the complement of an affine (or projective) plane curve.

• Explicitely stated by Chisini [Chi33] in the thirties.
• Intensively applied by Moishezon (and Teicher) [MT88, MT91, MT94a, MT94b, MT96]

in the eighties. Braid monodromy of some curves is characterized. There are other
contributions by Libgober [Lib86, Lib89], Salvetti [Sal88], Cohen-Suciu [CS97].

• There are also works concerning the relationship between topology and braid mon-
odromy, with special attention to invariants characterizing braid monodromies: Kulikov-
Teicher [KT00], Kharlamov-Kulikov [KK01, KK02] and the Artal-Carmona-Cogolludo
et al. [Car03, ACCT01, ACC03, ACC05, ACCM03].

• There is a closed relationship with symplectic geometry, see the works of Auroux [Aur00]
among others.

1. Preliminaries

Consider the polynomial f as a mapping f : C → V , where

V := {h(y) ∈ C[y] | h monic, deg(h) = d}.

Considering the roots of polynomials, V is naturally identified with the quotient of Cd by the
coordinate-permutation action of Σd, the symmetric group in d symbols. The image of the big
diagonal in Cd in V is the discriminant variety

D := {h(y) ∈ V | h has multiple roots}.

Let us denote X := V \D, and let us identify subsets of C (with cardinality d) with polynomials
in V . It is well-known that π1(X;y?) is naturally isomorphic with the braid group By?

of
homotopy classes of geometric braids based at y?.

Let us recall that a geometric braid is a set γ of d paths from [0, 1] to C such that at each
t ∈ [0, 1], γ(t) ∈ X. A braid is closed and based at some y ∈ X if γ(0) = γ(1) = y. The
fundamental groupoid of X is identified with the braid groupoid, where if y1,y2 ∈ X, By1,y2

is the set of homotopy classes (relative to {0, 1}) starting at y1 and ending at y2; the grupoid
product is defined by yuxtaposition and the inverse by reversing orientation.

Let us denote y0 := {−1, . . . ,−d}; the standard Artin braid group Bd will be identified with
By0 . We recall the well-known Artin presentation:

(1.1) 〈σ1, . . . , σd−1 | [σi, σj ] = 1, j > i + 1, σiσi+1σi = σi+1σiσi+1〉 .

The standard generator σi, i = 1, . . . , d− 1 is identified with the following geometric braid. We
consider constant paths at j, j 6= i, i + 1 and we consider also the two semicercles of radii 1

2 ,
centered at − 2i+1

2 , with extremities i, i + 1 and counterclockwise parametrized.
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Figure 1. Standard braid σi

−(i+2) −(i+1) −i −(i−1)

1

√
−1

t

We consider in C a lexicographic order:

x ≺ y ⇐⇒

<x < <y or

<x = <y and =x < =y.

Given any y := {y1, . . . , yd} ∈ X, we can order it such that y1 � · · · � yd. It is easily seen that
the segments starting at −i and ending at yi, 1 ≤ i ≤ d, define a braid σ(y0,y). These braids
allow us to identify B(y1,y2) with Bd.

Remark 1.1. Any other choice of braids from y0 to y, for any y ∈ X, provide suitable identifi-
cations B(y1,y2) ∼ Bd, y1,y2 ∈ X.

2. First definitions of braid monodromy

The restriction f| : W → X induces a mapping f∗ : π1(W ; ?) → By?
; this mapping is the first

notion of braid monodromy. Using either the braid σ(y0,y?) or any other braid in B(y0,y?), we
can conjugate the former f∗ and we obtain a representation ∇ : π1(W ; ?) → Bd, which will be
also called braid monodromy. This mapping is only well-defined up to conjugation.

It is well-known that the fundamental group of a punctured plane is a free group with rank
the number of punctures. We have encountered two punctured planes: C \ y? ≡ L? \C and W .
Let us recall that By? has a natural right action on π1(C \ y?;N) (denoted exponentially) as far
as |N| is big enough.

This notion allows us to give a proof of the Zariski-van Kampen theorem.

Theorem 2.1 (Zariski [Zar29], van Kampen [Kam33]). Let K := π1(L? \ C; (?,N)) and let us
consider the natural action of By?

on K. Then, the morphism K → π1(C2 \ C; (?,N)) induced
by the injection is surjective and its kernel is the normal subgroup generated by{

µ−1 · µf∗(γ) | µ ∈ K, γ ∈ π1(W ; ?)
}

.

Proof. Let us denote Cψ the union of C and the vertical lines Lt such that df (t) = 0. The
restriction π : C2 \ Cψ → W of the first projection is a locally trivial fiber bundle. Since the
universal covering of the base is contractible, the homotopy long exact sequence becomes a short
exact sequence:

(2.1) 1 → K → π1(C2 \ Cψ; (?,N)) → π1(W ; ?) → 1.

In order to study it, we look for a suitable model. Let us consider the disk ∆x of radius | ∗ |; it
has been chosen big enough in order to contain all the punctures of W in its interior. The disk
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∆y of radius |N| is also big enough in order to contain all the punctures at the fiber L? and to
ensure that

(2.2) C ∩ (∆x × ∂∆y) = ∅.

The restriction π : (∆x ×∆y) \ Cψ → ∆x ∩W is a strong deformation retract of the former π.
From (2.1) it is possible to provide a presentation of π1(C2 \Cψ; (?,N)). The condition (2.2)

allows to consider the splitting j∗ : π1(W ; ?) → π1(C2 \ Cψ; (?,N)) defined by the inclusion
j : ∆x ∩W ↪→ (∆x ×∆y) \ Cψ, j(x) := (x, N).

The definition of the natural action of By? on K implies that if α ∈ π1(W ; ?) then we have
the following equalities in π1(C2 \ Cψ; (?,N)):

(2.3) (j∗(α))−1 · µ · j∗(α) = µf∗(α), ∀µ ∈ K.

Since the extremities of the sequence (2.1) are free groups, using (2.3) we determine a presenta-
tion of the middle term.

Using transversality arguments, we have that the inclusion induces an epimorphism π1(C2 \
Cψ; (?,N)) � π1(C2 \ C; (?,N)). It is trivial that j∗(π1(W ; ?)) is in the kernel of this mapping;
the famous van Kampen theorem was produced in order to check that it normally generates the
kernel. Transversality arguments help also in the proof of this result, which gives the theorem.

�

Remark 2.2. In his foundational paper [Zar29], Zariski uses motions in pencil of lines which
give relations. He computes how these relations behave locally and braid monodromy helps to
handle with them both locally and globally. If we consider a projective curve C̄ with the generic
conditions, it is enough to replace π1(L? \ C) by π1(L̄? \ C̄).

3. Final definition of braid monodromy

In order to present braid monodromy in a more manageable way, let us define a special class
of bases for π1(W ; ?). We recall first the definition of meridians.

Definition 3.1. Let Z be a connected projective manifold and let H be a hypersurface of Z.
Let ? ∈ Z \H and let K be an irreducible component of H. A homotopy class γ ∈ π1(Z \H; ?)
is called a meridian about K with respect to H if γ has a representative δ satisfying the following
properties:

(a) there is a smooth complex analytic disk ∆ ⊂ Z transverse to H such that ∆∩H = {?′} ⊂ K

(transversality implies that ?′ is a smooth point of H).
(b) there is a path α in Z \H from ? to ?′′ ∈ ∂∆.
(c) δ = α · β · α−1, where β is the closed path obtained by traveling from ?′′ along ∂∆ in the

positive direction.

Let us suppose that all the punctures are contained in the interior of the closed disk ∆x of
radius |? |. Let C\W := {x1, . . . , xr}. There exists a basis γ1, . . . , γr of π1(W ; ?) such that each
γi is a meridian of xi and such that γr · . . . ·γ1 is homotopic to the boundary of ∆x (parametrized
counterclockwisely). Note that, in particular, (γr · . . . ·γ1)−1 is a meridian of the point at infinity.

Definition 3.2. A basis γ1, . . . , γr of π1(W ; ?) is geometric if each γi is a meridian of xi and
γr ·. . .·γ1 is homotopic to the boundary of ∆x (parametrized counterclockwisely). If (γr ·. . .·γ1)−1

is only a meridian of the point at infinity, we say that the basis is pseudogeometric.
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Remark 3.3. The canonical example of geometric basis of π1(C \ y0; ?), for some ? � 0, is
γ1, . . . , γd, obtained as follows:

• γi is a meridian of −i.
• γi runs along the real axis avoiding counterclockwisely the points −j, j < i.

The natural action of Bd on this free group is given by:

γ
σj

i :=


γi i 6= j, j + 1,

γj+1 i = j,

γj+1 · γj · γ−1
j+1 i = j + 1.

We can give the third notion of braid monodromy: it is (∇(γ1), . . . ,∇(γr)) ∈ (Bd)r, where
γ1, . . . , γr is a geometric basis. Since two meridians are always conjugate and ∇ is only defined
up to conjugation, we may accept pseudogeometric basis.

Let us recall the notion of Hurwitz moves. Given a group G, Br acts on Gr as follows. The
action of the ith standard generator of Br (the ith elementary Hurwitz move) is:

(g1, . . . , gr) 7→ (g1, . . . , gi−1, gi+1, gi+1gig
−1
i+1, gi+2, . . . , gr).

Note that the product gr · . . . · g1 remains invariant by Hurwitz moves. Note that this action
commutes with the simultaneous conjugation in G and we have an action of Br × G. The
geometric interpretation of a well-known result of Artin is the following one.

Proposition 3.4 (Artin [Art47]). The group Br acts freely and transitively on the set of geo-
metric bases of π1(W ; ?).

Definition 3.5. The braid monodromy of C is the orbit of (∇(γ1), . . . ,∇(γr)) ∈ (Bd)r by the
action of Br × Bd, where γ1, . . . , γr is a pseudogeometric basis of π1(W ; ?).

4. Puiseux monodromy and homotopy

In order to compute braid monodromy of a curve one needs to describe the braid associated
with meridians in π1(W ; ?). Let us fix such a meridian, which will have a decomposition δ =
α · β · α−1 as in Definition 3.1. Recall that β is the boundary of a small disk such that in its
center there is a vertical line L intersecting non-transversally the curve C. The braid associated
to β is computed using the Puiseux expansion and will be positive in the standard generators.

Examples 4.1. Zariski [Zar29] was aware of this fact and he used it intensively. For example,
with a suitable normalization, we can describe the braids associated to some non-transversality
situations:

(a) An ordinary tangent (local equation y2 − x = 0). The braid monodromy equals σ1; the
non-trivial relation is µ1 = µ2.

(b) A generic node (local equation y2−x2 = 0). The braid monodromy equals σ2
1 ; the non-trivial

relation is [µ1, µ2] = 1.
(c) An Ak singularity (local equation y2 − xk+1 = 0). The braid monodromy equals σk+1

1 ; if
k = 2, the non-trivial relation is µ1 · µ2 · µ1 = µ2 · µ1 · µ2.

(d) A flex of order k (local equation yk+1 − x = 0). The braid monodromy equals σk · . . . · σ1;
the non-trivial relations are µ1 = · · · = µk. This fact was used in [Zar29] to prove that the
fundamental group of the complement of a projective smooth curve is abelian.
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We do not have an intepretation of the braid along α; note that it is not a closed braid but
we can identify it with a closed braid using lexicographic braids. We will see how to compute
the braids alon these α in some curves (strongly real curves); for general computations, one can
use some computer programs (Carmona [Car03], VKCurve of D. Bessis and J. Michel).

Example 4.2 (Artal-Carmona-Cogolludo [ACC05]). Consider the projective curves Cβ :=
{fβgβ = 0}, β2 = 2, where:

fβ(x, y, z) :=y2z3 + (303− 216 β) yz2x2 + (−636 + 450 β) yzx3+

+ (−234 β + 331) yx4 + (−18 β + 27) zx4 + (18β − 26)x5,

and

gβ(x, y, z) :=y +
(

10449
196

− 3645
98

β

)
z +

(
−432

7
+

297
7

β

)
x.

The component of degree 5 has singularities E6, A3, A2 and the line cuts it at two points with
intersection multiplicities 1, 4. We consider the affine curves obtained with z = 1 (the projection
point is the E6 singular point and the line at infinity is its tangent line).

Figure 2. Real part of Caff√
2

The braid monodromy for
√

2 equals: [σ8
2 , σ4

2 ∗ σ2
1 , σ3

2 ∗ σ3
1 , σ2 ∗ σ4

1 , σ−3
1 ∗ σ2] ∈ B5

3, where
a ∗ b := aba−1.

Figure 3. Real part of Caff
−
√

2

The braid monodromy for −
√

2 equals: [σ3
2 ,

(
σ2σ

−1
1 σ2

)
∗ σ1, σ2 ∗ σ8

1 , σ−2
1 ∗ σ4

2 , σ−3
1 ∗ σ2

2 ] ∈ B5
3.

If we focus our attention on the decomposition of the braids as conjugation of Puiseux braids,
we are a priori closer to the geometry. Let us consider a geometric basis of π1(W ; ?).

Definition 4.3. A Puiseux monodromy of a curve C is an element of (B2
d)
r obtained by consid-

ering the open braids starting at the base point and ending near the points in C \W and the
positive braids around the singular points obtained via Puiseux expansions. If we denote it as
((αi, βi))ri=1, we have:
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• (αi ∗ βi)ri=1 represents braid monodromy.
• βi is a positive braid.

Theorem 4.4 (Zariski-van Kampen(2)). Let us suppose that ((αi, βi))ri=1 is a Puiseux mon-
odromy of C. For the sake of simplicity we will suppose that each vertical line Lxi contains only
one point Pi of non transversality of C. Let ri be the number of strings involved in βi (say, the
first ones): ri = (C ·Lxi

)Pi
. Then, if µ1, . . . , µd is a geometric basis of K then π1(C2 \C; (?,N))

has a presentation:

(4.1) 〈µ1, . . . , µd | (µ−1
j µβi

j )α
−1
i , i = 1, . . . , r, j = 1, . . . , ri − 1〉.

Proof. The relations obtained in Theorem 2.1 can be written as:

(µαi
j )−1(µαi

j )βi , i = 1, . . . , r, j = 1, . . . , d− 1,

since the product of all relations for one line is a trivial relation. Note that (µαi
j )dj=1 is a geometric

basis. If we would have chosen as generic fiber the base fiber of βi, only the first ri− 1 relations
would be non trivial; this basis is related with the fixed one via α−1

i . �

Theorem 4.5 (Libgober [Lib86]). The complex associated with the presentation (4.1) has the
homotopy type of C2 \ C. In particular, Puiseux monodromy determines this homotopy type.

5. Braid monodromy and topology

Theorem 5.1 (Kulikov-Teicher [KT00],Carmona [Car03]). Braid monodromy completely deter-
mines the topology type of the embedding of C.

It is classically known that the composition of braid monodromy with the natural morphism
Bd � Σd determines the abstract topology. Moreover, if we follow Libgober’s strategy in Theo-
rem 4.5, one can find that Puiseux monodromy determines the topology type of the embedding
of C. We consider a geometric basis of meridians giving a Puiseux monodromy ((αi, βi))ri=1.
Over the disks bounded by βi, we have a topological model of the curve, and we call this model
with the braids αi. We use product structure to extend the curve over C.

Sketch of Kulikov-Teicher’s proof. A priori, Puiseux monodromy could not be determined by
braid monodromy. Let us suppose that (α, β) is a component of a braid monodromy. If [β, η] = 1,
then we could replace (α, β) by (αη, β) and the corresponding braid monodromy would not
change. Morevoer, this process allow to construct all possible Puiseux monodromies for a given
braid monodromy.

Kulikov and Teicher use the presentation of the centralizer of a canonical generator σ1 to
show that the topological type does not change if we replace (1Bd

, σ1) by η, σ1) for any generator
of the centralizer of σ1. The same method applies to powers of σ1 and then, their proof works
for curves with at most double points. It has been generalized by Manfredini-Pignatelli [MP00]
to curves with singularities having only one Puiseux pair. �

Sketch of Carmona’s proof. This proof works for arbitrary singularities. Braid monodromy de-
termines the isotopy class of C outside the preimages of small disks around the points of C \W .
Over these points, the topological type of the projection determines also the isotopy class. One
must check that there is only one way to glue these isotopies and this is done using Waldhausen
graph manifolds [Wal67a, Wal67b] (using Neumann plumbing calculus [Neu81]). �
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It is not known if the converse is true. There are two partial converses which are true.

Theorem 5.2 (Carmona [Car03]). The topological embedded of C with respect to a projection
determines braid monodromy.

Problem 5.3. Find an effective way to express the topology in terms of braid monodromy.

Given the affine curve C, we define the curve Cϕ obtained as the projective closure of Cψ

and the line at infinity.

Theorem 5.4 (Artal-Carmona-Cogolludo [ACC03]). The embedded topological type of Cϕ (with
C, the line at infinity and the point at infinity of vertical lines marked) determines the braid
monodromy of C.

Sketch of the proof. The main point is to consider the exact sequence (2.1). Since K is the
subgroup generated by the meridians of K, even if the projection is not defined, (2.1) has an
intrinsic meaning.

Since vertical lines are preserved, the notion of boundary of a big disk in a fiber is also intrinsic,
and then, we can define geometric basis of the subgroup K. On the other side, the splitting j∗ is
also well-defined since, given a meridian in π1(W ; ?) there is only one way to lift this meridian
in a meridian of the corresponding vertical line and such that its conjugation action on K is
braid-like.

Finally, the hypothesis allow also to give an intrinsic meaning to pseudogeometric basis of
π1(W ; ?). Since the natural action of Bd on the free group of rank d is effective, we can recover
braid monodromy of a pseudogeometric basis of π1(W ; ?). �

6. Projective curves and non-generic situations

Let C̄ be a reduced projective plane curve. If L is a line in P2, we can identify P2\L ≡ C2 and
C := C̄ \ L becomes an affine curve. The choice of a point in L determine a pencil of (vertical)
lines which allows us to construct a braid monodromy. If we choose generically this line, the
obtained braid monodromy depends only on C̄ and it is the braid monodromy of C.

The line can be chosen as follows. Consider:

• Tangent line at inflection points.
• Lines in the tangent cone of singularities.
• Lines joining two points which are either singular or inflections.
• Bitangent lines.
• Tangent lines through singular or inflection points.

We consider a point P outside this finite number of lines and a generic line L through this
point.

Proposition 6.1. Let C̄0, C̄1 ⊂ P2 be two curves of degree d such that there exists an equisingular
continuous family (Ct)t∈[0,1] joining them. Then, they have the same braid monodromies.

The original Zariski-van Kampen theorem applies to projective curves.

Theorem 6.2 (Zariski-van Kampen(3)). Let C̄ ⊂ P2 be a projective curve of degree d and let
(τ1, . . . , τr) ∈ (Fd)r be a representative of its braid monodromy. Then:

π1(P2 \ C̄) = 〈µ1, . . . , µd | µi = µ
τj

i , µd · . . . · µ1 = 1〉.



BRAID MONODROMY AND TOPOLOGY OF PLANE CURVES 9

Remark 6.3.

(a) This is a consequence of Theorem 2.1 and classical van Kampen theorem.
(b) One can obtain less relations by taking a Puiseux monodromy as in Theorem 4.4.
(c) One can relax the genericity conditions: The result is true as far as the projection point is

not in C̄.
(d) If the projection point is in C̄ and the line at infinity is its tangent cone, one can consider the

braid monodromy of the resulting affine curve. With a careful analysis of braid monodromy
and the topology of the affine curve at infinity, we can also obtain a presentation of the
fundamental group of the complement of the projective curve.

(e) J. Carmona [Car03] has studied the additional information needed to handle braid mon-
odromies for affine curves with asymptotes; D. Bessis has also similar results.

7. Braid monodromy and presentations of braid groups

There are two tools coming from representation theory that can help in the study of braid
monodromy. The first one is a method by Libgober [Lib89]. If we compose braid monodromy
with a representation of braid groups in a matrix group with coefficients in a principal ideal
domain R (e.g. one-variable Laurent polynomial with coefficients in a field), using Fitting ideals
we can associate to a braid monodromy an element in R. In the case of Burau representation
one finds essentially the Alexander polynomial of the curve.

The other tool comes from finite representations. Let us suppose that we have computed two
braid monodromies represented by (τ1, . . . , τr), (η1, . . . , ηr) ∈ (Bd)r.

(St-a) Check if there is a permutation of (η1, . . . , ηr) such that ηi is conjugated to τi. If it is
not the case, they are not equivalent. If it is the case, we can perform Hurwitz moves in
order and such that each ηi is conjugated to τi. Moreover we can reorder (τ1, . . . , τr) in
order to have a decomposition of the r-uples in blocks containin the elements of the same
conjugacy class. to group the different conjugacy classes in

(St-b) If (St-a) works, check if τ := τr · · · · · τ1 (pseudo-Coxeter element [Bri88]) and ηr · · · · · η1

are conjugated. If it is the case, after a simultaneous conjugation we may suppose they
are equal.

(St-c) If (St-b) works, let H ⊂ Bd be the centralizer of τ . Then, check if the subgroups generated
by (τ1, . . . , τr) and (η1, . . . , ηr) are conjugated by an element in H (they are called mon-
odromy subgroups). If it is the case, we can suppose that both groups and pseudo-Coxeter
elements coincide. Let K be the normalizer of the monodromy subgroup in H.

(St-d) We can apply Zariski-van Kampen method to find the fundamental group of the comple-
ment of the curve.

(St-e) We can consider the orbit of (τ1, . . . , τr) by the action by conjugation by K and the action
by Hurwitz moves respecting the blocks. Since these orbits are infinite, we can use a finite
representation Ψ : Bd → G; the orbits are finite and the problem may be solved (e.g. in
[GAP04]).

8. Applications

In this section we will treat two applications. Theorem 5.4 has proven the strength of braid
monodromy in the detection of topological properties. We focus our attention on the so-called
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algebraic Zariski pairs. In order to see if their equivalent (and obtain a topological property) we
can use several approaches:

Definition 8.1. [Art94] Two curves C1, C2 ⊂ P2 are a Zariski pair if there are regular neigh-
bourhoods such that the pairs (T (C1), C1) and (T (C2), C2) are homeomorphic (combinatorial
property) but (P2, C1) and (P2, C2) are not homeomorphic.

Combinatorics determine the first part since this property depends on degrees of irreducible
components, topological types of singularities and relationship between local branches and global
components. Examples of Zariski pairs are known from Zariski times. The first examples are
distinguished in terms of Alexander polynomials. For other ones, we need a generalization of
this invariant, Libgober’s characteristic varieties [Lib01]. Some of them are distinguished by the
fundamental group. In all these cases, some algebraic properties explain the differences between
the members of the pairs.

Definition 8.2. An algebraic Zariski pair is a Zariski pair such that its members have conjugate
equations in some number field.

Note that algebraic Zariski pairs cannot be distinguished by algebraic invariants. We have
studied the curves of Examples 4.2.

We have computed non-generic braid monodromies. Though they are not priori so important
as generic ones, they have some interesting properties:

• They help also to compute fundamental groups (with some care if the projection point
is in the curve).

• Computations are easier since in general both d and r decrease.
• Non genericity can carry important properties of the curves and we can also obtain

invariants. This fact is also strengthened because of Theorem 5.4 (see line arrangement
example in [ACCM03]).

In Example 4.2, we have obtained different braid monodromy using a representation (e) of
B3 in GL(2; Z/32Z). In this cases the fundamental group of the complements of both pro-
jective curves is isomorphic to Z × SL(2; F7), see [ACC05]. As a consequence, if we add the
non-transversal lines through the base points, we obtain an algebraic Zariski pair. Using this
technique, we have also found algebraic Zariski pairs of arrangement of lines; in particular, we
have found real arrangements with the same combinatorics and such that their complexifications
are not homeomorphic [ACCM03]; in this example, we get the result using (St-c).

Figure 4. Algebraic Zariski pair of real arrangements
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Braid monodromy is also useful in singularity theory, see the work of Brieskorn [Bri88] or the
recent Ph.D thesis of Lönne. We present one application and we begin with some preliminaries
which can be found in [Mil68] or [AGZV88].

Let us consider a germ of isolated singularity f : (C2, 0) → (C, 0). The main invariants of
this germ are the monodromy of the Milnor fibration and the Seifert form of its link. By Milnor
theory, there are 0 < δ � ε � 1 such that f has a representative

B̄4
ε (0) ∩ f−1(B̄2

δ (0)) =: Y
f→ T := B̄2

δ (0).

The algebraic link K := ∂Y ∩ f−1(0) ⊂ ∂Y ∼= S3 does not depend on the choice of (small
enough) ε. Outside the origin f is a locally trivial fibration; its fiber (called Milnor fiber) F is
homotopic to a wedge of µ S1’s (µ is called the Milnor number). This fibration is controlled by
the monodromy acting on F . Extending suitably, F is a Seifert surface of K and its Seifert form
can be used to recover the homological monodromy.

If we take a generic linear form ` and a small constant a, fa := f +a` becomes a morsification
of f , i.e, it has only ordinary double points with different values; its number is µ. Picard-
Lefschetz theory of vanishing cycles allows to find a base for the homology of F ; moreover, the
generic fiber of fa is isotopic to the one of F and this isotopy extends to the fibrations over ∂T .

Let us consider fa : Ya → Ta (Ya and Ta are isotopic to Y and T respectively). Let t1, . . . , tµ

be the critical values of fa (in the interior of Ta). Let us fix ? ∈ ∂Ta; we identify F with f−1
a (?).

Let us consider a geometric basis γ1, . . . , γµ of meridians for π1(Ta \{t1, . . . , tµ}; ?). Let ?i be the
intersection point of the circle and the arc of γi. Let P1, . . . , Pµ be the critical points of fa, and
consider the Picard-Lefschetz vanishing cycle associated to Pi in the fiber over ?i; transporting
this cycle through the arc in γi we obtain a vanishing cycle ci in F ; c1, . . . , cµ provide a base of
the homology of F .

Theorem 8.3. The Seifert form in this basis is upper triangular. In particular, in this basis,
the matrices for Seifert form, intersection form and monodromy determine each other.

We are going to explain how braid monodromy helps us to compute the intersection form.
These results are part of the Ph.D. thesis of M. Escario. Let us consider the polar map Φ :
(C2, 0) → (C2, 0) such that Φ(x, y) := (f(x, y), `(x, y)).

After a change of coordinates we may suppose `(x, y) = x; the jacobian locus of this mapping
is the zero locus of ∂f∂y and its image ∆ (the discriminant) is the zero locus of the df (x, t) which is
the discriminant of f(x, y)− t with respect to y. If we replace f by f +ax, the new discriminant
∆a is the zero locus of df (x, t− ax).

The mapping Φ defines a finite ramified covering of the Milnor fiber of f onto a small disk in
a vertical line; the ramification is concentrated on the intersection with ∆.

It is easily seen that the unique vertical line tangent to ∆ is the vertical axis. The morsification
is related with vertical lines after the change of variables t 7→ t − ax; singular points of the
morsification are relate with new vertical tangents.

The key point is to consider the braid monodromy of ∆ associated to the projection (t, x) 7→ x.
There is a notion of vanishing path on the vertical lines near the vertical tangents and braid
monodromy of ∆ allows us to translate them to vanishing paths in a fixed vertical line. Using
the ramified covering Φ we obtain the vanishing cycles in the Milnor fiber.
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This method applies also to the so-called tame polynomials, introduced by Broughton. For
these polynomials, adding a generic linear form produces a morsification. This method provides
effective computations useful for the understanding of the topology of polynomials.

It would be interesting to work only with the discriminant of f in the following way. The local
braid monodromy of ∆ is easily computable. Since 0 is the only critical value of the projection,
it is defined by a braid τ ∈ Bk which correspond to a singularity having the vertical direction in
the tangent cone. If we consider now the braid monodromy of ∆a we have the following singular
values:

• µ values corresponding to the µ vertical lines at smooth points.
• If ∆ is not smooth, 0 is another singular value, which correspond to a singular point in

general position.

We can choose a geometric basis for the punctured disk such that the µ first generators correspond
the tangent to vertical lines and the last one (if it exists) to the singular point. Let α1, . . . , αµ, β

be the associate braids (β = 1Bk
, if ∆ is smooth). Note that αi is conjugated to σ1. Note that

(8.1) τ = β · σµ · . . . · σ1.

Problem 8.4. Let us suppose that we have two decompositions of τ such that the first braid
is conjugated to β and the other µ braids are conjugated to σ1. Are they in the same orbit by
Hurwitz moves and conjugation by an element in the centralizer of β?

Since the topological type of ∆ is known, a positive solution to this problem would simplify
the computation and allow the application of this method in good-at-infinity polynomials, which
is a family larger than the one of tame polynomials.
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