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Abstract. In this paper we study properties of complex plane projective curves from a
geometric point of view. We focus our attention on properties of conics. We find that Gauss
curvature determines a conic up to a hermitian transformation preserving the Fubini-Study
metric of the complex projective plane and we discuss some other geometric properties of
the conics. Finally we study the deformation of smooth conics onto pair of lines and the
classification of cubics up to hermitian transformations.

Introduction

The goal of this paper is to study projective plane curves as riemannian surfaces or hermitian
curves. Let P2 be the complex projective plane and let C be a smooth plane curve (or, more
generally, a curve with smooth branches). As a differentiable manifold C is a 2-dimensional
submanifold of the four-dimensional submanifold P2; as analytic manifolds, the dimensions are
divided by 2.

Let us consider the Fubiny-Study metric in P2; it is a hermitian metric and its real part
is a riemannian metric. Both metrics restrict to C which becomes a riemannian surface (or a
hermitian complex curve). Complex charts of C are isothermal for the riemannian metric. We
want to study invariants of C as a geometric object and compare them with algebraic invariants.

This approach appears in the works of Linda Ness [5, 6] which studies the metric properties of
deformations (Milnor fibers) for curves having ordinary singular points, i.e., formed by pairwise
transversal smooth branches. In these papers, the author uses the Fubiny-Study metric on the
projective plane to induce a hermitian metric on the smooth part of the curve. The geometric
study of the singularities of a germ of plane curve singularity has been done by Evelia García
Barroso and Bernard Teissier in [2, 3]; since their interest is mainly local, they prefer to use the
euclidean hermitian metric.

We focus mainly on the study of reduced conics, determining the moduli space up to hermitian
transformations and looking for geometric properties characterizing the hermitian conics. We
show in concrete examples how smooth conics degenerate onto reducible conics. Finally, some
aspects of cubics are studied.

1. Hermitian structure and Fubiny-Study metric

We state in this section the well-known properties of the Fubini-Study metric in order to
fix normalizations and to help the reader. Let V be a C-vector space of dimension n + 1, its
elements, considered both as points and vectors will be denoted with u,v, . . . .

First named author is partially supported by MTM2016-76868-C2-2-P and Gobierno de Aragón (Grupo de
referencia “Álgebra y Geometría”) cofunded by Feder 2014-2020 “Construyendo Europa desde Aragón”.
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2 E. ARTAL AND R. MORÓN

Let M := V \ {0}; the projective space P(V ) of V , i.e. the space of 1-dimensional complex
vector subspaces of V , is naturally identified with the quotient M/C∗ (action by scalar multi-
plication) and its points (orbits or vectorial lines) will be denoted with p,q, . . . , and the class
of u ∈M as [u].

Let us fix a hermitian scalar product h in V . Any such pair is isomorphic to Cn+1 and the
standard hermitian scalar product: if u,v ∈ Cn+1 (as column vectors), then

h(u,v) := tu · v.

Let U(V, h) be the group of h-unitary automorphisms. In the previous model it corresponds to

U(n;C) :=
{
P ∈ Mat(n;C) | tP · P = 1n+1

}
.

Note that TuM = TuV ≡ V , ∀u ∈M , where a vector v ∈ V is identified with the tangent vector
at t = 0 of the curve t 7→ u + tv. The projective space P(V ) acquires a natural structure of
analytic manifold such that the quotient π : M → P(V ) is an analytic submersion.

Given u ∈M , let us denote by p = [u] its class in P(V ). If u := (u0,u1, . . . ,un) is a basis of
V , then the map

ϕu : Cn → P(V ), z := (z1, . . . , zn) 7→

u0 +

n∑
j=1

zjuj

 = u


1

z1

...
zn


is an analytic chart of P(V ). Changing the basis, the projective space is covered and the change
of charts are analytic. The following commutative diagram holds if λt is the multiplication
by t ∈ C∗:

(1.1)

Hp V ≡ TuM

TpPn

Hp V ≡ TtuM

·t

dπu|

dπu

dλt|u =·t

dπtu|

dπtu

Note that p = C〈u〉 = ker dπp and let us define Hp := p⊥. The restrictions to Hp are isomor-
phisms in (1.1).

Let us consider the following hermitian metric h on M . For u ∈M we define hu := 1
‖h(u)‖2h.

With this hermitian metric the maps λt are isometries and (1.1) allows us to define a hermitian
metric hP on Pn, called Fubiny-Study metric.

Example 1.1. Let us consider the chart ϕ : C → P1 given by ϕ(t) := [1 : t]. This chart
factorizes through Φ : C → M , Φ(t) := (1, t) (with coordinates z := (z0, z1) in M). Let
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u := ∂
∂t |[1:t]

= dϕ|t

(
∂
∂t |t

)
. Let us consider dΦ|t

(
∂
∂t |t

)
= ∂

∂z1 |(1,t)
. Note that

h

 ∂

∂z1 |(1,t)
,
∂

∂z0 |(1,t)
+ t

∂

∂z1 |(1,t)︸ ︷︷ ︸
radial vector

 = t̄

and
∂⊥

∂z1 |(1,t)
:=

∂

∂z1 |(1,t)
− t̄

1 + tt̄

(
∂

∂z0 |(1,t)
+ t

∂

∂z1 |(1,t)

)
∈ H[1:t].

Since

h

(
∂⊥

∂z1 |(1,t)
,
∂⊥

∂z1 |(1,t)

)
=

1

1 + tt̄
=⇒ h(1,t)

(
∂⊥

∂z1 |(1,t)
,
∂⊥

∂z1 |(1,t)

)
=

1

(1 + tt̄)2
.

Hence,

hP
[1:t](u,u) =

1

(1 + tt̄)2
.

This number provides the matrix of the hermitian form in this chart. Its real part is the riemann-
ian metric of the euclidean sphere S2 of radius 1

2 as it can be checked from the stereographic
projection.

Example 1.2. Let us consider the chart ϕ : C2 → P2 given by ϕ(t) := [1 : t1 : t2], where t :=

(t1, t2) are the coordinates in C2. As in the previous example, it factorizes through Φ : C2 →M ,
Φ(t) := (1, t) (with coordinates z := (z0, z1, z2) in M). Let ui := ∂

∂ti |[1:t]
= dϕ|t

(
∂
∂ti |t

)
. Let us

consider dΦ|t

(
∂
∂ti |t

)
= ∂

∂zi |(1,t)
. We obtain

∂⊥

∂zi |(1,t)
:=

∂

∂zi |(1,t)
− t̄i

1 + ‖t‖2

 ∂

∂z0 |(1,t)
+ t1

∂

∂z1 |(1,t)
+ t2

∂

∂z2 |(1,t)︸ ︷︷ ︸
radial vector

 ∈ H[1:t].

Hence, (
hP

[1:t](u1,u1) hP
[1:t](u1,u2)

hP
[1:t](u2,u1) hP

[1:t](u2,u2)

)
=

1

(1 + ‖t‖2)2

(
1 + |t2|2 −t̄1t2
−t1t̄2 1 + |t1|2

)
.

Let C ⊂ P2 be a smooth projective plane curve. The restriction of this hermitian form to TC
provides a hermitian form in C, which can be studied via analytic charts (local parametrizations).

Remark 1.3. If we replace C by R, the above matrix is the matrix of a riemannian metric in a
chart of the real projective plane; this metric coincides by its very construction with the metric
obtained on RP2 as the quotient of S2 by the antipodal action.

The above examples can be extended easily to dimensions greater than 2. Both M and Pn

are provided with a hermitian metric for which the map π : M → Pn is riemannian submersion,
see [1, Ch. 8]. Let us recall this result.

Proposition 1.4 ([4, Corollary 26.12]). Let F : M → N be a riemannian submersion and let
γ : I →M be a geodesic such that γ̇(t) ⊥ ker dFγ(t), ∀t ∈ I. Then, γ ◦ F is a geodesic.

Corollary 1.5. Let u,v ∈ Cn+1 be two points which are unitary and orthogonal as vectors.
Then, t 7→ [cos tu + sin tv] is a geodesic. In particular, the projective lines are totally geodesic
submanifolds and the diameter of Pn equals π

2 .
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Proof. It is easily seen that γ is a geodesic of M orthogonal to the fibers of π. �

Corollary 1.6. Let u ∈M , p := [u]. Then{
q ∈ Pn

∣∣∣ d(p,q) =
π

2

}
=
{
q ∈ Pn

∣∣∣ d(p,q) ≥ π

2

}
= {q ∈ Pn | p ⊥ q}.

More precisely, for p,q ∈M :

d([u], [v]) = arccos
|h(u,v)|
‖u‖ ‖v‖

∈
[
0,
π

2

]
.

2. Space of conics up to hermitian automorphisms

A polynomial F ∈ C[x0, x1, x2] is homogeneous of degree d if F (λX) = λdF (X) for every
λ ∈ C. A conic in P2 is a hypersurface C = {[x] ∈ P2|F (x) = 0} where F is a non-zero
homogeneous polynomial of degree 2. This equation can be also expressed as

(
x0 x1 x2

)
A

x0

x1

x2

 = 0,

where A is a non-zero symmetric matrix. Two conics coincide if and only if their defining (poly-
nomial or matrix) equations are proportional. In particular, the space of conics is a projective
space of dimension 5. If detA 6= 0 (resp. detA = 0) we say that C is an irreducible or smooth
(resp. reducible or singular) conic.

Definition 2.1. Let C be a projective curve defined as the zero locus of F (X0, X1, X2) = 0,
where F is square-free. We say that p := [x0 : x1 : x2] ∈ C is smooth in C if Fi(x0, x1, x2) are
not canceled simultaneously, where Fi denotes ∂F

∂Xi
. If not, p is a singular point. The curve C

is smooth if all its points are smooth. Moreover, the tangent line to C at a smooth point P is
the line

F0(x0, x1, x2)X0 + F1(x0, x1, x2)X1 + F2(x0, x1, x2)X2 = 0.

In terms of matrices, a conic defined by a symmetric matrix A is smooth if and only if A is
non-degenerate.

In order to work in a coordinate-free way, we replace the matrix by a symmetric bilinear form
and work in arbitrary finite dimension. Let V be a C-vector space, dimC V = n+ 1, with forms
Q, h : V × V → C, h is a hermitian scalar product and Q a non-zero symmetric bilinear form.
Let us express both forms in terms of an h-unitary basis v = (v0, v1, . . . , vn) of V . For v,w ∈ V
such that v = vX and w = vY , we have the following expressions for h and Q:

h(v,w) = XtȲ Q(v,w) = XtAY

where A = (Q(vi, vj)) is the symmetric matrix of Q with respect to v. Also, we define

S2n+1
h := {v ∈ V | ‖v‖ =

√
h(v,v) = 1} ⊂ V \ {0}

which is a compact manifold diffeomorphic to the sphere of dimension 2n+ 1.

Lemma 2.2. In the above conditions, let F : S2n+1
h → R, F (v) := Q(v,v)Q(v,v). Let v ∈

S2n+1
h such that F reaches a maximum in v. Then C〈v〉⊥h = C〈v〉⊥Q.
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Proof. Let us prove that (C〈v〉)⊥h ⊆ (C〈v〉)⊥Q. We define g : R → R, g(t) := F (γ(t)) with
γ(t) = cos tv + sin tw where w ∈ C〈v〉⊥h and ‖w‖ = 1. If v = vX, w = vY , then

g(t) =
(
(cos tX + sin t Y )tA(cos tX + sin t Y )

)
· ((cos tX + sin t Y )tA(cos tX + sin t Y ))

As t = 0 is a relative maximum for g it follows that

0 =
1

2
g′(0) = (Y tAX)(XtAX) + (XtAX)(Y tAX) = 2<

(
(Y tAX)(XtAX)

)
.

As iw ∈ (C〈v〉)⊥h and ‖iw‖ = 1, we can repeat the above argument for w, obtaining the
equality < (i(Y tAX)(XtAX)) = 0, i.e., (Y tAX)(XtAX) = 0. Since XtAX 6= 0 (F reaches its
maximum at v), then Y tAX = 0 and w ∈ C〈v〉⊥Q.

As both spaces are of the same dimension, the result follows. �

Let us state the complex Spectral Theorem with an elementary proof for completeness.

Proposition 2.3. Let Q : V × V → C be a non-zero symmetric bilinear form. There exists
an h-orthonormal basis {v0, v1, . . . , vn} of V such that the matrix A of Q on this basis is real
diagonal with r0 ≥ r1 ≥ · · · ≥ rn > 0 such that

A =


r0 0 · · · 0

0 r1 · · · 0
...

...
. . .

...
0 0 · · · rn

 .

Proof. Let us prove first that a diagonal matrix can be obtained. If dimV = 1 then the result
is trivial. If dimV > 1 then, by Lemma 2.2, there is 0 6= v ∈ V such that ‖v‖ = 1 and
W := (C〈v〉)⊥h = (C〈v〉)⊥Q. The result follows by applying induction on W , h|W and Q|W .
Multiplying the elements of the basis by suitable complex numbers in S1 the result follows. �

Remark 2.4. As we can multiply by a non-zero scalar and the conic does not change, we can
assume r0 = 1.

Hence, it is possible to make a change of coordinates, preserving the hermitian product, such
that any conic C can be transformed in

(
x0 x1 x2

)1 0 0

0 r1 0

0 0 r2


x0

x1

x2

 = x2
0 + r1x

2
1 + r2x

2
2.

Then, if we choose r, s ≥ 0 such that r1 = r2 and r2 = s2, we have that the moduli space of
irreducible conics is given by

Cr,s = {[x0 : x1 : x2] ∈ P2|x2
0 + r2x2

1 + s2x2
2 = 0}

with 0 < s ≤ r ≤ 1. Hence, taking the limit cases, we have the moduli space of reducible conics
as

Cr,s = {[x0 : x1 : x2] ∈ P2|x2
0 + r2x2

1 = 0}

with 0 ≤ r ≤ 1 and s = 0.
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r

s

1

1

• Moduli space of smooth conics
• Moduli space of reducible conics

Figure 1. Moduli space of conics

Remark 2.5. Let us consider the case of reducible conics, r > 0. The conic is formed by two
projective lines L1, L2 intersecting at p0 = [0 : 0 : 1]; let pj ∈ Li such that d(p0,pj) = π

2 , i.e..
maximal. Actually, these points are p1 = [r : i : 0] and p2 = [−r : i : 0]. Moreover,

(2.1) cos d(p1,p2) =
1− r2

1 + r2
=⇒ r = tan

d(p1, p2)

2
.

Hence, r can be geometrically recovered from d(p1,p2). The limit case, when r = 0 correspond
to the double line, when p1 = p2.

This is the kind of results we are looking for. Namely, we can compute the moduli space
of a family of curves (products of two distinct lines) and we find geometric invariants which
characterize to which element in the moduli space a particular curve belong. The first goal has
been achieved for the smooth conics.

Theorem 2.6. For any smooth conic C there is a hermitian change of coordinates which sends
C to a conic Cr,s where 0 < s ≤ r ≤ 1.

Before studying Cr,s as a hermitian or riemannian manifold, we will focus on their behavior
with respect to the distance of P2. Let C be a smooth conic defined by a regular symmetric
matrix A. Let p = [x0 : x1 : x2] ∈ C, then p⊥ is the projective line

p⊥ = {x̄0X0 + x̄1X1 + x̄2X2 = 0}.

This line is determined by its Plücker coordinates p̄ := [x̄0 : ȳ0 : z̄0]. It is easily checked that
the Plücker coordinates of the tangent line to C at p in P2 are given by(

a0 b0 c0

)
:=
(
x0 y0 z0

)
A.

As consequence

0 =
(
x0 y0 z0

)
A

x0

y0

z0

⇐⇒ 0 =
(
a0 b0 c0

)
A−1AA−1

a0

b0

c0

 =
(
a0 b0 c0

)
A−1

a0

b0

c0

.
Hence, the Plücker coordinates of the tangent lines to C are the points of a conic determined
by A−1. We use it to check when orthogonal lines to points in a conic are tangent to the conic.
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Theorem 2.7. Let Cr,s a smooth conic, 0 < s ≤ r ≤ 1. The points p ∈ Cr,s such that p⊥ is
tangent to Cr,s are exactly:

• If s = r = 1, all points p ∈ Cr,s.
• If s = r < 1, the two points p = [0 : ±i : 1] ∈ Cr,s.
• If s < r = 1, the two points p = [±i : 1 : 0] ∈ Cr,s.
• If s < r < 1, the four points p = [±

√
r4 − s4 : ±ir

√
1− s4 : s

√
1− r4] ∈ Cr,s.

The prove of this result is a straightforward computation and it provides a geometric char-
acterization of the smooth conics. In the next section, we compute the curvature and we check
that it also characterizes the geometry of the smooth conics.

3. Curvature of smooth conics

In this section, we will characterize the conics of P2 through Gauss curvature, which can be
computed using [5, Theorem 1]. Since smooth conics are rational we are going to compute Gauss
curvature using a parametrization Φ of Cr,s:

P1 Cr,s ⊂ P2

[t0 : t1] [f2(t0, t1) : g2(t0, t1) : h2(t0, t1)] .

Φ

where f2(t0, t1), g2(t0, t1), h2(t0, t1) are homogeneous polynomials of degree 2. A particular one
is obtained using the pencil of lines through [r : i : 0] ∈ Cr,s. For the sake of simplicity we
replace homogeneous coordinates by affine ones, and we obtain a chart of the conic for which we
only miss one point:

P1 ⊇ C Cr,s \ {[−r : i : 0]} ⊂ P2

t
[
r(s2 − t2) : i(s2 + t2) : 2rt

]Φ

Although the image is not contained in a standard chart of the projective plane as in §1 (for
which we have expressions of the hermitian product), we can compute the restricted hermitian
product for t 6= 0; the computations can be extended by continuity.

As in Example 1.1, let u := ∂
∂t |Φ(t)

. Using the expression given for the Fubini-Study metric
in the Example 1.2, the restriction of hP on Cr,s, denoted as hr,s is determined by the following
formula:

hr,sΦ(t)(u,u) =
4
(
r2s4 + r2s2t2 + 4 s4tt+ r2s2t

2
+ r2t2t

2
+ s4 − s2t2 − s2t

2
+ t2t

2
)
r2(

r2s4 − r2s2t2 − r2s2t
2

+ r2t2t
2

+ s4 + s2t2 + 4 r2tt+ s2t
2

+ t2t
2
)2 .

These computations (and the following ones) have been performed using Sagemath [8]; Binder [7]
can be used in combination with https://github.com/enriqueartal. We are going to consider
now real coordinates t = x+ iy. The real part of this hermitian metric is a riemannian metric,
which is isothermal in this chart, i.e., of the form hr,s(dx ⊗ dx + dy ⊗ dy), where hr,s is a real
analytic function. If we define

K1 =
(
r2 + 1

)
s4 + 4

(
x2 + y2

)
s4 + 2

(
r2 − 1

)(
x2 − y2

)
s2 +

(
r2 + 1

)(
x2 + y2

)2
,

K2 =
(
r2 + 1

)
s4 − 2

(
r2 − 1

)(
x2 − y2

)
s2 +

(
r2 + 1

)(
x2 + y2

)2
+ 4

(
x2 + y2

)
r2,

https://github.com/enriqueartal
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the real coordinate expression can be written as

hr,s = 4r2K1

K2
2

.

As our metric is a conformal application, and the chart chosen to parameterize the conics is
isothermal, we will be able to obtain the expression of the Gauss curvature without computing
the symbols of Christoffel since we can do it using the following expression

Kr,s = −e−2h̃r,s((h̃r,s)xx + (h̃r,s)yy)

where hr,s = e2h̃r,s and Kr,s denotes the Gauss curvature of the conics Cr,s. With Sagemath,
one can check:

Kr,s = 4− 2s4K3
2

r2K3
1

.

Finally, we can give the desired characterization.

Theorem 3.1. Let Cr,s a smooth conic as above. Then, its Gauss curvature has the following
properties.

• If s = r = 1, we have constant curvature K = 2.
• If s = r < 1, we have Kmax = 4 − 2s2 in [−i(y2

0s
2 + y2

1) : y2
0s

2 − y2
1 : 2sy0y1], y0, y1 ∈

R2 \ {0}, and Kmin = 2(2s4−1)
s4 at the points [0 : ±i : 1].

• If s < r = 1, we have Kmax = 4− 2s4 at the points [±i : 0 : 1] and Kmin = 2(2s2−1)
s2 on

the rational curve [s2x2
0 − x2

1 : i(x2
0s

2 + x2
1) : 2x0x1], x0, x1 ∈ R2 \ {0}.

• If s < r < 1, we have Kmax =
2 (2 r2−s4)

r2 at the points [r : ±i : 0] and Kmin =
2 (2 r2s2−1)

r2s2

at the points [0 : ±is : r]. Also in this case, we have two saddle points in [±is : 0 : 1]

where K =
2 (2 s2−r4)

s2 .

The computations for the proof are detailed in the worksheet of Sagemath. Note also that
the case r = s = 1 is quite special as they have the same riemannian metric as a sphere of radius
1√
2
in R3, in particular the conic with equation x2

0 + x2
1 + x2

2 = 0 is homothetic to the projective
line.

Corollary 3.2. Two smooth conics are isometric if and only if their parameters r, s coincide.
Moreover, they are homothetic if and only if they are isometric.

Proof. The case r = s = 1 is characterized by constant curvature. The case s = r < 1 is
characterized by the fact that the curvature is not constant and there are infinite maxima and
s can be recovered from the maximum value. A similar property holds for s < r = 1, where
maxima are replaced by minima. They are distinguised from the case s < r < 1 with two
maxima and minima. From the maximum and minimum values we can recover s2

r and r2

s , hence
also s, r.

If the riemannian metrics are homothetic by a factor a > 0, their Gauss curvatures are
homothetic by 1

a2 . Hence the ratios of the critical values must be preserved. Clearly, the cases
0 < s = r = 1, 0 < s = r < 1, 0 < s < r = 1 and 0 < s < r < 1 can be treated apart.

The case 0 < s = r = 1 is trivial. For the case 0 < s = r < 1 the critical values can be seen
as homogenous coordinates

[
4− 2s2 : 2(2s4−1)

s4

]
=
[
1 : 2s4−1

s4(2−s2)

]
. Since the second coordinate is

an increasing function of s in (0, 1), it determines the value s.
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For the case 0 < s < r = 1 the critical values can be seen as homogenous coordinates[
4− 2s2 : 2(2s2−1)

s2

]
=
[
1 : (2s2−1)

s2(2−s2)

]
. The second coordinate is again an increasing function of s

in (0, 1) and it determines the value s.
For the case 0 < s < r < 1, the homogeneous coordinates of the critical values are given by[

s2(2r2 − s4) : r2(2s2 − r4) : 2r2s2 − 1
]

= [a : b : c]. Note that a 6= 0 and a > b > c. We get

r2 =
s4c

2(c− a)
, s6 = 8

(c− a)2(bc− a2)

c3b

The result follows if bc 6= 0. If b = 0, we have s2 = r4

2 , and the coordinates are given by[
r6(8− r6) : 0 : 8(r6 − 1)

]
which determine r6. If c = 0, we have s2 = r−2 and the homogeneous

coordinates
[
2− r−6 : 2− r6 : 0

]
also determine r6. �

4. Deformation properties

Let us consider the family of conics Cs : x2
1 + x2

2 + s2x2
3 = 0, for 0 ≤ s ≤ 1. For the limit

cases, C0 is a union of two lines and C1 is a smooth conic with constant curvature. Recall that
the critical values of the Gauss curvature are

Kmin = 2
2s2 − 1

s2
, Kmax = 2(2− s4).

The maximum value goes from Kmax = 2, when s = 1 and Kmax = 4, for s = 0. In the latter
case, the curvature is constant equal to 4, outside the singular point, where the function is not
defined. If s >

√
2

2 , the curvature is strictly positive.
For the case s = s0 :=

√
2

2 , the curvature of Cs0 is non negative. As it was stated in
Theorem 3.1, the minimum appears for the real curve [s2x2

0 − x2
1 : i(x2

0s
2 + x2

1) : 2x0x1], when
[x0 : x1] ∈ RP1. Topologically, we have that the curvature vanishes at the equator of a sphere
and it positive in the open hemispheres. In the chart this curve correspond to x2 + y2 = s2. In
order to have point with negative curvature, we need s < s0.

If K = 0, then

0 =
(
x2 + y2

)2 − 2s
4
3

2
1
3 s

8
3 − 1

s
4
3 − 2

1
3

(
x2 + y2

)
+ s4

which is equivalent to

0 =

x2 + y2 −

(
2

1
3 s

8
3 − 1

)
s

4
3

s
4
3 − 2

1
3

2

−

(
s4 − 1

)(
2

2
3 s

4
3 − 1

)
s

8
3(

s
4
3 − 2

1
3

)2 .

When s <
√

2
2 , the conic Cs is decomposed into a annulus where the curvature is non-positive

(and negative in its interior) and two disks where the curvature is non-negative and positive in
its interior. There is a deformation in this family were the negative annulus collapses to the
singular point P = [1 : −i : 0] and the the two disks end in the complement of the lines to P .

5. Metric properties of cubics

The geometric study of cubics may need another work. In this work we will provide a small
introduction. Let us consider the space of all cubics composed by three non-concurrent lines, or
equivalently (by duality or by taking the pairwise intersections) the space of three non-aligned
points.
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L1

L2

Figure 2. Deformation of a family of smooth conics onto a pair of lines

The moduli space of these curves, up to projective transformations, is reduced to one point.
In this section we are going to describe the moduli space up to unitary transformations. For
the sake of simplicity, we will consider the space of three ordered lines; the original one can be
obtained by applying the action of the symmetric group of three figures.

Let La, Lb, Lc be three non-concurrent lines and let us denote A := Lb ∩ Lc, B := La ∩ Lc,
and C := La ∩ Lb; the points A,B,C are not aligned. After a unitary transformation, we may
assume that C = [0 : 0 : 1] =: P2 and Lb = {X1 = 0} =: L1. A unitary transformation preserving
(C,Lb) must preserve also C⊥ = {X2 = 0} and L⊥b = [0 : 1 : 0]. Hence, these transformations
are diagonal. Let us summmarize these first ideas.

Lemma 5.1. LetM be the moduli space of the space of three ordered non-concurrent lines by the
action of the projective unitary group. Then M is isomorphic to V := (L1 \ {P2}) ×

(
P2 \ L1

)
by the action of S1 × S1 as a diagonal matrix group.

The space V is isomorphic to C3 via

(a, b, c)
Φ7−→ ([1 : 0 : a], [b : 1 : c]) = (A,B)

and the action of (λ, µ) ∈ S1 × S1 is given by

(λ, µ) · (a, b, c) = (λµa, λb, µc).

There is a natural stratification of V by the isotropy groups of its points.

Lemma 5.2. The stratification by the action of S1 × S1 is given by:

(1) S0 := {Φ(0, 0, 0)}. The isotropy group is the whole group S1×S1 and the pair Φ(0, 0, 0) =

([1 : 0 : 0], [0 : 1 : 0]) corresponds to the case where the three points are at distance π
2 .

(2) S1
0 = Φ(C∗×{(0, 0)}). The isotropy group is the diagonal subgroup. The pairs correspond

to the case d(A,B) = d(B,C) = π
2 and d(A,C) < π

2 .
(3) S1

1 = Φ({0} × C∗ × {0}). The isotropy group is {1} × S1. The pairs correspond to the
case d(A,C) = d(B,C) = π

2 , d(A,B) < π
2 .

(4) S1
2 = Φ({(0, 0)}×C∗). The isotropy group is S1×{1}. The pairs correspond to the case
d(A,B) = d(A,C) = π

2 and d(B,C) < π
2 .

(5) S3 is the complement in V of the union of the other strata. The isotropy group is trivial.
At least two of the distances are < π

2 .
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The action of the group on V ≡ C3 kills the arguments of complex numbers outside the
stratum S3 (or even in C3 \ {abc = 0}). A simple computation gives the following result.

Proposition 5.3. The moduli space M is homeomorphic to the quotient of R3
≥0 × S1 by the

identification generated by ((a, b, c), λ) ∼ ((a, b, c), 1) when abc = 0.

This proposition justifies to study separately an open dense subset of S3. Let us denote
Š3 := Φ((C∗)3); its image inM is denoted as M̌ and by the proposition it is homeomorphic to
R3
>0 × S1.
For these cases, we can use the group action to assume that B = [cosu sin v : sinu sin v : cos v],

where v = d(B,C) ∈ (0, π2 ), and u ∈ (0, π2 ). For this assumption, the whole group action has
been used and hence we have A = [λ sinw : 0 : cosw], where w = d(A,C) ∈ (0, π2 ) and λ ∈ S1.
We have a homeomorphism of M̌ with

(
0, π2

)3×S1, (A,B) ≡ (u, v, w, λ). Let us find a geometric
meaning for u and λ. For u we proceed as follows. The point in C⊥ at distance π

2 of B is the
point B̃ = [− sinu : cosu : 0], and the distance of B̃ with L⊥b equals u.

To understand the meaning of λ we consider the remaning distance q := d(A,B), using
Corollary 1.6:

(5.1) cos q = |λ cosu sin v sinw + cos v cosw| .

Let us use also the geodesic triangle with vertices A,B,C. The edge BC is γa : [0, v] → P2

given by γa(t) := [cosu sin t : sinu sin t : cos t]. The edge AC is γb : [0, w] → P2 given by
γb(t) := [λ sin t : 0 : cos t]. Let us consider the lifts γ̃a, γ̃b to C3 \{0} of these paths. The tangent
vectors at t = 0 are

˙̃γa(0) = (cosu, sinu, 0), ˙̃γb(0) = (λ, 0, 0).

As these vectors are unitary and orthogonal to the radius vector (0, 0, 1), we obtain that

hP
C(γ̇a(0), γ̇b(0)) = λ cosu.

As a consequence, if γ is the angle between the two edges at C, then

(5.2) cos γ = <λ cosu.

Following (5.1) and (5.3), we obtain

(5.3) cos q = |cos v cosw + cos γ cos γ sin v sinw + i=λ cosu sin v sinw| .

This formula coincides with the spherical cosinus law when λ = ±1, so λ measures how far this
triangle is to be a spherical one.
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