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CHAPTER 1

Day #1ay 1

1. Motivation

The study of the topology of complex algebraic varieties is a main subject in
the intersection of geometric topology and algebraic geometry. In this course we
will focus our attention on the study of the topology of (either projective or affine)
plane curves as subspaces of the (either projective or affine) plane.

One of the reason is that it is the first non-trivial case when studying the
embedded topology of such varieties. There is another one which justifies that
we are mainly interested in the study of fundamental group as a main topological
invariant.

Any projective variety can be seen as a branched covering of the projective space
(of the same dimension) ramified along a hypersurface. These branched covers are
measured by the fundamental group of the complement of the hypersurface in the
projective space. Moreover, using Zariski-Lefschetz theory this group does not
change if we consider a generic plane section. Hence, we see the value of the study
of the fundamental group of the complement of an algebraic curve.

In this course we will study these fundamental groups using various techniques.
We will illustrate these techniques with examples. In particular, after this course,
the students should be able to find the fundamental group π1(P2 \ C) for any pro-
jective curve C of degree at most 4.

For general reference see [4].

2. First examples

The ambient space will be the complex projective plane P2. If we work with
curves having a line L as an irreducible component, since P2 \ L is isomorphic to
C2, for some cases the affine plane will be considered as the ambient space; it is not
compact, but some projection techniques are easier to apply in this context.

Having in mind the goal of computing π1(P2 \ C) for any projective curve C
of degree at most 4, we start with the simplest case, a curve of degree 0, i.e., the
empty set

Proposition 2.1. The projective plane P2 is simply connected.

Proof. We will give three different skecthes of the proof. In fact, we are going
to prove that π1(Pn) is trivial.

The first approach uses Seifert-van Kampen Theorem. Note that Pn is the
union of n + 1 open sets all of them isomorphic to Cn which is contractible and,
hence, simply connected. Moreover, the intersection of any subfamily of these n+1
open sets is connected. By an easy induction process, the classical Seifert-van
Kampen Theorem implies that π1(Pn) is trivial.

The second approach uses the Hopf fibration, a locally trivial fibration ρn :
S2n+1 → Pn, which fiber isomorphic to S1. The long exact sequence of homotopy
provides the desired information, not only for π1(Pn) but also for some higher
homotopy groups.
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6 1. DAY #1AY 1

The third approach comes from the CW-complex decomposition of Pn which
uses the above Hopf filtration. The natural decomposition has exactly one cell of
dimension 2j, 0 ≤ j ≤ n. Then, the fundamental group is clearly trivial. �

Following the program, we study the fundamental group of P2 \ C, where C is
a curve of degree 1, i.e., a line. As we have already used, in this case P2 \ C ∼= C2,
a contractible space, and then, the fundamental group is clearly trivial.

Remark 2.2. Since we are interested only in the topology, we assume that the
curves we are dealing with are reduced, i.e., their equations are square-free.

Exercise 2.1. Prove that any conic is either the union of two (distinct) lines
or an irreducible conic. Any two irreducible conics are isomorphic.

Example 2.3. If C is the union of two lines, we may assume that its equation is
yz = 0. In particular P2 \C ∼= C×C∗. Since C∗ has the same homotopy type as S1,
we have that π1(P2 \ C) ∼= Z. Recall that π1(C∗; 1) is generated by the homotopy
class of the loop t 7→ exp(2iπt).

In the above examples, all the fundamental groups are abelian. Since the
quotient π1(P2 \ C)/π1(P2 \ C)′ is isomorphic to H1(P2 \ C;Z), let us recall how to
compute it.

Proposition 2.4 ([11]). Let C =
⋃r
i=1 Ci be the decomposition in irreducible

components of an algebraic plane curve C, di := deg Ci, d := gcd{d1, . . . , dr}. Then,
H1(P2 \C;Z) ∼= Zr−1⊕Z/dZ. In particular, if one of the components is a line, then
H1(P2 \ C;Z) ∼= Zr−1.

Proof. We will make use of Lefschetz duality which implies that H1(P2 \
C;Z) ∼= H3(P2, C;Z). Let us consider now the long exact sequence of cohomology
of the pair (P2, C) and recall that H3(P2;Z) = 0:

(1) Z ∼= H2(P2;Z)
α→ H2(C;Z)→ H3(P2, C;Z)→ 0

Using Mayer-Viétoris exact sequence and the fact that the irreducible components
of C (pairwise) intersect at points, we obtain that H2(C;Z) ∼=

⊕r
i=1H

2(Ci;Z) ∼= Zr.
Using Poincaré duality and intersection theory, the map α : Z → Zr is given by
α(1) = (d1, . . . , dr) and the result follows. �

Remark 2.5. There is a nice topological interpretation of this result. Let L be a
generic line in P2 with respect to C, i.e. #(L∩C) = d1 + · · ·+dr. Note that H1(L\
C : Z) is generated by small circles centered at the punctures (counterclockwise
oriented) with the relation that the sum of all of them is trivial. The punctures
associated to each irreducible components are equal in H1(P2 \ C;Z).

One of the applications of this result is the following one. If it is possible to
prove that such a fundamental group is abelian, then it is easily described. In fact
Proposition 2.4 works also word by word if we consider hypersurfaces in higher
dimensional projective spaces.

3. Projections and meridians

Let us fix now a projective curve C ⊂ P2 and a point P ∈ P2. Note first that
π1(P2 \ C) ∼= π1(P2 \ (C ∪ {P})); it is trivial if P ∈ C and follows from Seifert-
van Kampen Theorem if P /∈ C. The main goal of the well-known Zariski-van
Kampen Theorem is to give an algorithm to compute π1(P2\C) using the projection
πP : P2 \ {P} → P1. This method will be discussed in the next lectures but we are
going to give the first ideas of the method.
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Remark 3.1. It is useful to choose suitable coordinates, e.g., such that P =
[0 : 1 : 0]. The classical method of Zariski and van Kampen assumes that P /∈ C
but it is not necessary.

The projective line P1 is identified with the pencil of lines through P ; for a
point p ∈ P1, the associated line is denoted as L̄p, while Lp := L̄p \ {P}.

Remark 3.2. In the classical method, we may identify P1 ≡ C ∪ {∞} where
L̄t = {x = tz}, t ∈ C, and L̄∞ = {z = 0}.

Let us denote P1
∗ := {p ∈ P1 | L̄p * C}. Let k := supp∈P1

∗
#(Lp ∩ C).

Exercise 3.1. Prove that k <∞ and

B := {p ∈ P1
∗ | #(Lp) ∩ C < k} ∪ {p ∈ P1 | L̄p ⊂ C}

is a finite set.

Proposition 3.3. The restriction πP | : P2 \ (C ∪{P}∪⋃p∈P1
∗
Lp)→ P1 \B is a

locally trivial fibration with fiber homeomorphic to P1\(k+1) points ∼= C\k points.

The long exact sequence of homotopy of this fibration induces a short exact
sequence involving the fundamental group of the complement of a curve bigger
than C. We study this exact sequence and the relationship of this group with
π1(P2 \ C) in the following section

Proposition 3.4. With the above notations, there is a short exact sequence:

(2) 1→ π1(C \ k points)→ π1(P2 \ (C ∪
⋃
p∈P1

∗

Lp))→ π1(P1 \ B)→ 1.

The first and third terms of (2) are free groups coming from fundamental groups
of punctured planes or 2-spheres. These groups have bases with geometric meaning.
Let us consider X := P1 \ {p0, p1, . . . , pm} (pairwise distinct points). Fix q ∈ X a
base point.

Definition 3.5. A meridian of pj in π1(X; q) is the homotopy class of a loop γ
obtained as follows. Fix a closed disk Dj containing pj in its interior and disjoint
from the other points. Let p′j ∈ ∂Dj and let β be the loop based at p′j running

counterclockwise ∂Dj . Let α be a path with endpoints q and p′j . Then γ := α·β ·α−.

Exercise 3.2. The following properties hold for meridians:

(1) Two meridians of pj in π1(X; q) are conjugated and any element in the
conjugacy class of a meridian is a meridian.

(2) The group π1(X; q) is free and there is a basis formed by meridians γj of
pj , j = 1, . . . , r such that γ0 := (γr · . . . · γ1)−1 is a meridian of p0 (such a
basis will be called geometric).

(3) Two meridians in π1(X; q) are conjugated if and only if they belong to
the same point.

Exercise 3.3. Define meridians for irreducible components of plane curves
in P2 and prove the statements in Exercise 3.2 (except the one claiming the freeness
of the group).

The following two results are part of Zariski-van Kampen method.

Proposition 3.6. The group π1(P2\(C∪⋃p∈P1
∗
Lp)) is generated by meridians,

more precisely, by a geometric basis of the fundamental group of a punctured fiber
and by lifts of meridians of π1(P1 \ B).
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Proposition 3.7. Let C,D ⊂ P2 be two curves with no irreducible component
in common. Let ρ : π1(P2 \ (C ∪ D)) → π1(P2 \ C) the morphism induced by the
inclusion. Then,

(1) The morphism ρ is surjective.
(2) ker ρ is normally generated by the meridians of the irreducible components

of D.

Proof. The proof uses that for any differentiable manifold M , π1(M) ∼=
πC
∞

1 (M) (i.e. both loops and homotopies are assumed to be differentiable). Both
results come from transversality theory. �

Example 3.8. The fundamental group G of the complement of a smooth conic
is cyclic of order 2. In order to prove this result, we can consider the fundamental
group of the affine complement of a parabole (which is isomorphic to C×C∗), which
is abelian. Its quotient G is also abelian and hence isomorphic to its abelianization.

Corollary 3.9. Let us assume that C contains no line through P (in fact, no
more than one line). Then, if L̄p is a generic line through P , then the natural map
π1(L̄p \ C)→ π1(P2 \ C) is surjective.

Exercise 3.4. Let us assume that C is a reduced curve of degree d with equa-
tion F (x, y, z) := fd−1(x, y)z + fd(x, y), where fj is a homogeneous polynomial of
degree j.

(1) If gcd(fd−1(x, y), fd(x, y)) = 1, then π1(P2 \ C) is abelian.
(2) If fd−1(x, y) ≡ 0, then π1(P2 \ C) is free of rank d− 1.

Exercise 3.5. Compute the fundamental group of the complement of z
∏r
i=1(x−

tiz)
∏m
j=1(y − sjz) = 0.

Exercise 3.6. Prove that the fundamental group of the complement of xz(xz−
y2) = 0 is not abelian.

4. Degenerations

We finish this section with two results concerning families of curves. For a
1-dimensional family of curves of degree d, we mean {Ct}t∈Dε , where 0 < ε and the
coefficients of the equations of Ct depend holomorphically on t. We say that the
family is equisingular if there exist holomorphic maps ϕj : Dε → P2, P tj := ϕj(t),
j = 1, . . . ,m, such that

(1) Sing(Ct) = {P t1 , . . . , P tm}, # Sing(Ct) = m.
(2) The topological type of (Ct, P tj ) does not depend on t.

The family is said to be equisingular away from the origin if the above holds for
t ∈ D∗ε.

Theorem 4.1. If {Ct}t∈Dε is an equisingular family then the pairs (P2, C0) and
(P2, Ct) are homeomorphic, ∀t ∈ Dε.

Sketch of the proof. Assume that Ct is smooth. We can use the incidence
variety and submersion properties. �

Theorem 4.2. If {Ct}t∈Dε is an equisingular family away from the origin and
C0 is a reduced curve, then there is an epimorphism π1(P2 \ C0) → π1(P2 \ Ct),
∀t ∈ D∗ε.

Proof. From Theorem 4.1, it is enough to prove the statement for a partic-
ular t. Let U0 be a regular compact neighborhood of C0 in P2 and let Ů0 be its
interior. We may assume that Ct ⊂ Ů0. The map we must consider is the induced



5. ZARISKI-LEFSCHETZ THEORY 9

by P2 \ Ů0 ↪→ P2 \ Ct, taking into account that P2 \ Ů0 is homotopy equivalent to
P2 \ C0.

They key argument is provided by Corollary 3.9, where the fact the C0 is reduced
is used. �

Exercise 4.1. Compute the fundamental groups of the complements of cubic
curves.

5. Zariski-Lefschetz theory

Corollary 3.9 admits the following generalization due to Zariski and Lefschetz.

Theorem 5.1. Let X̄n ⊂ PN be a projective irreducible variety of dimension n.
Let Ȳ ⊂ X̄ be an algebraic subvariety such that X := X̄ \ Ȳ is smooth. Let H ⊂ PN
be a hyperplane and assume it is generic with respect to the pair (X̄, Ȳ ). Then,
the inclusion H ∩ X ↪→ X induces on the homotopy groups πk isomorphisms for
0 ≤ k < n− 1 and epimorphism for k = n− 1.

One mays suspect that this Theorem may be used as follows: take a high-
dimensional variety, look for a generic plane section and compute the fundamental
group in the surface case. This is not usually the case.

Example 5.2. Let us consider in Pn the so-called boolean arrangement H. It is
the hypersurface whose irreducible components are the coordinate hyperplanes, i.e.,
its equation is

∏n
j=0 xj = 0. Note that Pn \ H ∼= (C∗)n and hence its fundamental

group is isomorphic to Zn. The plane sections of this arrangement coincide with
the so-called generic line arrangements (with n+1 lines), i.e. arrangements of n+1
lines which intersect only at double points.

The rest of the section is devoted to other important example. Let us consider
(P1)n, i.e., the set of n-tuples of points in the Riemann sphere. There is a natural
action of the symmetric group Σn on (P1)n by permutation of the entries.

Proposition 5.3. The quotient (P1)n → (P1)n/Σn is realized by the mapping
(P1)n → P(Vn), where Vn is the vector space of homogeneous polynomials of degree n
in two variables T, S and the map is given by

([t1 : s1], . . . , [tn : sn]) 7→
n∏
j=1

(sjT − tjS).

This map is generically n! : 1, but there are orbits with less elements which
correspond to the big diagonal

∆n :=
⋃

1≤i<j≤n
{([t1 : s1], . . . , [tn : sn]) | [ti : si] = [tj : sj ]};

its image Dn ⊂ P(Vn) ≡ Pn is the discriminant variety, i.e the variety of polynomials
with multiple roots.

Note that (P1)n \∆n is identified with the tuples of n points in P1 which are
pairwise distinct. Hence, π1((P1)n \ ∆n) is identified with the homotopy classes
of n-tuples of loops γj : [0, 1] → P1 such that we have #{γ1(t), . . . , γn(t)} = n,
∀t ∈ [0, 1]. This is the group of pure braids in the 2-sphere.

Using the interpretation of fundamental groups in the unramified covering
(P1)n \ ∆n → Pn \ Dn we obtain that π1(Pn \ Dn) is identified with the group
of braids in the 2-sphere which admits an Artin presentation:〈

σ1, . . . , σn−1 | [σi, σj ] = 1
if i−j>1

, σiσi+1σi = σi+1σiσi+1,

n−1∏
i=1

σi

n−1∏
i=1

σn−i = 1

〉
.
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Theorem 5.4 ([26]). Let C2n−2 be a maximal cuspidal rational curve, i.e. a
rational curve of degree 2n−2 with 3(n−2) cusps (singularities with local equation
x2−y3 = 0) and 2(n−2)(n−3) nodes (singularities with local equation x2−y2 = 0).
Then, C2n−2 is a generic plane section of Dn.

Proof. The dual of C2n−2 is a nodal rational curve of degree n. This can be
seen as follows. A generic plane section of Dn can be seen as

{[α : β : γ] ∈ P2 | αF + βG+ γH ∈ Dn}
for fixed generic F,G,H ∈ Vn. These points are exactly the tangent lines to the
image of

[t : s] 7→ [F (t, s) : G(t, s) : H(t, s)]

which is a ratonal nodal curve. Plücker formulæ do the rest for C2n−2. �

Exercise 5.1. Compute directly C4 and C6. Determine the group π1(P2 \ C4).

6. Further techniques: covers and Cremona transformations

Starting from simple examples, we are able to compute more complicated ex-
amples of fundamental groups of complement of curves.

Let σ : P2 99K P2 be a rational function. Let C1, C2 ⊂ P2 curves such that
σ| : P2 \ C1 → P2 \ C2 is a well-defined unbranched covering. For simplicity, we will
consider two examples:

• Birational maps, e.g the Cremona transformation [x : y : z] 7→ [yz : xz :
xy] and C1, C2 contain the coordinate axes.

• Kummer covers: [x : y : z]
ρn7→ [xn : yn : zn]

The use of Reidemeister-Schreier allows to compute complicated fundamental
groups in simple ways.

Example 6.1. Let us consider a curve C with four irreducible components:
three lines in general position and a conic passing through the three triple points.
Then, π1(P2\C) is abelian as it is isomorphic through a Cremona transformation to
the complement of an arrangement of four lines in general position, see Example 5.2.

Proposition 6.2. The restriction ρn| : P2 \ {xyz = 0} → P2 \ {xyz = 0} is a
regular (Galois) cover with group Z/n × Z/n. The meridian of the line x = 0 (in
the source) is the preimage of the nth-power of a meridian of the same line in the
target.

Let us consider now a curve C with equation F (x, y, z) = 0. We want to
compute the fundamental group of the curve Cn with equation 0 = Fn(x, y, z) :=
F (xn, yn, zn). For the sake of simplicity, let us assume that C contains no axis. We
will perform the following steps:

(K1) Compute π1(Pn \ (C ∪ {xyz = 0})) and detect meridians γx, γy, γz of the
axes.

(K2) Compute G := π1(Pn \ (C ∪ {xyz = 0}))/〈γnx , γny , γnz 〉.
(K3) Let σn : G→ Z/n×Z/n the morphism given by σn(γx) = e1, σn(γy) = e2,

σn(γz) = −e1 − e2 and σn(γ) = 0 for any meridian of a component of C.
(K4) π1(Pn \ Cn) = kerσn.

Remark 6.3. If π1(Pn \ (C ∪ {xyz = 0})), then π1(Pn \ Cn) is abelian.
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Day #2ay 2

1. On previous episodes:

(1) The fundamental group G := π1(P2 \C) of smooth curves is cyclic abelian
of order the degree deg C.

(2) The group G can be generated by meridians around the irreducible com-
ponents of C.

(3) Group theory of finitely presented infinite groups is very complicated.

2. Milnor fibration and the link of a singularity

A local view.

Theorem 2.1. Let p ∈ C be a point on C and B := Bε(p) a small ball around p
and S := ∂Bε(p), then K := S∩C is a smooth compact real 1-dimensional manifold
called the link of p at C.

Moreover, the pair (B,B∩C) is homeomorphic to (Cone(S),Cone(K)) = (B,Cone(K)),
where Cone(•) denotes the cone over •.

Proof. Consider the map r(z1, z2) = r(x1, y1, x2, y2) = x2
1 +y2

1 +x2
2 +y2

2 . The
set of critical points of r|C is given by the set of zeroes Σ ⊂ C2 of the 2× 2 minors
of

J :=

[
∂r/∂x1 ∂r/∂y1 ∂r/∂x2 ∂r/∂y2

∂f/∂x1 ∂f/∂y1 ∂f/∂x2 ∂f/∂y2

]
.

Since Σ is algebraic and r is constant on each component of Σ, the set of critical
values r(Σ) is finite. Hence, if ε > 0 is such that r|Σ > ε2, then K := f−1(0) ∩
r−1(ε2) is a smooth compact real 1-dimensional manifold.

For the moreover part, consider a smooth normalized vector field v(q) as in the
picture:

and the differential equation dq(t)
dt = v(q(t)). It turns out that for any solution

q(t) one has r(q(t)) = t+ k. For each x̄ ∈ S take Qx̄(t) such that r(Qx̄(t)) = t and
Qx̄(ε2) = x̄.

11
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The map x̄+ (ε2 − t)p 7→ Qx̄(t), t ∈ (0, ε2] extends to a homeomorphism from
(B,Cone(K)) to (B,B ∩ C).

�

Corollary 2.2. The group π1(S\K) = π1(B\ (B∩C)) only depends on (C, p).

3. Local fundamental group. Wirtinger presentation

Theorem 3.1. The singularity link K can be described as an m : 1 covering of
S1
ε ⊂ C given by a link in the solid torus KT := {(εe2πit, z2) | f(εe2πit, z2) = 0} ⊂

S1
ε × Dε, where m := multp(C).

Moreover,

S \K ∼= S∞ \KT .

Proof. Theorem 2.1 remains true for any metric equivalent to the euclidean
metric, as long as the balls are topological manifolds (even with corners) and K
avoids the corners. Hence it is true on the polydisk B∞ = Dε × Dε, and S∞ =
Dε × S1

ε ∪ S1
ε × Dε. By the Weierstrass Preparation Theorem, one can assume

that f = zm2 + am−1(z1)zm−1
2 + ...+ a1(z1)z2 + a0(z1), after an analytic change of

variables, where ak(0) = 0. �

Example 3.2. Consider C = {F (x, y, z) = 0} ⊂ P2, where f = zy2 − x3. Note
that Sing(C) = {[0 : 0 : 1]}. On the affine chart C2 ∼= Uz = {[x : y : z] | z 6= 0}, C
admits an equation f(x, y) = y2 − x3 in Weierstrass form.

The double cover referred to by Theorem 3.1 can be described as

KT = {(e2πit, y) | y2 = e6πit, t ∈ [0, 1]} = {(e2πit,±e3πit) | t ∈ [0, 1]} ⊂ S1
ε × Dε

Figure 1. local knot KT for f(x, y) = y2 − x3

Definition 3.3. The group π1(S \ K) = π1(B \ C) described above is called
the local fundamental group of (C, p) and denoted πloc

1 (C, p).
One can compute the local fundamental group using for instance the Wirtinger

presentation.

Example 3.4. In order to compute G := πloc
1 (C, p) from Example 3.2
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µ1

µ2

µ3

Figure 2. Wirtinger presentation of the (2, 3)-knot (trefoil knot)

Hence µ1, µ2, µ3 are generators of G and

µ1µ2 = µ3µ1 = µ2µ3

is a complete set of relations. Therefore µ3 = µ1µ2µ
−1
1 and thus

G = 〈µ1, µ2 : µ1µ2µ1 = µ2µ1µ2〉.
Exercise 3.1. Show that for any two-variable polynomial of order 2 can be

rewritten (after a local change of coordinates in the local ring C[x, y](x,y)) as

f(x, y) = y2 − xk+1 for some k > 0. In other words, there exist u, v ∈ C[x, y](x,y)

such that C[u, v](u,v) = C[x, y](x,y) and f = v2 +uk+1. This local type of singularity
is called Ak-singularity.

Compute the local fundamental group Gk for Ak-singularities. Determine
whether or not Gk1

∼= Gk2 for k1 6= k2. What happens for k = 1? why?

4. The local geometric model, action of braids on a free group. Artin
theorem

Let us go back to Example 3.2 and note that Figure 3.2 is in fact a braid. This
is no coincidence, since Theorem 3.1 is another way to describe a braid on a disk,
that is, as a finite topological covering of S1 in S1×D with respect to the projection
on the first coordinate.

Recall that the braid group admits the following finite presentation

(3) Bm :=

〈
σ1, . . . , σm−1

∣∣∣∣∣ σiσj = σjσi
|i−j|>1

, σk · σk+1 · σk = σk+1 · σk · σk+1
1≤k<m−1

〉
.

Any braid on m-strands on the disk acts (on the right) on the free group Fm
of rank m as follows:

(4) µ
σj
i :=


µi+1 if j = i,

µi · µi−1 · µ−1
i if j = i− 1,

µi otherwise.

Exercise 4.1. Compute µ
σ−1
j

i and (µmµm−1 . . . µ1)σi .

This action has a geometric interpretation
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xi

σi

xi
σi = xi+1 xi+1

σi = xi+1xix
−1
i+1

xi+1

Figure 3. Geometric version of the action of Bm on Fm.

Each braid thus produces an automorphism of the free group Fm satisfying:

(5)
µβi = w(µ̄)xτ(i)w(µ̄)−1

(µmµm−1 . . . µ1)β = µmµm−1 . . . µ1

for any braid β ∈ Bm, where w ∈ Fm and τ is a permutation.
Moreover, this characterizes the braid group

Theorem 4.1 (Artin). The braid group Bm is isomorphic to the subgroup of
automorphisms of the free group Fm satisfying (5).

5. Artin presentation of the local fundamental group

Theorem 5.1 (Artin presentation). If β ∈ Bm represents the braid referred to
in the discussion above, then

πloc
1 (C, p) = 〈µ1, . . . , µm : µi = µ

σj
i , 1 ≤ i ≤ m, 0 ≤ j < m〉.

Exercise 5.1. Compute the Artin presentation of the link associated with the
Ak singularity (see Exercise 3.1). Analogously, calculate an Artin presentation for
the local fundamental group of y3 − x5 and the ordinary multiple point ym − xm.

6. Local vs. global fundamental groups

The inclusion (B, C) ↪→ (C2, C) induces a morphism πloc
1 (C, p) → π1(C2 \ C)

which is not necessarily injective nor surjective.
However, in some cases one can be more specific. For instance,

Proposition 6.1. If f(x, y) is a quasihomogeneous polynomial, then πloc
1 (C, p) ∼=

π1(C2 \ C).
Proof. Assume f is a homogeneous polynomial of degree d. Consider the

natural action of C∗ on C2 given by t · (x, y) = (tx, ty). Note that C = {f = 0}
is invariant by this action, hence there is a well-defined action on the complement
C2\C. The space C2\C is a deformation retract of S\K by taking a point z := (x, y)
continuously to 1

|z| · z ∈ S. Complete with Exercise 6.1. �

Exercise 6.1. Complete the proof of Proposition 6.1 assuming f is a quasi-
homogeneous polynomial of degree d and weights w := (p, q), that is f(tpx, tqy) =
tdf(x, y). (Hint: follow the previous proof showing that The space C2 \ C is a
deformation retract of Sw \ Kw, where S1

w is the weighted sphere, that is, Sw :=
{(z1, z2) | |z1|q+ |z2|p = 1} and Kw := Sw∩C. Finally, check that Sw \Kw

∼= S\K).
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Exercise 6.2. Compute the fundamental group of the global Ak-singularity

Ck := {z(y2zk−1 − xk+1) = 0} ⊂ P2.

Example 6.2. If C ⊂ C2 is a nodal curve, and p ∈ C is a singular point, then
j∗ : πloc

1 (C, p)→ π1(C2 \ C) is injective if and only if C is a product of lines. Also j∗
is surjective if and only if C is irreducible.

7. Global monodromy

Let us fix a curve C̄ ⊂ P2 of degree d, a point Py ∈ P2 and a line L̄∞ such that
Py ∈ L̄∞. We say that the curve is horizontal with respect to Py if it does not
contain any line through Py; we assume C̄ to be horizontal. We consider a system
of coordinates [X : Y : Z] such that Py := [0 : 1 : 0] and L̄∞ := {Z = 0}. We
identify C2 ≡ P2 \ L̄∞ with affine coordinates (x, y) ≡ [x : y : 1].

Let F (x, y, z) = 0 be a reduced equation of C̄, k := degy F

F (x, y, z) =

k∑
j=0

ād−j(x, z)y
j , ād−k(x, z) 6= 0, āj homogeneous of degree j,

normalized such that the coefficient of the term of higher degree of ād−k(x, z) in x
is 1. The fact that C̄ is horizontal is equivalent to gcd(F, ād−k) = 1.

The pencil of lines through Py is identified with P1 ≡ C ∪ {∞}, where ∞
corresponds with L̄∞. Following the previous notation the lines in the pencil are
denoted by L̄t := {X − tZ = 0}. Let us restrict our attention to the affine part.
Let C := C̄ ∩ C2 and Lt := L̄t ∩ C2; the line Lt has equation x = t while C has
equation f(x, y) = 0, where

f(x, y) := F (x, y, 1) =

k∑
j=0

ad−j(x)yj , aj(x) := āj(x, 1).

Let ∆ := {t ∈ C | #(Lt ∩ C) < k}; this is a finite set which contains the roots of
ad−k(x) (if any) and the values t such that Lt 6t C. The set ∆ is the zero locus of
the product of ad−k(x) and the discriminant of f(x, y) with respect to y.

Let Σk(C) := {A ⊂ C | #A = k} be a configuration space of C; for any
A := {x1, . . . , xk} ∈ Σk(C) the fundamental group π1(Σk(C);A) =: B(x1, . . . , xk)
is isomorphic to the braid group Bk.

For the next sections we need to describe a canonical identification between Bk

and B(x1, . . . , xk); the group π1(Σk(C);A) is identified with the homotopy classes
of sets of arcs ϕ1, . . . , ϕk : [0, 1] → C starting and ending in A and such that
#{ϕ1(t), . . . , ϕk(t)} = k, ∀t ∈ [0, 1]. Let us order the points of A, say x1, . . . , xk
and consider a set I of simple segments Ai, 1 ≤ i < k, such that ∂Ai = {xi, xi+1},
Ai∩Ai+1 = {xi+1} and the other intersections are empty; such a collection I will be
called a diagram system for (x1, . . . , xk). Then we associate to σi the braid which is
constant for x1, . . . , xi−1, xi+2, . . . , xk and performs a half-twist around Ai, that is,
it exchanges the points xi and xi+1 counterclockwise along ∂N(Ai), where N(Ai)
is a (topological) disk of diameter Ai.

There is also a basis of the free group π1(C\A;x0) if one chooses a simple edge

A0 from x0 to x1 intersecting
⋃k−1
i=1 Ai only at x1. This basis µ1, . . . , µk is obtained

as follows: take small disks Di centered at xi and assume that their intersection
with Ai−1 ∪Ai are diameters with ends x−i , x

+
i . Then µi is defined as follows: take

a path αi from x0 to x−i running along A0 ∪ · · · ∪ Ai−1 outside the interior of the
disk Dj and goes counterclockwise along ∂Dj from x−j to x+

j , 1 ≤ j ≤ i. Let βi be
the closed path obtained by running counterclockwise along ∂Dj with base point

x−i and define µi := αi · βi · α−1
i .
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x0
x1

x2

x3x4

x5

A0
A1

A2

A3

A4

x−1x+1

x−2 α2

β2

Figure 4. Diagram system, k = 5.

There are two important facts in these definitions; the element µ∞ := (µk · . . . ·
µ1)−1 is a meridian of the point at infinity and µ∞ is a fixed point by the action
of Bk. We say that (µ1, . . . , µk) is an ordered geometric basis of π1(C \ A;x0).
As a general notation, if G is a group and x := (x1, . . . , xk) ∈ Gk we define the
pseudo-Coxeter element of x as cx := xk · . . . · x1.

After this digression, note that f defines a map f̃ : C \∆→ Σk(C).

Definition 7.1. The braid monodromy of the triple (C̄, Py, L̄∞) is the mor-
phism

∇ : π1(C \∆; t0)→ Bk, t0 ∈ C \∆,

defined by f̃ on the fundamental group.

Remark 7.2. Consider a geometric basis (γ1, . . . , γr) of π1(C\∆; t0) and let c∞
be its pseudo-Coxeter element. Note that ∇ is determined by (∇(γ1), . . . ,∇(γr)) ∈
Br
k having as pseudo-Coxeter element ∇(c∞).

The braid monodromy measures the motions of the points of C along the affine
lines Lt (identified with C).

There are a lot of choices in order to obtain an element of Br
k from (C̄, Py, L̄∞).

It is not hard to check that these choices are given by the orbits of an action of
Bk×Br on Br

k. The action of Bk is given by simultaneous conjugation. The action
of Br is defined as follows; let h1, . . . , hr−1 an Artin system of generators of Br.
Then, if (τ1, . . . , τr) ∈ Br

k, then:

(6) (τ1, . . . , τr)
hi := (τ1, . . . , τi−1, τi+1, τi+1 · τi · τ−1

i+1, τi+2, . . . , τr);

hi is called a Hurwitz move. In particular for a choice of (C̄, Py, L̄∞) two objects
are unique and well-defined: the conjugacy classes of the pseudo-Coxeter element
and of the monodromy group, i.e., the group generated by ∇(γ1), . . . ,∇(γr).

In light of the previous discussion, a braid monodromy ∇ of a triple (C̄, Py, L̄∞)
will sometimes be considered as a morphism (see Definition 7.1) or as a list of braids
(∇(γ1), . . . ,∇(γr)), where γ1, . . . , γr is a geometric basis.

7.1. Generic braid monodromy.
We assume Py /∈ C̄, L̄∞ t C̄ (i.e they intersect at d distinct points), and

moreover for each t ∈ ∆ there is exactly one point Pt ∈ L̄t∩C̄ where the intersection
is not transversal and satisfies

(7) (C̄ · L̄t)Pt =

{
2 if (C̄, Pt) is smooth,

mt if (C̄, Pt) is singular,

where mt is the multiplicity of the germ (C̄, Pt). In the singular case, it means that
L̄t is not in the tangent cone of (C̄, Pt) and, in the smooth case, that Pt is not an
inflection point.

Definition 7.3. In this situation, ∇ is called a generic braid monodromy.
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Theorem 7.4 ([6]). The Hurwitz class of a generic braid monodromy does not
depend on Py or L∞. In fact, it is a topological invariant of the pair (P2, C̄).

The proof of this result is far from the scope of this course. It is however
necessary to point out that, after a continuous change of variables, the pencil of
lines fails to be algebraic. This result requires a deep understanding of the topology
of the embedding.

8. Duality in cohomology

Note that homology and cohomology dimensions for algebraic curves and their
complements are in a way combinatorially determined by their degrees and local
type of singularities.

Proposition 8.1. Let C̄ be a projective plane curve, then

H2(XC ;C) ∼= H1(C;C), and
H1(XC ;C) ∼= H2(C;C)/C.

Proof. Consider the following exact sequence of relative cohomology of pairs for
the inclusion XC ↪→ P2

(8)
0

i1→ H1(XC ;C)
δ2→ H2(P2, XC ;C)

j2→ H2(P2;C) ∼= C i2→
i2→ H2(XC ;C)

δ3→ H3(P2, XC ;C)
j3→ H3(P2;C) ∼= 0

Let T C be a regular neighborhood of C. Note that XC has the homotopy type of
P2 \ T C. Hence, using excision and Lefschetz duality, one obtains

Hn(P2, XC ;C)
exc.∼= Hn(T C, ∂T C;C)

L∼= H4−n(T C;C) ∼= H4−n(C;C).

Thus, the sequence (8) becomes

0
i1→ H1(XC ;C)

δ2→ H2(C;C)
j2→ C i2→ H2(XC ;C)

δ3→ H1(C;C)
j3→ 0.

Since H2(C;C) is non-trivial and j2 is non-zero, j2 is in fact surjective. Therefore

H2(XC ;C) ∼= H1(C;C), and H1(XC ;C) ∼= H2(C;C)/C. �

Notation 8.2. Let Y be a topological space. In what follows we will denote by
hi(Y ) (resp. hi(Y )) the dimension of the vector space Hi(Y ;C) (resp. Hi(Y ;C)).
Note that, by the Universal Coefficient Theorem, hi(Y ) = hi(Y ).

Proposition 8.3. Let C be a curve, then

h2(XC) = (1− n) +
∑

P∈Sing C
(rP − 1) + 2

∑
g(Ci),

where rP is the number of branches of C passing through P and g(Ci) is the topo-
logical genus of a normalization of the irreducible component Ci.

Proof. By Proposition (8.1), h2(XC) = h1(C). On the other hand

h2(C) = n

and

χ(C) =
∑

χ(Ĉi)−
∑

P∈Sing C
(rP − 1) =

∑
(2− 2g(Ci))−

∑
P∈Sing C

(rP − 1).

Therefore

h1(C) = 1 + h2(C)− χ(C) =
= (n+ 1)−∑(2− 2g(Ci)) +

∑
P∈Sing C(rP − 1) =

= (1− n) +
∑
P∈Sing C(rP − 1) + 2

∑
g(Ci).

�
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Exercise 8.1. Calculate h1(XC) and h2(XC) for all curves of degree at most 4.

9. Alexander invariants: Alexander polynomial, Alexander Module

For technical reasons we will assume C is transversal to the line at infinity and
G := π1(XC). Hence

G/G′ = Zn,

where n is the number of irreducible components of the affine curve C.
Consider ε : G → Z epimorphism, and Kε := ker(ε). Let Tε ∈ im(ε) be a

generator of the Galois group of the infinite cyclic cover X̃ε.

Definition 9.1. The Alexander polynomial of C associated with ε is defined
as:

∆C,ε(t) := det((Tε)∗ − t · Id;H1(X̃ε;C)) = det((Tε)∗ − t · Id;Kε/K
′
ε ⊗ C)

A more group-theoretical interpretation of ∆C,ε(t) can be given as follows: The
group G/Kε = Z acts on Kε/K

′
ε = H1(XC,ε;Z) by conjugation as follows

∗ : G/Kε ×Kε/K
′
ε → Kε/K

′
ε

(ε(g), k̄) 7→ ε(g) ∗ k̄ := g · k · g−1.

Note that if g′ = gh1 (h1 ∈ Kε) and k′ = kh2 (h2 ∈ K ′ε), then(
g′ · k′ · g′−1

) (
g · k−1 · g−1

)
=
(
(gh1) · (kh2) · (h−1

1 g−1)
) (
g · k−1 · g−1

)
= g ·

(
h1kh2h

−1
1 k−1

)
· g−1

= g ·
(
(h1k) · h2 · (h1k)−1 h1kh

−1
1 k−1

)
g−1 ∈ K ′ε.

Hence “∗” does not depend on the choice of g mod Kε or k mod K ′ε.
This action endows MZ

C,ε := H1(XC,ε;Z) with a Λε-module structure, where

Λε := Z[G/Kε] ≈ Z[t±1]. One can tensor such a module by a field K = Q,C,Fp, . . .
to obtain a module MK

C,ε over ΛK
ε = K[t±1]. Since G is finitely presented, MK

C,ε is

finitely generated as a ΛK
ε -module (by as many 1-cells as generators of G). The

rings ΛK
ε are principal ideal domains and hence one can define ∆K

C,ε(t) as the order

of MK
C,ε. We recall that, if R is a principal ideal domain, the order of an R-module

M , is defined as

(9) ∆ :=


0 if M has a free summand,

1 if M = 0,∏m
i=1 λi if M ≈ R

(λ1) ⊕ · · · ⊕ R
(λm) .

Such a polynomial can be assumed to be unique by adding the extra condition
λi(0) = 1. This is known as the Alexander polynomial of C associated with ε. In
general, if K = Q or C, then the reference to the field will be omitted.

The classical Alexander polynomial (denoted ∆C(t)) corresponds to the spe-
cial case when K = Q, C0 is transversal to Ci for any i = 1, . . . , r, and ε is the
epimorphism that sends any meridian γi around Ci to 1, except for i = 0, where
ε(γ0) = −d, where d :=

∑r
i=1 di. We will refer to this morphism as the trivial

morphism. If ε(γi) 6= ±1 for any i = 0, 1, . . . , r we will call ε a non-coordinate
epimorphism. The Oka polynomials (denoted ∆C,ε(t)) correspond to K = Q, and a
transversal C0 ([20]).

Remark 9.2.

(1) Note that MZ
C,ε is not necessarily a torsion module (see Exercise 9.1(1)).
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(2) Also note that MZ
C,ε depends only on G = π1(XC) and ε. Hence one

can associate an Alexander polynomial ∆G,ε(t) to any finitely presented
group G and epimorphism ε : G/G′ → Z. In fact, such a polynomial cor-
responds to the Alexander polynomial of the CW-complex XG associated
with any finite presentation of G, and ε : H1(XG;Z)→ Z.

(3) Assume that (
ΛK
ε

)m A→
(
ΛK
ε

)n →MK
G,ε

is a free resolution of MK
G,ε, where A is an n×m matrix with coefficients

in ΛK
ε . Then ∆G,ε(t) can also be defined as 0 if m < n, or as the greatest

common divisor of all the minors of maximal order of A if n ≤ m. From (2)
above, n can be considered as the number of generators in a presentation
of G.

A very useful remark on Alexander polynomials is the following:

Lemma 9.3. [16, Proposition 2.1] Let G
ψ→→ H be an epimorphism of finitely

presented groups and consider εH : H/H ′→→Z another epimorphism. Then ∆K
H,εH

divides ∆K
G,εG

, where εG = εH ◦ ψ1 and ψ1 : G/G′ → H/H ′ is induced by ψ.

Proof. A presentation of H can be given from one of G just by adding a
finite number of relations. Therefore from Remark 9.2(3), a presentation matrix
for MK

H,εH
is the result of adding a finite number of columns to the presentation

matrix of MK
G,εG

. Therefore the ideal generated by the minors of maximal order of

MK
G,εG

is contained in the one of MK
H,εH

. �

This situation appears in a natural way when an equisingular family of curves
{Ct}t∈(0,δ] degenerates into a reduced curve C0.

Proposition 9.4. Under the above conditions there is an epimorphism of fun-
damental groups

π1(XC0)
j→→ π1(XCδ).

Hence ∆K
Cδ,ε1 divides ∆K

C0,ε2 , where ε2 = ε1 ◦ j1 as in Lemma 9.3.

Proof. A proof of the first part can be found in [12, Corollary §3 (3.2)]. The
second part is an immediate consequence of Lemma 9.3. �

Exercise 9.1.

(1) Consider a family of n lines Ct := `t,1 ∪ · · · ∪ `t,n, t ∈ (0, 1] in general
position degenerating into n lines C0 := `1 ∪ · · · ∪ `n passing through a
common point. If ε is the trivial morphism ε(γi) = 1, i = 1, . . . , n− 1 and
ε(γn) = 1− n. Check that

(10)

MK
Ct,ε = 0 ⇒ ∆K

Ct,ε(t) = 1

MK
C0,ε =

(
ΛK
ε

)n−2 ⊕
(
ΛK
ε /(t− 1)

)(n−2
2 ) ⇒ ∆K

C0,ε(t) =

{
0 if n > 2

1 if n = 2

(2) Consider the three-cuspidal quartic C1 and a generic line C0. The funda-
mental group of C := C0 ∪ C1 has a presentation

(11) 〈a, b : aba = bab, [a, a2b2] = [b, a2b2] = 1〉.
Note that there is basically only one possible morphism ε, the abelianiza-
tion morphism, which we will omit in the notation. Check that

MK
C =

K[t±1]

(3, t2 − t+ 1)
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and hence

∆K
C (t) =

{
(t+ 1)2 if Char(K) = 3

1 otherwise.

Since the three-cuspidal quartic is dual to a nodal cubic, we know it has a
bitangent, say `0. The fundamental group of C′ := `0∪C1 has the following
presentation (see [21, Example 4.5(3)])

(12) 〈a1, a2, a3, a4 : aiai+1ai = ai+1aiai+1 (i = 1, .., 3), a2a4 = a1a2〉.
Check that

MK
C′ =

K[t±1]

(t2 − t+ 1)
⊕ K[t±1]

(t2 − t+ 1)

and hence
∆K
C′(t) = (t2 − t+ 1)2.

Note that if Char(K) = 3, then (t2− t+ 1) = (t+ 1)2, and hence ∆K
C′(t) =

(t+ 1)4.

The geometrical interpretation of the classical Alexander polynomial is given
as follows (see [22]). The polynomial C1 · . . . ·Cn defines a non-isolated singularity
at the origin of C3. The monodromy of the Milnor fiber defines an automorphism
on the H1 and the classical Alexander polynomial is the characteristic polynomial
of the monodromy of the Milnor fiber.

Theorem 9.5. [20, Theorem 43] The Alexander polynomial of C with respect to
the epimorphism ε : H1(XC)→→Z (εi ≥ 0, i = 1, . . . , n) is equal to the characteristic
polynomial of the monodromy h∗ : H1(F )→ H1(F ) where F is the Milnor fiber of
the polynomial Cε11 · . . . · Cεnn .

Since the monodromy has a finite order, this implies the following.

Corollary 9.6. All the zeroes of the Alexander polynomial ∆C,ε(t) of a curve
C with respect to an epimorphism ε are roots of unity.

Alexander polynomials depend on the local type of singularities of C. To de-
scribe this dependency we will consider L1, . . . , Ls the local links of the singularities
of the affine part C := C1 ∪ · · · ∪ Cn and L∞ the link at infinity, that is, the inter-
section of C with the boundary of a tubular neighborhood of the line at infinity C0.
The inclusion S3 \Lk ↪→ XC induces a map π1(S3 \Lk)→ π1(XC). Therefore ε also
induces epimorphisms π1(S3 \ Lk)→→ Z. The Alexander polynomials associated
with such maps will be called local Alexander polynomials and denoted by ∆Lk,ε

for simplicity.
This dependency can be described for classical Alexander polynomials.

Theorem 9.7 ([16]). The Alexander polynomial ∆C,ε of C divides both the
product of the local Alexander polynomials

∏s
k=1 ∆Lk,ε(t) and ∆L∞,ε(t).

10. Quasi-projectivity, Zariski pairs

10.1. Quasi-projectivity.

Definition 10.1. A group is called (quasi)-projective if it is the fundamental
group of a (quasi)-projective variety.

J.-P. Serre [24] posed the following question:

Problem 10.1. Classify (quasi)-projective groups.

As is well-known, every finitely presented group G is the fundamental group of
a smooth, compact, connected 4-dimensional manifold.
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Figure 5. Knot 41

Theorem 10.2 (Fox-Neuwirth 1962). Both Pn and Bn are quasi-projective
groups, but not projective.

For instance Bn is not projective since b1(Bn) = 1 odd.

Theorem 10.3 (Brieskorn 1971). If WΓ, is finite, then GΓ, is quasi-projective.

Other than that there are only necessary conditions for a group to be (quasi)-
projective.

One of them refers to their Alexander polynomial having only roots of unity as
their zeroes.

Exercise 10.1. Prove that the fundamental group of the complement of the
knot 41 shown in Figure 10.1 is not quasi-projective.

10.2. Zariski pairs.
Theorem 9.7 reveals that the fundamental group G of a plane curve C depends

on its singularities. However, these don’t determine G.

Example 10.4. Consider the space of sextics

Σ6 :=

 ∑
i+j+k=6

aijkX
iY jZk = 0 | aijk ∈ C

� [aijk] ⊂ PN ,

N =
(

8
2

)
− 1 = 27 and inside Σ6 consider the Zariski closure of the subspace of

sextics with six cusps Σ6,0,6 ⊂ Σ6 which is a space of dimension 15.
Kummer cover of a conic tangent to two lines. Its fundamental group is:

G′ := 〈e, `1, `2 : [e`1e
−1, `2] = 1, (`1e)

2 = (e`1)2, (`2e)
2 = (e`2)2, [`2`1, e] = 1〉

Using Reidemeister-Schreier for the surjection

G′ → Z2
3

e 7→ (0, 0)
`1 7→ (1, 0)
`2 7→ (0, 1)

one obtains the following presentation:

G′′ = 〈ei,j , `1,i,j , `2,i :

ei,j+2 = e−1
i,j+1ei,jei,j+1,

ei+2,j = e−1
i+1,jei,jei+1,j ,

`1,i,j = e−1
i,j ei,0ei+1,0ei+1,j

ei+1,j+1 = ei,j

i, j ∈ Z3〉,

where ei,j := (`i1`
j
2)e(`i1`

j
2)−1, `1,i,j = (`i1`

j
2)`1(`i+1

1 `j2)−1, and `2,i = `i1`
2
2`
−i
1 .

After elliminating the meridians around the preimages of the lines, that is,
`21,i,j = `1,2,0 = 1, `2,i = 1, and (`1e

2`2)3 = 1 one obtains

G = 〈e0,0, e1,0 : e0,0e1,0e0,0 = e1,0e0,0e1,0, (e0,0e1,0)3 = 1〉.
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Substituting y = e0,0e1,0 and x = e1,0e0,0e1,0 one obtains

G = 〈x, y : x2 = y3 = 1〉 ∼= Z2 ∗ Z3.

There is another posible construction of a sextic in Σ6,0,6 as follows. Take a
smooth cubic and three tangent lines through inflexion points. One has to check
that tangencies are lines in general position, for instance: Consider the (smooth)
Fermat cubic u3 + v3 + w3. Let ξ be a primitive sixth root of unity. The inflexion
points and tangencies of this cubic are shown in Table 10.4. Namely, the points
pi,j denote the 9 inflexion points of the Fermat cubic. The lines ti,j are tangent to
such a cubic at pi,j . Finally, the rows are arranged so that the lines ti,1, ti,2, ti,3 are
concurrent for each i = 1, 2, 3. The first column describes the intersection of such
concurrent tangent lines.

Table 1.

∩t1,j = {[0 : 1 : 0]} p1,1 := [1 : 0 : −1] p1,2 := [ξ : 0 : −1] p1,3 := [ξ2 : 0 : −1]
t1,1 := {u+ w} t1,2 := {u+ ξw} t1,3 := {u+ ξ2w}

∩t2,j = {[0 : 0 : 1]} p2,1 := [1 : −1 : 0] p2,2 := [ξ : −1 : 0] p2,3 := [ξ2 : −1 : 0]
t2,1 := {u+ v} t2,2 := {u+ ξv} t2,3 := {u+ ξ2v}

∩t3,j = {[1 : 0 : 0]} p3,1 := [0 : 1 : −1] p3,2 := [0 : ξ : −1] p3,3 := [0 : ξ2 : −1]
t3,1 := {v + w} t3,2 := {v + ξw} t3,3 := {v + ξ2w}

Consider the Kummer cover κ2 of order 2 ramified along t1,1, t1,2, and t2,1,
that is, [u : v : w] 7→ [t21,1 : t21,2 : t22,1]. The preimage of C3 under κ2 is a sextic with
six cusps which are the preimages of the inflexion points P1,1, P1,2, and P2,1. Since
t1,1, t1,2, and t1,3 are concurrent lines at a point [0 : 1 : 0] which is totally ramified
(i.e. it has only one preimage), the preimage of t1,3 decomposes in a product of
two lines, say `1 and `2. Also note that `1 and `2 are bitangent lines through the
inflexion points in the preimage of P1,3.

One can use Reidemeister-Schreier again to check that the fundamental group
of this sextic is abelian.

Definition 10.5. Two curves C1, C2 ⊂ P2 with the same combinatorics (same
number of irreducible components, sames degrees, same singularities) but non-
homeomorphic embeddings ((P2, C1) 6∼= (P2, C2)) form a Zariski pair.

Since π1(P2 \ C) is an invariant of the pair (P2, C), the two curves from Exam-
ple 10.4 form a Zariski pair.

Theorem 10.6. If C1 and C2 can be deformed into one another in the same
equisingular stratum, then (P2, C1) 6∼= (P2, C2).

Corollary 10.7. The space of sextics with six cusps Σ6,0,6 is not connected.

The isomorphism problem for finitely generated groups is in general intractable.
This is why the search for other invariants such as Alexander polynomials is so
important.

Example 10.8. Consider the space M of sextics with the following combina-
torics:

(1) C is a union of a smooth conic C2 and a quartic C4.

(2) Sing(C4) = {P,Q} where Q is a cusp of type A4 and P is a node of type A1.

(3) C2 ∩ C4 = {Q,R} where Q is a D7 on C and R is a A11 on C.
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PQ

R

(C2 · C4)R = 6

C2

C4 C̃4

P̃

C̃2R̃

Q̃

(C̃2 · C̃4)R̃ = 5

Figure 6. Cremona transformation.

Performing a degenerated Cremona transformation based on 2Q and R, the
problem is equivalent to finding a nodal cubic C̃4 and a smooth conic C̃2 intersecting
in two singular points of types A9 and A1.

Assuming C̃4 has equation xyz + x3 − y3, one can consider the following para-
metrization

ϕ : C → C̃4
t 7→ [t : t2 : t3 − 1].

Note that ϕ|C∗ : C∗ → Reg(C̃4) is a group isomorphism from the multiplicative

group C∗ to the set of regular points on the cubic C̃4 whose geometric group struc-
ture has the inflexion point ϕ(1) = [1 : 1 : 0] as unity.

Let t1, t2 and t3 denote the parameters corresponding to R̃, A1 and Q̃ respec-
tively. One has the following relations given by E1, C̃2 and E2:

t1t
2
2 = 1

t51t2 = 1
t2t

2
3 = 1.

This implies that t1 is a ninth root of 1, say α, and t2 = α4. Therefore α must
also be a primitive ninth root of unity. That leaves us with two possibilities for t3,
namely, t3 = ±α7. The solution −α7 (resp. +α7) corresponds to the case where

the tangent line to C̃4 at R̃ passes (resp. doesn’t pass) through Q̃. One can obtain

equations for two sextics C(1)
6 = C(1)

4 ∪ C(1)
2 and C(2)

6 = C(2)
4 ∪ C(2)

2 satisfying the

properties stated above and an extra property: there exists a conic ˜̀ – the inverse

image of ` – passing through R and Q such that multR(˜̀, C(i)
2 ) = multR(˜̀, C(i)

4 ) = 3,

multQ(˜̀, C(i)
2 ) = 1 and multQ(˜̀, C(i)

4 ) = 3 + i.

Note that, by construction, C(1)
6 and C(2)

6 belong to different components of
M. Moreover, if we consider the action of PGL(3,C) on M, then M/PGL(3,C)

consists of exactly two points having representatives C(1)
6 and C(2)

6 .

Special affine equations for these curves are shown below. The affine coordinates
are (y, z); the line at infinity is tangent to the type D7 point, which is the base point
of the pencil of vertical lines y = constant:

f1(y, z) :=

(
(y + 3) z +

3y2

2

)(
z2 −

(
y2 +

15

2
y +

9

2

)
z − 3 y3 − 9y2

4
+
y4

4

)
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for C(1)
6 and

f2(y, z) :=

((
y +

1

3

)
z − y2

6

)(
z2 −

(
y2 +

9y

2
+

3

2

)
z +

y4

4
+

3y2

4

)
for C(2)

6 .

In the future we will refer to C(i) i = 1, 2 as the union of the sextic curve C(i)
6

and a transversal line C0, where C2 = P2 \ C0 and X(i) = P2 \ C(i).

Proposition 10.9. The fundamental groups G(i) := π1(X(i)) have the follow-
ing presentations

G(1) = 〈e1, e2 : [e2, e
2
1] = 1, (e1e2)2 = (e2e1)2, [e1, e

2
2] = 1〉

G(2) = 〈e1, e2 : [e2, e
2
1] = 1, (e1e2)2 = (e2e1)2〉.

Exercise 10.2. Check that G(1) and G(2) are not isomorphic by calculating
their Alexander invariant.

MG(1) = 0, MG(2) = Z.
Also, check that their Alexander polynomials are both trivial.

11. Orbifold techniques

The understanding of projective (or Kähler) fundamental groups can also be
approached by the study of possible morphisms of the manifold onto curves of high
genus. This is the de Franchis-Beauville-Catanese-Castelnuovo method ([9, 5, 7,
1]). This is a typical result of this type.

Theorem 11.1 (Catanese [7]). Let X be a compact Kähler manifold, and as-
sume that its fundamental group admits a non-trivial homomorphism ψ to the fun-
damental group Πg of a compact Riemann surface of genus g ≥ 2, with kernel K.
Then the following conditions are equivalent:

(1) ψ is induced by an irrational pencil of genus g without multiple fibres.
(2) ψ is surjective and its kernel K is finitely generated.

For plane algebraic curves (or quasi-projective groups), a similar type of results
can be given when considering morphisms onto curves of lower genus, but with an
additional structure named orbicurves.

Definition 11.2. An orbicurve is a complex orbifold of dimension equal to
one, i.e. a smooth complex curve with a finite collection R of points (called the
orbifold points) with a multiplicity assigned to each point in R. The complement to
R is called the regular part of the orbifold. An orbicurve C is called a global quotient
if there exists a finite group G and a manifold C such that C is the quotient of C
by G with standard orbifold structure.

Definition 11.3. Let C be a global orbifold quotient and ρ a character. Let
R be the set of orbifold points and C \ R → C \ R be the quotient map with the
covering group G. The integer

(13) d(ρ) = dim{v ∈ H1(C \R,C) | g · v = ρ(g)v, g ∈ G}
is called the depth of a character ρ of the orbicurve C.

If ρ is of finite order, then d(ρ) has a nice topological interpretation.

Theorem 11.4 (Sakuma Formula). Let Y be a finite covering of X associated
with the group of covering transformations G, then

b1(Y ) = b1(X) +
∑

ρ∈Hom(G,C∗)

d(ρ).



11. ORBIFOLD TECHNIQUES 25

Example 11.5. Let Cn,n be the orbifold supported on C with two orbifold
points of multiplicity n. We shall identify C with P1 \ {[1 : 1]} so that the orbifold
points correspond to [0 : 1], [1 : 0]. This is the global quotient of a smooth curve
C by the cyclic group Z/n where C is the complement in P1 to the set S := {[ξin :
1] | i = 0, 1 . . . , n − 1} of n points (here ξn is a primitive root of unity of degree
n) and the global quotient map is the restriction on the complement to S of the
map P1 → P1 given by z 7→ zn. We have πorb

1 (Cn,n) = Z/n ∗ Z/n. Note that
Hom(Z/n ∗ Z/n,C∗) = µn × µn, where µn is the multiplicative cyclic group of
order n. Consider a character ρ = (ζ, ζ−1) ∈ µn × µn where ζ is a primitive root
of unity. It follows that if π1(P1 \ {[1 : 0], [1 : 1], [0 : 1]}) → πorb

1 (Cn,n) is the
canonical surjection (in the above identification of C and P1 so that the point at
infinity corresponds to [1 : 1]), then the pullback of ρ takes values ζ, 1, ζ−1 on
generators corresponding to [1 : 0], [1 : 1], [0 : 1]. In particular the covering space
corresponding to such ρ is P1 \ S and the dimension of the ρ-eigenspace is equal to
one.

Definition 11.6. Let X be a quasi-projective manifold and C be an orbicurve.
A holomorphic map φ between X and the underlying C complex curve is called an
orbifold pencil if the index of each orbifold point p divides the multiplicity of each
connected component of the fiber φ∗(p) over p.

Remark 11.7. Note that this definition implies that if Γi is the boundary of a
small disk normal to φ−1(pi) at its smooth point then φ(Γi) belongs to the subgroup

of π1(C \ pi) generated by γ
m(pi)
i . In particular an orbifold pencil induces the map

π1(X )→ πorb
1 (C).

One has the following result regarding orbifold morphisms.

Proposition 11.8 ([3, Proposition 1.5]). Let ρ : X → S define an orbifold
morphism X → Sm̄. Then ϕ induces a morphism ϕ∗ : π1(X) → πorb

1 (Sm̄). More-
over, if the generic fiber is connected, then ϕ∗ is surjective.

Using this technique one can show the following result needed in the sequel and
which we shall prove for completeness (cf. [13, Ch 2, Theorem 2.3]).

Proposition 11.9. The number of multiple members in a primitive pencil of
plane curves (with no base components) is at most two.

Definition 11.10. A quasi-toric relation of type (p, q, r) is a sextupleR(p,q,r)
qt :=

(F1, F2, F3, h1, h2, h3) of non-zero homogeneous polynomials in C[x, y, z] satisfying
the following functional relation

(14) hp1F1 + hq2F2 + hr3F3 = 0.

The support of a quasi-toric relation R(p,q,r)
qt as above is the zero set C :=

{F1F2F3 = 0}. In this context, we may also refer to C as a curve that satisfies (or
supports) a quasi-toric relation of type (p, q, r).

Theorem 11.11. For any irreducible plane curve C = {F = 0} whose only
singularities are nodes and cusps the following statements are equivalent:

(1) X = P2 \ C admits a holomorphic map onto the orbicurve P1
(2,3,6).

(2) F admits a quasi-toric relation.
(3) ∆C(t) is not trivial (∆C(t) 6= 1).

Moreover, the set of quasi-toric relations of C {(f, g, h) ∈ C[x, y, z]3 | f2 +
g3 + h6F = 0} has a group structure and it is isomorphic to Z2q, where ∆C(t) =
(t2 − t + 1)q. Also, C admits a finite number of primitive quasi-toric relations
iff q = 1.

Exercise 11.1. Apply Theorem 11.11 to the Zariski sextic.
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12. Applications: MacLane and Rybnikov’s example
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1. Outline

• the braid monodromy revisited
• the Zariski van Kampen theorem
• fundamental groups of discriminant complements

2. Braid group invariant

Definition 2.1 (Definition of BrM , the braid monodromy group). Given a
space X of simple monic polynomials px of degree k, then

BrMX = ∇π1(X),

where the map to the configuration space of C,

x 7→ p−1
x (0) ∈ Σk(C)

induces the braid monodromy on fundamental groups

∇ : π1X → Bk = π1Σk(C)

Remarks 2.1.

• simple polynomials are those which have number of zeroes equal to the
degree (without multiplicities)

• local problem, i.e. X punctured disc, solvable by Newton-Puiseux.
• global problem: how to fit local solutions together

3. Affine divisor complements

3.1. A typical situation.

• V affine space of polynomials,
• X ⊂ V Zariski-open subset of simple polynomials

3.2. Plane curve situation.
If p(x, y) = F (x, y, 1) is the dehomogenization of a plane curve equation, then

with V = C the x-axis, X = C \∆, we get back our study case.
For fundamental groups we get nothing new:

Theorem 3.1 (Zariski-Lefschetz Theorem). Given a generic line L in V , there
is a natural embedding

L× C ↪→ V × C
which induces an isomorphism of fundamental groups

π1(L× C \ p−1(0)) ∼= π1(V × C \ p−1(0))

But the transition from generic to non-generic lines can be studied and exploited
for computation.

Remark 3.2. We start now with the argument leading to a presentation of the
knot group of a curve (the fundamental group of its complement).

27
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Proposition 3.3. If D = D1 ∪D′ is a divisor in a complex manifold M with
D1 irreducible, then

π1(M \D) → π1(M \D′)
induced by the natural embedding is surjective and the kernel is normally generated
by any meridian around D1.

Proof. Surjectivity follows from the general position argument, that every
path can be homotoped off a codimension two subset.

Each meridian represents a trivial element in π1(M \D′), since it comes with
a disc transversal to D1 and disjoint from D′. This disc serves to get a homotopy
to the trivial path.

An element in π1(M \ D) can be represented by the image in M \ D of the
boundary of a disc. If the element belongs to the kernel the map extends to the
disc as a map to M \D′ and can be chosen transversal to D1 by a general position
argument.

Take a geometric basis (of meridians) in the disc with respect to the finitely
many preimages of D1. Then they map to meridians of D1 and their ordered
product is homotopic to the path we started with.

The claim now follows since all meridians are freely homotopic. �

Proposition 3.4. Given a locally trivial fibration π : M → X with connected
fibre Mx and with a section, ie. a map s : X → M with π ◦ s = idX , then there is
a homotopy exact sequence

π2(X,x)→ π1(Mx,m0)→ π1(M,m0)→ π1(X,x)→ 1

and s induces a splitting of the surjection.

Remark 3.5. The Hopf fibration

S3 → S2

has no section. Neither has a connected topological cover of degree m > 1.

Lemma 3.6. There is a continuous section to the fibration

s : X → X × C \ p−1(0)

which extends continuously to

s : V → V × C \ p−1(0)

if the leading coefficient of p is non-vanishing on V .

Proof. Immediate from the fact that the modulo of all zeroes is bounded in
terms of continuous function depending on the coefficients and the reciprocal of the
leading coefficient. �

Lemma 3.7. If the leading coefficient does not vanish, the lift via s of a meridian
of a divisor S ⊂ V \X is a meridian of the preimage S × C.

Remark 3.8. If the leading coefficient vanishes along a component S1 of S,
then the lift via s of a meridian of S1 is not a meridian of the preimage S1 × C.

Theorem 3.9 (Zariski-van Kampen Theorem [15]). Let D = p−1(0). Suppose
the leading coefficient of p is constant. Let the braid group BrMX be generated by
{β1, ..., βr} ⊂ Bk, then π1(V × C \ D) is finitely presented as

〈t1, ..., tk| t−1
i t

βj
i , i ≤ k, j ≤ r〉.
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We recall the Hurwitz action:

t
σj
i =


ti+1 if j = i,
titi−1t

−1
i if j = i− 1,

ti else.

Proof. First we employ the locally trivial fibration on X × C \ D.
Since the fibre fundamental group is free of rank k it is immediate that the

boundary map π2 → π1 in the homotopy sequence is trivial.
The section provides a semi-direct product structure:

π1(X × C \ D) ∼= π1({x0} × C \ p−1
x (0)) n π1(X)

where the two groups are subgroups by the embedding resp the section
and the second act on the former by braid automorphisms.

This gives a presentation relying on π1(X) = 〈aj |R〉:

π1(X × C \ D) ∼= 〈t1, ..., tk, a1, . . . , ar′ | a−1
j t−1

i ajt
∇aj
i , i ≤ k, j ≤ r′,R〉.

The map π1(V × C − D) → π1(X × C \ D) is surjective with kernel generated by
aj . Thus

π1(V × C \ D) ∼= 〈t1, ..., tk| t−1
i t
∇aj
i , i ≤ k, j ≤ r′〉.

and the claim follows by replacing the generators of BrMX . �

Corollary 3.10. In the projective plane curve case with (0 : 1 : 0) 6∈ F−1(0)

π1(C× C− F−1(0)) ∼= 〈t1, ..., tk| tk . . . t1, t−1
i t

βj
i , i ≤ k, j ≤ r, 〉.

Proof. The map π1(C × C − F−1(0)) → π1(P2 − F−1(0)) is surjective with
kernel generated by the meridian tk . . . t1 of the line at infinity. �

Remark 3.11. A careful choice of generators βj can reduce the number of
relations.

In case all braid monodromies ∇aj are conjugate of σ2
1 or σ3

1 (or other powers)
– e.g. in case of a curve with cusps and nodes only – the number of relation reduces
substantially due to the following:

Lemma 3.12. Suppose σ = β−1σ2
1β ∈ Bk (resp. σ = β−1σ3

1β ∈ Bk), then the
normal subgroup generated by t−1

i tiσ, i = 1, ..., n, is equal to the normal subgroup
generated by

(t1t2t
−1
1 t−1

2 )β
(

resp. (t1t2t1t
−1
2 t−1

1 t−1
2 )β

)
.

Proof. Replace the generators ti by generators tβi , the normal subgroup is
generated by(

tβi
)−1

tβσi = (t−1
i )βt

σ2
1β
i =

(
t−1
i t

σ2
1
i

)β (
resp.

(
t−1
i t

σ3
1
i

)β)
.

This yields trivial relations for i > 2. For i = 1, 2 they are explicitly computed
using the Artin action of σ1 on free generators:

(t−1
1 t2t1t

−1
2 )β , (t−1

2 t2t1t2t
−1
1 t−1

2 )β
(
resp.(t−1

1 t
t−1
1 t−1

2
2 )β , (t−1

2 t
t−1
2 t−1

1 t−1
2

1 )β
)
.

Since both arguments are conjugate to t1t2t
−1
1 t−1

2 , (resp. t1t2t1t
−1
2 t−1

1 t−1
2 ) or

its inverse, the claim follows. �
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4. Discriminant knot group of some Brieskorn-Pham singularities

Let f be a polynomial on the affine space Ck with an isolated singularity in 0.

Remark 4.1. The discriminant complement of such spaces may be Eilenberg-
MacLane spaces of their fundamental groups.

Our approach applies, since we get natural spaces of polynomials.

4.1. Basic setup.
A holomorphic function f on a complex affine space, (function germ is more

precise but too cumbersome), is studied by means of versal unfoldings, e.g. given
by a function

F (x, z, u) = f(x)− z +
∑

giui, x ∈ Ck, z, ui ∈ C,

where monomials gi generate additively the local algebra of function germs up to
elements in the Jacobian ideal of f .

In case of a semi-universal unfolding the unfolding dimension n is given by the
Milnor number and we get a diagram

(z, u1, ..., un−1) ∈ Cn ⊃ D = {(z, u) |F−1
z,u(0) is singular }y p

y
(u1, ..., un−1) ∈ Cn−1 ⊃ B = {u |F0,u is not Morse }

The restriction p|D to the discriminant D is a finite map, the branch set coin-
cides with the bifurcation set B.

We consider polynomials

f(x, y) = x3 + y`+1.

4.2. Unfolding spaces in singularity theory:

• Vf = f + C[x1, ..., xn]trunc, an unfolding space of

f = xd11 + xd22 + · · ·+ xdnn , (Brieskorn-Pham polynomial)

• uν , the coefficients of monomials gν =
∏
i x

νi
i are coordinates.

• get P ∈ C[uν ][z], monic in z, by eliminating xi from

F = f(x1, ..., xn)− z +
∑
uν
∏
xνii = ∂

∂xi
F = 0.

• Xf = {u ∈ Vf |Pu simple} the bifurcation complement.
• BrMXf is an invariant of f .

Remark 4.2. Due to a genericity argument, unfolding over C[x1, ..., xn]deg≤2

is sufficient.

4.3. Hefez Lazzeri basis.
The generic function is Morse in the unfolding of f by linear terms

F (x, y, a, b) := x3 − 3ax+ y`+1 − `+ 1

`
by,

The function f̃ = F (x, y, 1, 1) has critical values zi = 1 + yi, z`+i = −1 + yi, where
the yi are the ` solutions to y` = 1/` ordered by increasing argument.

The geometric basis {ti, 1 ≤ i ≤ 2`} for f̃ [17], can be understood from Figure 1.
Over a generic line in unfolding space, we get a plane curve C, the plane section of
D, such that the restricted fibre bundle is given as the complement of the vertical
lines through singular points of C.
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Figure 1. Hefez Lazzeri system in case ` = 5

Figure 2. plane section of discriminant

These are of two kinds (as opposed to the uniqueness of a Morse singularity),
the ordinary node and the ordinary cusp, corresponding to the two distinct strata
in D of codimension one.

Opposed to that a generic line in the linear unfolding Fa,b gives a curve with
more general singularities.

It neither gives the correct braid monodromy group nor has isomorphic knot
group.

4.4. Versal braid monodromy.
Versal braid monodromy serves to find the braid monodromy of versal unfold-

ings from computable data of suitable non-versal subunfoldings.
Let a one-parameter family of functions fλ be given with f0 tame, ie. critical

values may only coincide for non-degenerate critical points, and fλ Morse for λ 6= 0.
So there is an associated family pλ of discriminant polynomials characterized

by being univariate, monic and of constant degree, having only simple zeroes for
λ 6= 0 and

pλ(u) = 0 ⇐⇒ ∃x : gradx fλ(x) = 0, fλ(x) = u.

Let vj denote the roots of p0. Then for ε > 0 and 0 < δ � ε sufficiently small,

the discriminant complement Y = C×Dδ \ p−1
λ (0) is trivialisable over the disc Dδ

in the complement of ∪jBε(vj).
In any fibre Yλ, 0 < |λ| < δ, we assign a group of mapping classes choosing

generators – for each vj – supported on the punctured disc Dj = Yλ ∩ Bε(vj), the
local punctured fibre associated to vj :

In case that vj is a multiple root of p0, which is the image of a single critical
point cj of f0, we assign the braid monodromy group for the germ of f0 at cj
consisting of mapping classes supported on Dj .
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In case vj is the image of non-degenerate critical points of f , we choose the
group of mapping classes of Dj which fix the punctures and thus correspond to
pure braids.

Given a family of functions fλ which are generically Morse and generically tame
in the bifurcation set B of non-Morse functions, we locally assign groups of mapping
classes to each tame function using local slices to B.

The versal braid monodromy group is then defined to be generated by all such
classes identified by topological trivialisations along all possible paths with classes
in a reference fibre. It is determined as a subgroup of an abstract braid group Bn
upon choice of a geometric basis for the reference fibre consisting of n paths.

The identification along paths can be simplified:

Proposition 4.3. Suppose the family fλ of polynomials is parameterized by
a disc. Then the versal braid monodromy group is generated by elements obtained
from generators of all locally assigned groups via identification along paths of a
geometric basis associated to the parameters of bifurcation.

Proposition 4.4 (Key Property). Over a line in the unfolding space corre-
sponding to tame polynomials only, the versal braid monodromy group coincides
with BrMXf

4.5. Versal braid monodromy computation.
We need the versal braid monodromy associated to singularities of type A`:

Proposition 4.5 (Looijenga [19], Catanese-Wajnryb [8]). The braid mono-
dromy of f = x`+1 is generated by

σ3
i , σ

2
i,j , |i− j| ≥ 2

with respect to the Hefez-Lazzeri geometric basis associated to the polynomial f̃ =
x`+1 − 3(`+ 1)x.

To gain some geometric insight we translate this result back into a statement
on mapping classes of a reference fibre.

Figure 3. Generators of local braid monodromy

A set of mapping classes which generate the braid monodromy in the punctured
fibre corresponding to the function x`+1− (`+ 1)x, with punctures thus at the `-th
roots of `, is given by

• the cusp-twists on the dashed arcs joining consecutive punctures,
• the full twists on arcs joining non-consecutive punctures in the comple-

ment of the inscribed polygon and the open cone defined by the first and
the last puncture.
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With this notion of versal braid monodromy group we are able to show:

Proposition 4.6. The braid monodromy group of a singularity given by f(x) =
x3 + y`+1 is generated by the versal braid monodromy groups of the tame families

fa(x, y) = x3 − 3ax+ y`+1 − `+1
` y, gb(x, y) = x3 − 3x+ y`+1 − `+1

` by

This Proposition is also valid in higher dimension, see [17].

4.6. Tameness.
Degenerate critical points are detected by the vanishing of the Hessian, which

happens only at a = 0 resp. b = 0. But there it can be shown by a short computation
that the critical values are in bijection with the critical points.

4.7. Central idea of proof.
The combination of the families is a topologically equivalent to the family over

a generic line in the base of a the linear unfolding.
Fast forward of the remaining steps of the proof

• The versal braid monodromy of the second family.
• A suitable choice of generators for the braid monodromy group.

Theorem 4.7 ([18]). BrMXf of the polynomial x3 + y`+1 is generated by:

• σ2
ij in case i · ·j

• σ3
ij in case i ·—·j,

• σ±2
ij σ

2
ikσ
∓2
ij in case i

j

k (± = εijk antisymmetric).

�
�
�

�
�
�

1 2 `

`+ 2 2``+ 1

3

`+ 3

Figure 4. Dynkin diagram of x3 + y`+1

The braids σij are the so-called band generators of the braid group.

5. Fundamental groups

Theorem 5.1. For X̃ = {u ∈ Vf |P (u, 0) 6= 0}, the discriminant complement:

π1
∼=

〈
ti, i ∈ I

∣∣∣∣∣∣∣
titj = tjti, for i · ·j

titjti = tjtitj , for i · —·j ,
tεi tjt

−ε
i tk = tkt

ε
i tjt
−ε
i , for i

j

k

〉
.

(εijk antisymmetric)

5.1. Combinatorial structure.
The Dynkin diagram is naturally associated to the geometry of the generic

smooth fibre of f :
Vanishing cycles provide a basis for the middle homology and are in bijection to

the vertices, edges (in our case) are in bijection to non-zero intersection (in fact −1).
A given geometric basis is naturally acted on by the braid group B2`. Elements

in the braid monodromy group act trivially on the Dynkin diagram, since by the
theorem of van Kampen they act trivially on the discriminant knot group.

It remains open, whether the braid monodromy group is the whole stabiliser
group – at least it is a subgroup with a generating set of appealing simplicity.
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6. Open questions

Finally we yield to the temptation to list a few problems and questions which
seem now to come into reach of our curiosity:

(1) What results should be expected in the case of arbitrary singularities?
Gabrièlov [14] developed a general method which in principle yields Dynkin
diagrams for arbitrary hypersurface singularities by an induction on the
codimension. These diagrams feature simple edges and triangles only, but
neither edges of higher multiplicity nor cycles which are not subdivided
into triangles.

We hope that an induction for braid monodromy can be found in
analogy to the induction in the work of Gabrièlov [14].

(2) If we impose a relation on two singularities, how are the invariants re-
lated? We would like to understand the equivalence relation on singulari-
ties which is detected by the braid monodromy or the discriminant knot
group. Also there is some evidence that adjacency induces injective maps
on both invariants.

(3) How does combinatorial group theory apply to our new presentations?
They arise in a natural setting generalising the standard presentations of
Artin-Brieskorn groups of finite type. Recently there has been a surge
of activities in combinatorial group theory thanks to the new ideas and
techniques centering around the concept of Garside groups, [10]. In this
framework the question should be addressed whether there exists a finite
dimensional K(π, 1). It could well prove to become a major ingredient
to settle the question of asphericity of the discriminant complement, cf.
Thom [25].

(4) Can we obtain a better understanding of the various monodromy groups
in singularity theory? Our groups form the domain of such monodromy
homomorphisms, e.g. algebraic, geometric or the recently proposed sym-
plectic monodromy, [2, 23]. A more detailed study of the kernel and of
presentations for the image groups thus seems promising.
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