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ON THE TOPOLOGY OF HYPOCYCLOIDS
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Abstract. Algebraic geometry has many connections with physics: string theory, enu-
merative geometry, and mirror symmetry, among others. In particular, within the topo-
logical study of algebraic varieties physicists focus on aspects involving symmetry and
non-commutativity. In this paper, we study a family of classical algebraic curves, the
hypocycloids, which have links to physics via the bifurcation theory. The topology of
some of these curves plays an important role in string theory [3] and also appears in
Zariski’s foundational work [9]. We compute the fundamental groups of some of these
curves and show that they are in fact Artin groups.

Keywords: hypocycloid curve, cuspidal points, fundamental group.

PACS classification: 02.40.-k; 02.40.Xx; 02.40.Re .

1. Introduction

Hypocycloid curves have been studied since the Renaissance (apparently Dürer in 1525 de-
scribed epitrochoids in general and then Roemer in 1674 and Bernoulli in 1691 focused on
some particular hypocycloids, like the astroid, see [5]). Hypocycloids are described as the
roulette traced by a point P attached to a circumference S of radius r rolling about the inside
of a fixed circle C of radius R, such that 0 < ρ = r

R < 1
2 (see Figure 1). If the ratio ρ is

rational, an algebraic curve is obtained. The simplest (non-trivial) hypocycloid is called the
deltoid or the Steiner curve and has a history of its own both as a real and complex curve.
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Figure 1: Hypocycloid
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Hypocycloids first appeared as trajectories of motions or integral solutions of vector
fields, describing physical phenomena. Modern physics also finds these objects useful. For
instance, in the context of superstring compactifications of Calabi-Yau threefolds, certain
Picard-Fuchs equations arise naturally. The monodromy group of such equations is the target
duality group acting on the moduli of string theory and can be computed as the fundamental
group of the complement of the bifurcation locus in a deformation space.

Using the celebrated Lefschetz-Zariski theorems of hyperplane sections (in the homo-
topy setting), these monodromy groups can be recovered in the context of complements of
complex algebraic projective curves.

For this reason, braid monodromies and fundamental groups of complements of plane
curves have been intensively studied not only by by mathematicians, but also by physicists in
the past decades.

Our purpose is to investigate the topology of the complement of some of those interesting
hypocycloids using their symmetries and the structure of their affine and projective singular-
ities in a very effective way. In order to do so, we need to introduce Zariski-van Kampen
method [9, 7], braid monodromies and Chebyshev polynomials and exploit their properties.

2. First properties of complex hypocycloids

Let us construct a parametrization of a hypocycloid as a real curve. Since ρ is a positive
rational number, it admits the irreducible form ρ := `

N , where ` and N are coprime positive
integers. Also note that ρ and 1−ρ define the same curve, hence ρ ∈ (0, 1

2 ), i.e., k := N−` > `,
will be assumed. For simplicity, the external circle C can be assumed to have radius 1. If CRk,`
denotes the real hypocycloid given by k and `, it is not difficult to prove that

Xk,`(θ) =
` cos kθ + k cos `θ

N
, Yk,`(θ) =

` sin kθ − k sin `θ
N

(1)

provides a parametrization of CRk,`. This parametrization is useful for drawing the hypocycloid
but a rational one is preferred. Given n ∈ N we denote by Tn, Un, and Wn the Chebyshev
polynomials defined by

cos nθ = Tn(cos θ), sin (n + 1)θ = sin θ Un(cos θ), sin
(
n +

1
2

)
θ = sin

1
2
θ Wn(cos θ). (2)

Let us recall that Tn, Un, and Wn have degree n and they have zeroes at:

Tn(x) = 0 ⇔ x = cos
(

(2r−1) π
2n

)
r = 1, ..., n,

Un(x) = 0 ⇔ x = cos
(

r π
n+1

)
r = 1, ..., n,

Wn(x) = 0 ⇔ x = cos
(

r π
n+ 1

2

)
r = 1, ..., n.

(3)

The following rational parametrization is obtained:

xk,`(t) :=
Pk,`

(
1−t2

1+t2

)
N

, yk,`(t) :=
2t Qk,`

(
1−t2

1+t2

)
N(1 + t2)

, (4)
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where Pk,`(x) := `Tk (x) + kT` (x), and Qk,`(t) := `Uk−1 (x) − kU`−1 (x).
If the parameter t is allowed to run along the complex numbers outside {±

√
−1} one

obtains a complex plane curve, which will be called the complex hypocycloid, or simply
hypocycloid for short, and denoted by Ck,` ⊂ C

2. Note that CRk,` ⊂ Ck,` ∩ R
2.

Moreover, let us recall that any affine complex curve in C2 defined by rational parametric
equations t 7→

(
p1(t)
p3(t) ,

p2(t)
p3(t)

)
can be embedded in P2 := CP2, the complex projective plane,

by homogenizing its parametric equations and removing denominators. This way, the pa-
rameter space becomes P1 and the new projective parametric equations become [t : s] 7→
[sd−d1 p1

(
t
s

)
: sd−d2 p2

(
t
s

)
: sd−d3 p3

(
t
s

)
), where di := deg pi(t), and d := max{d1, d2, d3}. The

complex projective hypocycloid will be denoted by C̄k,` ⊂ P
2. Note that the former parame-

ters {±
√
−1} can be interpreted as the points at infinity of the complex hypocycloid.

Proposition 2.1. The complex projective hypocycloid C̄k,` is a rational curve of degree 2k
with the following properties:

(i) The curve Ck,` is invariant by an action of the dihedral group D2N .

(ii) The singular points of Ck,` are only ordinary nodes and ordinary cusps arranged as
follows: N cusps, N(` − 1) (real) nodes, and N(k − ` − 1) (non-real) nodes.

(iii) The intersection with the line at infinity consists of two points with local equations
uk − vk−` = 0 tangent to the line at infinity (these points are singular if k − ` > 1).

(iv) The parametrization given in (4) is an immersion (outside the N cusps and eventually
the points at infinity if k − ` > 1).

Proof. First, let us show that the rotation of angle 2π
N and the reflection with respect to the

horizontal axis given by the equation {y = 0} globally fix Ck,`. These two symmetries generate
a dihedral group of order 2N, denoted by D2N .

The reflection is an immediate consequence of the fact that the first coordinate of the
affine parametrization is even xk,`(−t) = xk,`(t), while the second coordinate is odd yk,`(−t) =

−yk,`(t), see (4).
In order to visualize the rotation, it is more convenient to use trigonometric notation. One

can check that 
Xk,`

(
θ + 2π

N

)
Yk,`

(
θ + 2π

N

)
 =

cos 2πk
N − sin 2πk

N

sin 2πk
N cos 2πk

N


Xk,`(θ)

Yk,`(θ)

 ,
Since this is a rotation of degree 2πk

N and gcd(k,N) = 1 then part (i) follows.
Note that

ϕ([t : s] :=
[
pk,`(t, s) : 2tsqk,`(t, s) : N(s2 + t2)k

]
(5)

is a parametrization of the projective hypocycloid C̄k,`, where

pk,`(t, s) := (s2 + t2)kPk,`

(
s2 − t2

s2 + t2

)
, qk,`(t, s) := (s2 + t2)k−1Qk,`

(
s2 − t2

s2 + t2

)
.

Note that pk,` is homogeneous of degree k and qk,` is homogeneous of degree k− 1. Since the
leading coefficient of Pk,` is 2k−1` and the one of Qk,` is 2k−2`, see [8], then ϕ([1 : ±

√
−1]) =
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[1 : ±
√
−1 : 0] and hence this parametrization induces a well-defined surjective map from

P1 to C̄k,`. Hence, outside a finite number of points (those where the parametrization is not
injective) C̄k,` is isomorphic to P1, which implies that C̄k,` is a rational curve. Also, its degree
corresponds with the degree of any of its parametric equations, namely 2k.

It is a straightforward computation that

dϕ1

dt
= −

4k`ts2

N(s2 + t2)2 (Uk−1 + U`−1) , and
dϕ2

dt
=

2k`s
N(s2 + t2)

(Tk − T`) .

One should consider two different cases:

• If N is even, then one can use the following two formulas (see [8]): Uk−1 + U`−1 =

2T k−`
2

U k+`
2 −1 and (Tk(x)−T`(x)) + x(Uk−1(x) + U`−1(x)) = (Uk(x) + U`−2(x)). Therefore:

dϕ1

dt
= −

8k`ts2

N(s2 + t2)2 T k−`
2

U k+`
2 −1,

2ts
dϕ2

dt
− (s2 − t2)

dϕ1

dt
=

8k`ts
N(s2 + t2)

T k−`
2 +1U k+`

2 −1.

(6)

Thus the common zeroes to ϕ′1 := dϕ1
dt and ϕ′2 := dϕ2

dt are given by tsU k+`
2 −1

(
s2−t2

s2+t2

)
= 0,

that is, {
(t, s) | t = 0, s = 0, or

s2 − t2

s2 + t2 = cos
(

2rπ
k + `

)
, r = 1, ...,

k + `

2
− 1

}
.

This makes a total of 2
(

k+`
2 − 1

)
+ 2 = N singularities. Using the previous equations

one can check that the order of t in (ϕ′1, ϕ
′
2) is (1,2) and consequently such a singularity

is an ordinary cusp of equation y2 − x3 whose tangent is the line L0 := {y = 0}. By
applying the symmetry (i), the remaining singularities are also cusps and their tangents
are a rotation of L0.
By the parity of N, the line L0 intersects C̄k,` at two cusps ϕ([1 : 0]) and ϕ([0 : 1]) with
multiplicity 3 each, hence there are 2(k − 3) extra points of intersection (counted with
multiplicity). Let us denote by ϕ([t0 : s0]) = P one such point. Due to the symmetry
of C̄k,` with respect to L0, unless the tangent direction at P is vertical, the curve C̄k,`

possesses a node at P. In order to prove that the 2(k − 3) extra points of intersection
do in fact correspond to (k − 3) nodes, one just needs to check that ϕ2 and ϕ′1 do not
have any common zeroes. In order to do so, it is enough to note that, according to (6),
all the roots of ϕ′1 that are not critical points of the parametrization are of the form
s2−t2

s2+t2 = cos
(
2 2r−1

k−` π
)
, which are not roots of ϕ2. Applying the symmetry of order N and

the fact that the orbit of L0 by such symmetry has N
2 lines, one obtains the existence of

(k−3)N
2 nodes. Let us denote this group of nodes by A1.

Another group of nodes is placed on the line L2N which is the rotation of L0 by an angle
of π

N radians. In order to do so, let us reparametrize the hypocycloid so that L2N is sent
to the horizontal line. This corresponds to switching `θ by `θ + π in the inner circle.
The real equations are transformed as follows (compare with (1)):
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X̃k,`(θ) =
1
N

(` cos kθ − k cos `θ) , Ỹk,`(θ) =
1
N

(` sin kθ + k sin `θ) (7)

which provide the rational parametrization:

x̃k,`(t) :=
P̃k,`

(
1−t2

1+t2

)
N

, ỹk,`(t) :=
2tQ̃k,`

(
1−t2

1+t2

)
N(1 + t2)

, (8)

where P̃k,`(x) := `Tk (x) − kT` (x), and Q̃k,`(x) := `Uk−1 (x) + kU`−1 (x). Note that
again x̃k,`(−t) = x̃k,`(t) and ỹk,`(−t) = −ỹk,`(t), and that the rotation of 2π

N radians is a
symmetry of the curve. Using the formula Uk−1 − U`−1 = 2T k+`

2
U k−`

2 −1 one can check
that

ϕ̃′1 :=
ϕ̃1

dt
= −

8k`st2

N(s2 + t2)2 T k+`
2

U k−`
2 −1,

and hence ϕ̃′1 and ϕ̃2 have common zeroes only at t = 0 and s = 0, which are two
vertical tangents. This shows that there are (k − 1) remaining nodes on L2N and, after
applying the rotation, one finds (k−1)N

2 new nodes. Let us denote this group of nodes by
A2 and define A = A1 ∪ A2.

• If N is odd, then proceeding as above, one can use the formula: Tk(x) − T`(x) =

(1 − x)W k+`−1
2

(x)W k−`−1
2

(x) and check that the critical points of the parametrization are

given by t = 0 and by W k+`−1
2

(
s2−t2

s2+t2

)
= 0, that is, {(t, s) | t = 0, or s2−t2

s2+t2 = cos
(

2rπ
k+`

)
, r =

1, ..., k+`−1
2 }.

Analogously as in the previous case, the singularity at t = 0 is an ordinary cusp y2 − x3

whose tangent is L0. There are 2k − 3 remaining points of intersection which are
necessarily a vertical tangent and k−2 nodes, since ϕ2 and ϕ1

dt do not have any common
zeroes similarly as above. Again, after applying the rotation of order N one can find
(k − 2)N nodes. Let us denote this group of nodes by A.

Summarizing, we have found #A = (k − 2)N nodes and N ordinary cusps. Assuming (iii)
C̄k,` contains also 2 singular points of type uk − vk−`. Using the genus formula:

(2k − 1)(2k − 2)
2

− (k − 2)N − N − 2
(k − ` − 1)(k − 1)

2
− α = 0

where the first summand is the virtual genus of a curve of degree 2k, the second summand
comes from the nodes, the third summand comes from the cusps, the fourth one comes from
the singularities at infinity, and the last one comes from any further singularities. Since the
equation has to equal zero due to the fact that C̄k,` is rational, this forces α to be equal to zero,
and thus C̄k,` contains no further singularities.

To finish the proof of part (ii) one needs to make sure that only (` − 1)N nodes are real.
If N is odd this can be done by verifying that there are only (` − 1) real nodes on L0. Note
that the real nodes come from branches joining the cusps. The line L0 contains one cusp and
divides the set of remaining cusps into two groups of N−1

2 each. Since the real branches join
a cusp with the `-th consecutive cusp, there is a total of 2(` − 1) branches crossing L0 which
lead to (` − 1) nodes. Again, applying the rotation one obtains the (` − 1)N real nodes. The
case when N is even is analogous. Part (ii) will be proved if (iii) is checked.
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Let P1, P2 be the two points in C̄k,` ∩ L∞, where L∞ is the line at infinity. Let us note
that any reflection in D2N fixes L∞ and C and interchanges P1 and P2. By Bezout’s Theorem,
L∞ · C̄k,` = 2k; because of the symmetry, (L∞ · C̄k,`)Pi = k. On the other hand it is easily
seen that the only intersection points of C̄ and C̄k,` are the N cusps and P1, P2 (compute
X(θ)2 + Y(θ)2). Since C̄ and C̄k,` are transversal at the cusps, their intersection number at
these points is 2. One obtains the following:

4k = C̄ · C̄k,` = 2(k + `) + 2(C̄ · C̄k,`)P1

and (C̄ · C̄k,`)P1 = (C̄ · C̄k,`)P2 = k − `.
It is a standard fact in singularity theory that a locally irreducible curve germ intersecting

two smooth transversal branches with coprime multiplicities p and q has the same topological
type as up − vq = 0. Therefore (iii) follows. Note that if k − ` = 1 then the points at infinity
are smooth, otherwise they are singular: this also proves (iv). �

3. Fundamental group of the complement of a curve

Let us consider an affine complex plane algebraic curve C ⊂ C2. Let us denote by f (x, y) ∈
C[x, y] a reduced equation of the curve C. For simplicity f will be assumed to be monic
as a polynomial in y (this can be achieved by applying a generic change of coordinates and
dividing by a non-zero constant). Let d be the degree of f in y (which may be smaller than
the total degree of f ).

The classical Zariski-van Kampen method works as follows. One considers a generic
vertical line L in C2; the group π1(L \ C) is isomorphic to the free group Fd, since L ∩ C
consists of d points. A basis of loops in this group also generates π1(C2 \C) and the relations
are obtained via the monodromy of this fibration, which is basically moving L around the
non-generic vertical lines. Let us state it more precisely (see [1] for a more complete version).

For t ∈ C, Lt denotes the vertical line x = t. Let NT := {t ∈ C | Lt 6t C}; NT is a finite
set and it is the zero locus of the discriminant of f with respect to y (which is a polynomial
in x). If t < NT , then C ∩ Lt consists of d points, and by the continuity of roots one can see f
as a holomorphic mapping f̃ : C \ NT → V \ ∆, where:

• V is the space of monic complex polynomials in one variable and degree d (naturally
isomorphic to Cd via the coefficients);

• ∆ is the discriminant of V , i.e., the set of polynomials in V with multiple roots (which
is a hypersurface of V).

The space V \ ∆ can be naturally identified with the configuration space of d different
points in C, whose fundamental group is the braid group Bd in d strings. Let us recall the
Artin presentation of this group:

Bd =

〈
σ1, . . . , σd−1

∣∣∣∣σiσi+1σi = σi+1σiσi+1, i=1,...,d−2, [σi, σ j] = 1, 1≤i< j−1<d−2

〉
. (9)

There is a free action of this group on the free group Fd with generators a1, . . . , ad defined as
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follows:

aσ j

i :=


ai+1 if i = j
ai+1aia−1

i+1 if i = j + 1
ai if i , j, j + 1.

(10)

Note that for any τ ∈ Bd, (ad · . . . · a1)τ = ad · . . . · a1.
One can define the braid monodromy of C with respect to the coordinates x, y as follows.

Let t0 ∈ C \ NT and let F := π1(C \ NT ; t0), which is a free group. Then one defines
∇ : F→ Bd as the morphism defined by f̃ at the level of fundamental groups (with a suitable
identification of Bd with π1(V \ ∆; f̃ (t0)).

Zariski-van Kampen Theorem 3.1. The fundamental group of C2 \ C is the quotient of Fd

by the subgroup normally generated by w−1w∇(τ), w ∈ Fd, τ ∈ Bd. If b1, . . . , br is a free
generating system of F, then it admits the following presentation:〈

a1, . . . , ad

∣∣∣∣ ai = a∇(b j)
i , i = 1, . . . , d − 1, j = 1, . . . , r

〉
. (11)

Remark 3.2. A natural interpretation of π1(V \ ∆; f̃ (t0)) can be given when f ∈ R[x, y],
t0 ∈ R and all the roots of f (t0, y) are real. Let y1 > · · · > yd be the roots of f (t0, y). Then σi

is the homotopy class of the mapping [0, 1]→ V \ D,

t 7→ {y1, . . . , yi−1, ci + rieπt
√
−1, ci − rieπt

√
−1, yi+2, yd},

where ci is the middle point between yi and yi+1 and ri is half their distance. A similar
argument works without the real assumptions.

Remark 3.3. Let us assume again that f ∈ R[x, y], t0 ∈ R and all the roots of f (t0, y) are
real. For the free group π1(Lt0 \C; y0), y0 � y1, a basis can be chosen as follows. Fix a small
radius ε > 0.

Consider a lasso ai := ui · δi · u−1
i based at y0 as follows. The path ui runs along the real

line from y0 to yi − ε and avoids the points y1, . . . , yi−1 by the upper semicircles of radius
ε centered at these points; the lasso δi runs counterclockwise along the circle of radius ε
centered at yi.

Figure 2: An element of a standard geometric basis

The ordered basis (a1, . . . , ad) is called a standard geometric basis. Note that ai is a
meridian of the point yi (see [1] for a definition) and (ad · . . . · a1)−1 is a meridian of the point
at infinity. These identifications give the geometric counterpart of the action (10). In the
non-real case, standard geometric bases play the same role (see [1]).

In general standard pseudogeometric bases are preferred for the group F (if NT ⊂ R);
the only difference with geometric bases being that the condition on the position of the base
points is weakened.
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a1 a2

aσ1
1 = a2 aσ1

2 = a2a1a−1
2

Figure 3: Geometric action of the braid group

Example 3.4. Let us assume that b1 corresponds to a small loop surrounding a point t such
that Lt is an ordinary tangent line. For suitable choices of loops and paths, ∇(b1) = σ1 and the
only non-trivial relation is given by a1 = a2. Analogously, for other non-transversal vertical
lines Lt, one obtains the following braids and relations:

• If Lt passes transversally through a node, then ∇(b1) = σ2
1 and the only non-trivial

relation is given by [a1, a2] = 1.

• If Lt passes transversally through an ordinary cusp, then ∇(b1) = σ3
1 and the only

non-trivial relation is given by a1a2a1 = a2a1a2.

• If Lt is tangent to an ordinary cusp, then ∇(b1) = (σ2σ1)2 and the only non-trivial
relations are given by a1 = a3 and a2 = a3a2a1a−1

2 a−1
1 .

• If Lt passes transversally through an m-tacnode (two smooth branches with intersection
number m), then ∇(b1) = σ2m

1 and the only non-trivial relation is given by (a1a2)m =

(a2a1)m.

Remark 3.5. Two remarks about the relations explained in Example 3.4 should be made.
First of all, such relations can be expressed in such a simple manner when: t0 is close enough
to t, b1 is a small meridian around t, and a suitable choice for generators of Fd is considered
(essentially a standard geometric basis). In such cases, ∇(b1) produces r effective relations,
where r := d − #(C ∩ Lt).

In the general case, for instance when the base point is not close to t, the braid ∇(b1) is
written as τ−1στ, where:

• The open braid τ−1 goes from Lt0 to a fiber Lt′0 close to Lt.

• The braid σ is as in Example 3.4 (or a product of these braids involving disjoint subsets
of strings).

When a (standard) geometric basis a′1, . . . , a
′
d in π1(Lt′0 \ C) is considered, on which σ acts,

only r non-trivial relations are produced. This choice of basis allows one to consider τ as an
element of Bd. Using this technique, one can see that π1(C2 \C) can be described by a system
of relations of type a′i = aτi .
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The relations will involve conjugates of the standard generators of Fd. The number of rela-
tions and their type (equality, commutation, braid relations,. . . ) depend only on the braids σ,
which depend only on algebraic properties of C (degree, topological type of singularities),
but the involved conjugations of the generators depend on the coefficients of f . In general,
finding the braid τ explicitly is a very difficult task and unless the coefficients of f are rational
or Gaussian integers, computational methods are far from being efficient.

The braid τ, or equivalently the relationship between the two geometric bases, can be
obtained algorithmically from the real picture, when f has real equations (real curve), all (or
almost all) of the non-transversal vertical lines are real and the branches around the critical
points are also real. Such curves are called totally real curves.

4. Fundamental group of hypocycloids and Artin groups

In this section we compute fundamental groups for some hypocycloids. Hypocycloids are real
curves, but not totally real curves. However, they are very symmetric and it is by quotienting
the plane by these symmetries that one can obtain a curve that is closer to being totally real.

In these computations a special type of groups, called Artin groups will be obtained. Artin
groups can be defined as follows. Let Γ be a finite graph (with no loops and no multiple edges
between vertices); let S := S (Γ) be the set of vertices and let E := E(Γ) be the set of edges
(considered as a subset of {A ⊂ S | #A = 2}). The Artin group GΓ associated with Γ is
generated by the elements of S and has a system of relations given as follows for any s , t:

• If {s, t} ∈ E then sts = tst.

• If {s, t} < E then [s, t] = 1.

For example, Bd is the Artin group associated with the Ad−1 graph (a connected linear graph
with d − 1 vertices).

4.1. The Deltoid

Figure 4: Deltoid

The deltoid corresponds to ρ = 1
3 , that is, k = 2, ` = 1, and N = 3. In order to obtain an

explicit equation for Ck,`, given by parametric equations (xk,`(t), yk,`(t)), one needs to compute
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the resultant of xk,`(t) − x and yk,`(t) − y, with respect to t. In this case one obtains

C2,1 : 3(x2 + y2)2 + 24x(x2 + y2) + 6(x2 + y2) − 32x3 − 1 = 0. (12)

Let π : C2 → C2 be the 2-fold ramified covering given by π(x, y) := (x, y2). Let D2,1 :=
π(C2,1); since C2,1 is symmetric with respect to the involution σ : C2 → C2, σ(x, y) := (x,−y)
(which generates the automorphism group of π), one can check that C2,1 = π−1(D2,1), where
D2,1 is given by

D2,1 : 3(x2 + y)2 + 24x(x2 + y) + 6(x2 + y) − 32x3 − 1 = 0. (13)

In order to compute π1(C2 \ (D2,1 ∪ X)) (where X is the x-axis), one has to compute the
discriminant of the equation (13) with respect to y. Since all its roots are real, that is, D2,1 is
a totally real curve, Figure 5 contains all the topological information needed to compute the
group π1(C2 \ (D2,1 ∪ X)).

X
x

b

a

L1L2L3

C

Figure 5: The curve D2,1 ∪ X

Following §3, the dotted line L represents a generic vertical line (the other three lines
in Figure 5 are the non-transversal vertical lines). After fixing a big enough real number as
the base point, one can consider the natural free basis of π1(L \ (D2,1 ∪ X)) given by a, x, b
(positive meridians around the intersections with the curve), such that (bxa)−1 is a meridian
of the point at infinity. Moving around the line L1 one obtains the braid σ6

1, which produces
the relation:

(ax)3 = (xa)3.

The braid around L2 is σ2
2, and the relation is [b, x] = 1. In order to compute the relations

provided by L3 one can proceed as follows. Consider a vertical line L′ between L2 and L3 and
generators a′, b′, x′ of π1(L′ \ (D1,2 ∪ X)) as done with L. In order to see them as elements in
π1(L \ (D2,1 ∪ X)) it is necessary to connect the base points in the same horizontal line. It is
easily seen that a = a′, b = b′ and x = x′. The relation obtained around L3 is aba = bab.

One obtains

π1(C2 \ (D2,1 ∪ X)) = 〈a, x, b
∣∣∣∣ (ax)3 = (xa)3, [b, x] = 1, aba = bab〉.

Since π| : C2 \ (C2,1 ∪ X) → C2 \ (D2,1 ∪ X) is a double unramified covering, one can check
that the group π1(C2 \ (C2,1 ∪ X)) is the subgroup of index 2 normally generated by a, b, x2.
It is well-known that π1(C2 \ C2,1) can be obtained from π1(C2 \ (C2,1 ∪ X)) by adding the
relation x2 = 1.
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Remark 4.1.1. In fact, the above operations, computing the index 2 subgroup and factoring
by x2, commute. Therefore, one π1(C2 \C2,1) can also be considered as a subgroup of index 2
of G2,1 := π1(C2 \ (D2,1 ∪ X))/〈x2〉.

Proposition 4.1.2. The group π1(C2 \C2,1) is the Artin group of the triangle.

Proof. The group π1(C2 \ C2,1) is the kernel of the morphism ρ : G2,1 → 〈t | t2 = 1〉, given
by ρ(a) := ρ(b) := t, ρ(x) := 1.

Using the Reidemeister-Schreier method, π1(C2 \ C2,1) is generated by a, b, c where c :=
xax (note that b = xbx, because of the second relation). The third relation gives aba = bab
and cbc = bcb. The first relation gives aca = cac. The presentation of the Artin group for the
triangle results directly. �

Remark 4.1.3. According to Proposition 2.1(iii), the projective closure C̄2,1 of C2,1 in P2 is
such that the line at infinity is a bitangent and the contact points are the imaginary cyclic
points of order 4. The fundamental group π1(P2 \ C̄2,1) is a non-abelian finite group of size 12
which was first computed by Zariski [9] and it is the braid group of 3 strings in the 2-sphere.
This is the curve of smallest degree with a non-abelian fundamental group. Its dual is a nodal
cubic curve (as a real curve with a node with imaginary tangent lines).

4.2. Astroid

Figure 6: Astroid

The astroid corresponds to ρ = 1
4 , that is, k = 3, ` = 1, and N = 4. In order to apply a

more suitable symmetry, a rotation of the astroid should be performed to obtain a curve as in
Figure 6. One obtains

C3,1 : 4(x2 + y2)3 + 15(x2 + y2)2 + 12(x2 + y2) − 108x2y2 − 4 = 0. (14)

As we did for the deltoid in §4.1, let us consider D3,1 := π(C3,1) the quotient of C3,1 by the
symmetry σ, which has equation

D3,1 : 4(x2 + y)3 + 15(x2 + y)2 + 12(x2 + y) − 108x2y − 4 = 0. (15)

In order to compute π1(C2 \ (D3,1 ∪ X)) (where X is the horizontal axis), one computes the
discriminant of the equation (13) with respect to y. In this case D3,1 is not totally real, thus
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Figure 7: The curve D3,1 ∪ X

Figure 7 is not enough to compute the group π1(C2 \ (D3,1 ∪ X)). According to Proposi-
tion 2.1(ii) the astroid has four ordinary (non-real) double points: two of them are sent to
the real double point shown in Figure 7, the other two are on the symmetry axis and are sent
to two (non-real) points where D3,1 is tangent to X, hence D3,1 is not a totally real curve.
However, D3,1 is symmetric with respect to the Y := {x = 0} axis, and hence one can perform
the quotient with respect to this symmetry and obtain the curve X ∪ Y ∪ E3,1, where

E3,1 : 4(x + y)3 + 15(x + y)2 + 12(x + y) − 108xy − 4 = 0. (16)

The curve is rotated in order to have a better projection.

Figure 8: The curve E3,1 ∪ X ∪ Y

According to §3, π1(C2 \ (E3,1∪X∪Y)) is generated by x, a, b, y and a system of relations
can be given as follows: aba = bab, [a, x] = 1, [b, y] = 1, [x, y] = 1, (ay)2 = (ya)2,
and (bx)2 = (xb)2. Defining G3,1 as before by adding the relations x2 = 1, y2 = 1, one
needs to compute the appropriate index four subgroup. A straightforward application of the
Reidemeister-Schreier method gives the following result.

Proposition 4.2.1. The group π1(C2 \C3,1) is the Artin group of the square.

Remark 4.2.2. The curve C̄3,1 is a sextic with six cusps and four nodes, i.e., the dual of
a nodal quartic. These curves were studied by O. Zariski [10]. The group π1(P2 \ C̄3,1) is
isomorphic to the braid group of four strings on the sphere.

4.3. Hypocycloid ρ = 2
5

This is a particular case of the hypocycloids for ρ = n
2n+1 where all nodes are real. The curve

C3,2 has equation

80(x2 + y2)3 + 165(x2 + y2)2 − 30(x2 + y2) − 216x(x4 − 10 x2y2 + 5 y4) + 1 = 0. (17)

The quotient D3,2 of C3,2 by the action of σ is a totally real curve, and thus the real picture
contains all the topological information needed to compute the group π1(C2 \ (D2,1 ∪ X)).
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Figure 9: Hypocycloid ρ = 2
5

Figure 10: The curve D3,2 ∪ X

Following §3, one needs to select a generic vertical line Lt0 , which will be chosen to
sit between the two real double points of D3,2. The group G3,2, which is the quotient of
π1(C2 \ (D3,2 ∪ X)) by the square of a meridian of X, is generated by a, b, x, c a has the
following system of relations x2 = 1, [a, b] = 1, (ax)2 = (xa)2, (xax)b(xax) = b(xax)b,
[c, x] = 1, [b, c] = 1, aca = cac, and (bx)3 = (xb)3.

Proposition 4.3.1. The group π1(C2 \C3,2) is the Artin group of the pentagon.

Proof. After using Reidemeister-Schreier again, one obtains the following set of generators:
a, b, c, u := xax, v := xbx, a set of cuspidal relations among the adjacent list of generators
u, b, v, a, c in a cyclic manner, and commutation relations amongst the non-adjacent genera-
tors. �

Remark 4.3.2. This result was already obtained in [3, 4]. The authors computed the correct
presentation of the group, but then they stated that this group is isomorphic to B5; this is not
true as can be checked either directly or using Artin group theory.

Remark 4.3.3. With some more computations, it is possible to show that the group for the
hypocycloid C4,3 (for ρ = 3

7 ) is the Artin group of the polygon of 7 edges. Since the quotient
of the curves Cn+1,n is totally real, we will compute the general case in a forthcoming paper.

4.4. Hypocycloid ρ = 3
8

We complete this preliminary study of the topology of the hypocycloid curves with C5,3
corresponding to ρ = 3

8 , i.e., k = 5, ` = 3, and N = 8. As with the astroid in 4.2, a rotation
will be performed in order to use more suitable symmetries. One obtains:

C5,3 :11664
(
x2 + y2

)5
+ 47655

(
x2 + y2

)4
+ 40240

(
x2 + y2

)3
−

− 17040
(
x2 + y2

)2
+ 1920 (x2 + y2) + 1350000 x2y2

(
x2 − y2

)2
− 64 = 0.

(18)
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Figure 11: Hypocycloid ρ = 3
8

Let D5,3 := π(C5,3).

Figure 12: The curve D5,3 ∪ X

Since D5,3 is not totally real, Figure 12 is not enough to compute π1(C2 \ (D5,3 ∪ X)).
However, one can use the symmetry along Y := {x = 0} to obtain the quotient E5,3 of D5,3.
The curve E5,3∪X∪Y is not totally real yet. According to Proposition 2.1(iii), C5,3 has eight
imaginary nodes. Since two of them are on X, they produce another three nodes for D5,3, one
of them on Y and real. After rotating the axes one obtains Figure 13. Note that E5,3 has a

Figure 13: The curve E5,3 ∪ X ∪ Y

(real) node with imaginary tangent lines and has a symmetry along the line joining the node
and the origin. By this symmetry, X and Y are symmetric to one another.

The resulting quotient is a totally real curve, whose fundamental group can be obtained
from the information shown in Figure 14.
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Figure 14: Final curve

Proposition 4.4.1. The group π1(C2 \C3,1) is the Artin group of the octagon.

Proof. One has to apply the Reidemeister-Schereier method and use GAP [6] to obtain the
desired presentation. �

5. Conclusions

Note that with this method one finds not only the expected groups, but also the expected
presentations. This happens also in other computations of the fundamental groups of the
complements of special curves, like in [2]. This seems to suggest that there is a deep geomet-
rical connection between the symmetries and the fundamental group, which should be better
understood.

It seems to be possible to generalize the method of §4 for curves Cn+1,n, since all nodes
and vertical tangents are real. For the general case, in order to make visible all singular points
we may consider the quotient of C2 by the action of D2n, which is not a smooth surface.
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