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§ Introduction

In 1929, O. Zariski published a paper entitled “On the Problem of
Existence of Algebraic Functions of Two Variables Possessing a Given
Branch Curve” [130] where the following question was considered:

Does an algebraic function z of x and y exist, possessing a preas-
signed curve f as branch curve?

As Zariski pointed out in the Introduction of [130], this question was
first considered by Enriques and the problem is reduced to finding the
fundamental group of the complement of the given curve (the word com-
plement is understood and often omitted for short). Zariski considered
some explicit cases and proved important results. Here we detail some
of the most relevant:

(Z1) If two curves lie in a connected family of equisingular curves,
then they have isomorphic fundamental groups.

(Z2) If a continuous family {Ct}t∈[0,1] is equisingular for t ∈ (0, 1]

and C0 is reduced, then there is a natural epimorphism π1(P2 \
C0, p0) ։ π1(P2 \ Ct, pt), where the base point pt (t ∈ [0, 1])
depends on t continuously.

(Z3) The fundamental group of an irreducible curve of order n, pos-
sessing ordinary double points only, is cyclic of order n ([130,
Theorem 7]), see Remark 1.
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(Z4) Consider the projection from the general cubic surface in P3

onto P2, centered at a general point outside the surface. Its
branch locus is a sextic C6 with six cusps whose fundamental
group is isomorphic to Z/2Z ∗ Z/3Z.

(Z5) He noted that the six cusps of any sextic described in (Z4) sat-
isfy the extra condition of lying on a conic –without decreasing
the dimension of their family. Moreover, if C6 is a sextic with
six cusps and its fundamental group has a representation onto
the symmetric group of three letters, then C6 is the branch
curve of a cubic surface and its six cusps lie on a conic. In
particular if a sextic C′6 with six cusps not on a conic exists,
then π1(P2 \ C6, po) 6∼= π1(P2 \ C′6, p′o).

(Z6) IfQ is a three-cuspidal quartic, then π1(P2\Q, po) is isomorphic
to the binary 3-dihedral group, which is a non-Abelian finite
group of order 12 presented by

(1) 〈a, b | aba = bab, a2b2 = 1〉.

Remark 1. Zariski’s proof of (Z3) depended on the following claim
of Severi: The family of irreducible curves of degree n possessing a given
number of ordinary double points is irreducible [104]. Severi’s proof was
not correct, and the first rigorous proof of his claim was given in 1986 by
J. Harris [54]. In the meantime (Z3) was known as the Zariski conjecture
until the 70’s, when it was proved by Deligne and Fulton in [40] and [48].

Zariski proved the commutativity of the fundamental group for cer-
tain smooth curves and then he used (Z1) for general smooth curves.
He was also able to prove the commutativity for nodal arrangements of
lines. He found degenerations of nodal curves into nodal arrangements
of lines, thus proving the commutativity of the fundamental group for
certain nodal curves. A combination of (Z1) with Severi’s claim allowed
him to complete a proof of (Z3).

In [131], Zariski proved another result regarding (Z5): in modern
language, the Alexander polynomial of C6 equals t2 − t + 1 and the
Alexander polynomial of C′6 is 1 (provided C′6 exists); the key point for
both claims is the position of the cusps. The story (almost) ends in [132]
where Zariski shows the existence of curves C′6 using deformation argu-
ments that allow him to prove that their fundamental group is Abelian;
explicit examples were found much later [2, 90]. He also claims that
there are only two irreducible families of sextics with six cusps. It is not
hard to prove that the family of sextics with six cusps on a conic is irre-
ducible, and an analogue for the other family is announced by Degtyarëv
in [39, Theorem 5.3.2].
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Another important result of [130] is (Z6); for a long time the three-
cuspidal quartic (the only quartic with a non-Abelian fundamental group)
was the only example of a curve whose complement has a non-Abelian
finite fundamental group. In the early nineties, several such examples
have been found by A. Degtyarëv [38], M. Oka [91] and I. Shimada [106].

Fundamental groups of curves up to degree five are well known
(see [36, 38]), but for now little is known about their structure in the
general case. In this sense, questions like the one raised by Zariski ([134,
Chapter VIII, §1]) on the residual finiteness of such groups are still open.

These results and open questions motivated many mathematicians
to study the topology of the complements of plane curves. One of the
most surprising phenomena in this field was the one found by Zariski and
stated in (Z5), where two irreducible curves with the same singularities
have non-isomorphic fundamental groups. This leads us to the definition
of Zariski pairs which are, roughly speaking, two curves that have the
same local topology but do not have the same embedded topology. Let
us give a more precise definition of a Zariski pair.

Definition 2 ([2]). A pair (C1, C2) of reduced plane curves in P2 is
called a Zariski pair if it satisfies the following conditions:

(1) There exist tubular neighborhoods T (Ci) (i = 1, 2) and a home-
omorphism h : T (C1)→ T (C2) such that h(C1) = C2.

(2) There exists no homeomorphism f : P2 → P2 with f(C1) = C2.
Analogously (C1, . . . , Ck) is a Zariski k-plet if (Ci, Cj) is a Zariski pair for
any i 6= j.

Remark 3. The first condition in Definition 2 is replaced by the
one about the combinatorial data on Ci (i = 1, 2). More precisely, the
combinatorial type of a curve C is given by a 7-tuple

(Irr(C), deg, Sing(C),Σtop(C), σtop, {C(P )}P∈Sing(C), {βP }P∈Sing(C)),

where:

• Irr(C) is the set of irreducible components of C and deg :
Irr(C)→ Z assigns to each irreducible component its degree.

• Sing(C) is the set of singular points of C, Σtop(C) is the set
of topological types of Sing(C), and σtop : Sing(C) → Σtop(C)
assigns to each singular point its topological type.

• C(P ) is the set of local branches of C at P ∈ Sing(C), (a local
branch can be seen as an arrow in the dual graph of the minimal
resolution of C at P , see [42, Chapter II.8] for details) and
βP : C(P ) → Irr(C) assigns to each local branch the global
irreducible component containing it.
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We say that two curves C1 and C2 have the same combinatorial
data (or simply the same combinatorics) if their combinatorial data
are equivalent, that is, if Σtop(C1) = Σtop(C2), and there exist bijec-
tions ϕSing : Sing(C1) → Sing(C2), ϕP : C1(P ) → C2(ϕSing(P )) (restric-
tion of a bijection of dual graphs) for each P ∈ Sing(C1), and ϕIrr :
Irr(C1)→ Irr(C2) such that deg2 ◦ϕIrr = deg1, σtop2 ◦ϕSing = σtop1, and
β2,ϕSing(P ) ◦ ϕP = ϕIrr ◦ β1,P .

In the irreducible case, two curves have the same local topology
if they have the same degree and the same topological types for local
singularities. On the other extreme, for line arrangements, combinatorial
type is just the set of incidence relations.

The fact that two curves have the same combinatorial data if and
only if they satisfy Definition 2(1) is a consequence of Waldhausen graph
manifold theory [125, 126]. The dual graph of the minimal resolution of
the singularities of C is a plumbing graph. Waldhausen theory was de-
veloped in terms of plumbing graphs by Neumann [89]. His main result
states that minimal normalized graphs are determined by the manifold.
It is not hard to see that the topological type of (P2, C) determines the
combinatorial data. Since the graph coming from the minimal reso-
lution may be not minimal, it is possible to find curves C1, C2 whose
complements P2 \ Ci, i = 1, 2 are homeomorphic but such that they do
not have the same combinatorics using, for example, Cremona trans-
formations. Jiang and Yau [60] proved that the homeomorphism type
of the complement of a line arrangement determines its combinatorics.
The connection between homeomorphism type of complements to curves
and combinatorics was studied by Di Pasquale in [100], but not much is
known about it.

Also, curves with the same combinatorics form a quasi-projective

variety in a certain projective space Pd of dimension d(d+3)
2 , where d is

the total degree of the curves. We will refer to such a variety as the
combinatorial stratum of curves. A rigid isotopy between curves is a
smooth path in a combinatorial stratum.

A connected family of equisingular curves is contained in the con-
nected component of the combinatorial stratum of curves determined by
any curve of that family. Therefore, the topology of the pair (P2, C) is
an invariant of such a component. In particular π1(P2 \ C, po) is also an
invariant and hence (Z5) provides the first example of a Zariski pair. In
the early nineties, some new examples were found ([2, 37]). Since then,
the variety of such examples has been very broad and subtle.

In what follows we will give an insight on the different nature of each
of these phenomena, the techniques used, and some open questions on
the general study. The study of Zariski pairs may consist of two parts:
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(I) To locate curves C1, C2 in different irreducible components of a
combinatorial stratum, that is, two non rigidly-isotopic curves.

(II) To find an effective invariant P of the topology of the embed-
ding, so that, if P(C1) 6= P(C2) then (P2, C1) 6≈ (P2, C2), that
is, there is no homeomorphism f : P2 → P2 with f(C1) = C2.

As for (I), different strategies have been used, for instance:

(I1) Certain geometrical properties such as position of singularities
(e.g. sextics whose six cusps belong to a conic), or in more
generality the existence of non-zero global sections for an ideal
sheaf I on P2 twisted by a certain O(d). The expected di-
mension of such vector space of global sections is 0 (like the
six cusps on a sextic, which in principle are not supposed to
belong to a conic). This method is often used in combination
with birational transformations in order to lower the degrees
of the curves. In that case, the geometrical properties have
to be translated into new properties on the transformation
([12, 91]). Also geometrical properties of flex points play an
important role in finding irreducible components of the combi-
natorial strata ([95, 96]).

(I2) Arithmetical properties of the components. Such is the typical
case with line arrangements, when built up by pasting together
smaller arrangements whose combinatorial strata are discon-
nected ([102, 11, 10]). Also, in the special case of sextics, many
of these arithmetical properties come from the existence of a
double covering ramified along the curve. Classification of K3-
surfaces with a given Picard group and some computer work
finish the task in the case of simple singularities ([127]). Bi-
rational transformations of the covering and appropriate blow-
downs can be used to produce equations ([6]).

(I3) Direct computation of strata. This can be used either in the
negative sense (proving the irreducibility of a stratum) which
tells us where there are no Zariski pairs ([61, 109]), or actually
finding equations of the strata. This method often requires big
Milnor numbers, so that the dimension of the strata is small
and the problem becomes computationally feasible ([9, 98]).

As for (II), several methods have been developed:

(II1) Zariski-van Kampen Theorem. This is the classical method to
find the fundamental group of the complement to a given curve
from its braid monodromy ([130, 59, 28]). This technique will
be treated in detail in §1. Though a very rich invariant, the fun-
damental group of a curve contains the topological information



6 E. Artal, J.I. Cogolludo, and H. Tokunaga

of the embedding in an intricate manner. The undecidability
of the isomorphism problem in group theory justifies the need
to construct new invariants that are effectively computable,
simple to compare, and fine enough to keep the essential data.

(II2) Alexander invariants such as the Alexander module, Alexander
polynomials, and characteristic varieties. This type of invari-
ant shows the connection between algebraic curves and knot
theory, since many of these invariants have been adopted from
knot theory. Conversely, much of the original interest and tech-
niques of knot theory had the study of algebraic curves at their
root. This technique will be developed in §2.

(II3) Braid monodromy equivalence, also referred to as braid mon-
odromy factorization. It is a much stronger invariant of the
topology of the embedding than the monodromy group. Braid
monodromy factorization was only recently proved to be an
invariant of the (not-necessarily-rigid) isotopy class ([70] for
cuspidal curves and [25] for any plane curve). This technique
has been proved to be specially useful to study conjugated
curves [9, 10], branch curves of surfaces of general type and the
Chisini conjecture ([85, 70, 69]), as well as symplectic isotopies
of curves and the realization problem ([99, 62, 64]). Definition
and more details will be given in §1.

(II4) Branched Galois coverings. Based on geometric versions of
the inverse Galois problem for certain elementary non-Abelian
groups. This technique will be treated in detail in §3.

(II5) Nikulin theory of integral lattices. Recently developed by Degt-
yarëv [39] and Shimada [107, 108]. Let C be a sextic curve
with at worst simple singularities (see [20] for simple singu-
larities). Let X be the double cover of P2 ramified along C,
and X̄ its minimal resolution. Degtyarëv obtains a quadru-
ple Q := (L, h, σ, ω) where L = H2(X̄), which is isomorphic
to the integral lattice of the singularities of C, h ⊂ L is the
pull-back of the hyperplane section class [P1] ∈ H2(P2), σ ⊂ L
is the set of classes of exceptional divisors appearing in the
resolution X̄ → X , and ω ⊂ L ⊗ R denotes the oriented 2-
subspace spanned by the real and imaginary parts of the class
of a holomorphic 2-form on X̄. He proves that QC1

∼= QC2 if
and only if C1 and C2 are rigidly isotopy and the pairs (P2, C1),
(P2, C2) are regularly diffeomorphic, that is, there is a diffeo-
morphism between (P2, C1) and (P2, C2) that can be extended
to a homeomorphism between theK3-surfaces X̄1 and X̄2. Shi-
mada proves that the isomorphism class of L is an invariant
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of the Γ-equivalence of the pair (P2, C). This implies that L
is an invariant of the homeomorphism class of (P2, C) (for a
discussion on Γ-equivalence see below).

In light of the previous list of strategies, one can also describe more
precisely different examples of Zariski pairs according to which invariants
are equal and which are different for each curve.

• Alexander polynomial. It is associated with a group and
a homomorphism onto Z and with cyclic coverings ramified
along each component with the same ramification index. A
Zariski pair that can be distinguished using this invariant is a
classical Zariski pair, otherwise it will be called an Alexander-
equivalent Zariski pair. Examples of classical Zariski pairs are
abundant in the literature ([131, 37, 2, 95] among many others).
Alexander-equivalent Zariski pairs can be found in ([5, 92, 93]).
• Characteristic varieties and Oka polynomials. The first

ones (introduced by A. Libgober in [75] for curves) are associ-
ated with a group and its abelianization morphism whereas the
second ones (introduced by Oka in [94]) are associated with a
group and any homomorphism onto Z. They are both associ-
ated with Alexander modules and Abelian coverings ramified
(or not) along each component with any ramification index and
basically provide the same information. The existence of cer-
tain irreducible components of characteristic varieties can be
described in terms of algebraic conditions of the singular locus.
Analogously we have Libgober-Oka-equivalent Zariski pairs.
• Non-Abelian coverings and twisted Alexander polyno-

mials. The first one is given by the existence or not of certain
non-Abelian coverings ramified along components. Algebraic
conditions can be given for the existence of such coverings.
Twisted Alexander polynomials are associated with a group
and a representation. Zariski pairs whose algebraic fundamen-
tal groups are isomorphic are called algebraically-equivalent
Zariski pairs. The main source of examples of algebraically-
equivalent Zariski pairs is found among conjugated curves ([9,
10, 107, 108]) in a number field; we will call them arithmetic
Zariski pairs. There are still open questions whether or not
some pairs of conjugate, non rigidly-isotopic curves are Zariski
pairs ([44]). Also, a famous example of a Zariski pair of line
arrangements was produced by G. Rybnikov [102]. A proof
was published in [11] using arguments of homological rigidity



8 E. Artal, J.I. Cogolludo, and H. Tokunaga

(see Definition 2.30), and a final argument of Alexander mod-
ules. Such Zariski pair is distinguished by the fundamental
group of the complement, and it is an Alexander-equivalent,
but it is not known whether it is a Libgober-Oka-equivalent or
algebraically-equivalent Zariski pair.
• Fundamental group of the complement π1(P2 \ C, po). A

presentation of it can be obtained via the Zariski-Van Kampen
Theorem from the action of generic (and sometimes even non-
generic) braid monodromy groups of the curve C. Sometimes
groups can be compared directly ([45, 92, 93]), but oftentimes
this is too hard of a task. Zariski pairs whose fundamental
groups are isomorphic will be called π1-equivalent Zariski pairs.
Note that fundamental groups of algebraic-equivalent Zariski
pairs have the same profinite completion. Finitely presented
groups of infinite order with the same profinite completion are
hard to distinguish. In fact, it is not known whether or not any
of the algebraic-equivalent Zariski pairs is also a π1-equivalent
Zariski pair. Examples of π1-equivalent Zariski pairs can be
obtained from the list of arithmetic Zariski pairs given by Shi-
mada [108]. For example, sextics with singularities A18 + A1,
A16 +A3, and A16 +A2 +A1 have Abelian fundamental groups
isomorphic to Z/6Z (see [6, Remark 5.9]).
• The homotopy type of the complement P2 \ C. It can

be described as the homotopy type of the CW-complex asso-
ciated with a presentation of π1(P2 \ C, po) obtained from a
very particular braid monodromy of C that will be referred to
as the Puiseux-braid monodromy of C (see [73]). Analogously
we have homotopy type-equivalent Zariski pairs. Known ex-
amples of homotopy type-equivalent Zariski pairs are related
to Cremona transformations and conjugated curves. In fact,
it would be very interesting to see whether or not any of the
non-regular-diffeomorphic examples mentioned above are ho-
motopy type-equivalent.
• The topology of the complement P2 \ C. Any example

of this sort will be called complement-equivalent Zariski pairs.
The main information lost between the embedding and the
complement is the peripheral information, that is the informa-
tion on the location of meridians of the irreducible components.
A complement-equivalent Zariski pair can be obtained from the
problem proposed by Eyral-Oka in [44]. Also, in Example 1.39
we show in detail a complement-equivalent Zariski pair.
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• Γ-equivalence. This equivalence relation, introduced by Shi-
mada [107], has to do with the peripheral information men-
tioned above. Two curves C1 and C2 with the same combina-
torics and homeomorphic complements are called Γ-equivalent,
if the homeomorphism induces an isomorphism of fundamen-
tal groups preserving meridians. Examples of this sort will be
called Γ-equivalent Zariski pairs.
• The topology of (P2, C). Since it is determined by any generic

braid monodromy factorization of C (as mentioned above), the
ultimate tool to check for a Zariski pair is its generic braid
monodromy. These techniques have been used in ([9, 10]).

The main purpose of this article is to review these different methods
and to explain how they are used in the study of Zariski pairs.
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§1. Fundamental group and braid monodromy

As indicated in the Introduction, the main goal of Zariski’s founda-
tional paper [130] is to study the fundamental group of the complement
of a projective plane curve. A method for its computation is outlined
in [130]. In [59], E.R. van Kampen gave a more rigorous presentation
of this method which is now known as the Zariski-van Kampen method.
Roughly speaking, Zariski showed that such a group is generated by
meridians of a generic line and then described some relations by mov-
ing this generic line around non-generic lines in a pencil; van Kam-
pen stated and proved his well-known theorem on fundamental groups
(now known as the Seifert-van Kampen Theorem) and used it to prove
that Zariski’s relations define a system of relations for the fundamental
group. D. Chéniot gave a modern approach to this method in [28]. In
[29], O. Chisini realized that this method contains a finer invariant of the
curve if one interprets the motions of the generic line in terms of a repre-
sentation of a free group in a braid group. Much later, B. Moishezon [84]
called this invariant braid monodromy and used it to study projective
complex surfaces via ramification curves of projections.

1.1. Preliminaries

Before explaining the Zariski-van Kampen method and the braid
monodromy invariant, let us introduce some settings and notations.

Let G be a group. Let a, b ∈ G. For simplicity, we introduce the
following notations:

[a, b] = a−1b−1ab

ab = b−1ab

b ∗ a = bab−1.

We denote the free group with n generators x1, . . . , xn by Fn and
the braid group on n strings by Bn given by the following presentation:

(2) Bn :=

〈
σ1, . . . , σn−1

∣∣∣∣∣ [σi, σj ] = 1
1<i+1<j<n

, σiσi+1σi = σi+1σiσi+1
1≤i≤n−2

〉

Bn naturally acts on Fn on the right as follows:

(3) Φ(xi, σj) = x
σj

i :=





xi+1 if i = j

xi ∗ xi−1 if i = j + 1

xi if i 6= j + 1.
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for i = 1, . . . , n− 1, and j = 1, . . . , n.
We call the above right action of Bn on Fn the Hurwitz action. In

particular, the actions of the generators σi (i = 1, . . . , n−1) on x1, . . . , xn
are called Hurwitz moves. Clearly Φ induces an antihomomorphism
Bn → Aut(Fn), σ ∈ Bn 7→ Φ(•, σ). This homomorphism is injective and
its image, identified with Bn, is characterized by the following result:

Proposition 1.1 ([22, Theorem 1.9.]). Let τ ∈ Aut(Fn). Then
τ ∈ Bn if and only if

τ(xn · . . . · x1) = xn · . . . · x1

and there exists a permutation σ of n-letters such that

τ(xi) = yixσ(i)y
−1
i , yi ∈ Fn, i = 1, . . . , n.

We will now present a geometric interpretation of Bn and its action
Fn. For details in the following, we refer to [7] and [22].

Let us fix a subset, Y = {t1, . . . , tn}, of C consisting of n distinct
elements. Let ∆ ⊂ C be a sufficiently big closed disk, i.e., {z ∈ C | |z| ≤
R} R≫ 0, such that Y is contained in its interior. Choose a point ⋆ on
∂∆ = {z ∈ ∆ | |z| = R}.

Definition 1.2. We define some special elements of the fundamen-
tal group π1(C \ Y, ⋆), called meridians. Meridians are obtained as
follows:

• Take a small disk S centered at t ∈ Y containing no other
elements of Y and choose a point ⋆̂ ∈ ∂S.

• Consider a path α in C\Y joining ⋆̂ and ⋆, and denote by η⋆̂,S
the closed path based at ⋆̂ that runs counterclockwise along ∂S.

• The homotopy class of the loop α−1 ·η⋆̂,S ·α is called a meridian
of t in π1(C \Y, ⋆). If the base point is understood, then we
will simply speak of a meridian of t in C \Y.

• It is easily checked that the set of meridians of t ∈ Y coincides
with a conjugacy class in π1(C \Y, ⋆) completely determined
by t.

• It is also well known that suitable collections of n meridians in
C \Y (one for each point of Y) define bases of π1(C \Y, ⋆).

• This construction of meridians also applies to the fundamental
group of the complement of a divisor in a surface, see Figure 1.

Definition 1.3. Let ∆ and ⋆ be as above. A geometric basis of
π1(C \Y, ⋆) is an ordered basis (γ1, . . . , γn) of π1(C \Y, ⋆) consisting of
meridians such that γn · . . . · γ1 is homotopic to the loop γ⋆, the closed
path based at ⋆̂ that runs counterclockwise along ∂∆.
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Fig. 1. A meridian

Definition 1.4. A pseudo-geometric basis of π1(C \Y, ⋆) is an or-
dered basis (γ1, . . . , γn) of meridians such that γn · . . . · γ1 is homotopic
to the inverse of a meridian of {∞} in C \∆. The product γn · . . . · γ1

is called the pseudo-Coxeter element of the basis.

Note that a geometric basis Γ := {γ1, . . . , γn} is a free basis of
π1(C \Y, ⋆) ∼= Fn. Given any element σ ∈ Bn, the Hurwitz action of σ
on Γ produces another geometric basis. By Proposition 1.1, one has the
following:

Proposition 1.5 (Artin). The Hurwitz action of the group Bn on
the set of all geometric bases of π1(C \Y, ⋆) is free and transitive.

Definition 1.6. A Y-special homeomorphism is an orientation-
preserving homeomorphism f : C→ C such that

(i) Y is fixed as a set, not necessarily pointwise, and

(ii) f is the identity on C \∆.

A Y-special isotopy is an isotopy H : C × [0, 1] → C such that H(•, t)
is a Y-special homeomorphism for all t ∈ [0, 1]. We denote the set of
classes of Y-special homeomorphisms up to Y-special isotopy by BY.

Let f1 and f2 be Y-special homeomorphisms. We denote their
classes in BY by [fi] (i = 1, 2), respectively. The product [f1][f2] :=
[f1 ◦ f2] makes BY a group which acts on π1(C \Y, ⋆) on the left.

Let Mn := Cn \ Σ = the set of ordered n-distinct points. The
symmetric group of n letters acts on Mn freely via permutation of co-
ordinates. Let Sn(M) be the quotient space of Mn with respect to this
action. One can regard Sn(M) as the set of unordered n-distinct points;
and Y ∈ Sn(M). Consider BY := π1(Sn(M),Y), and note that any
γ ∈ BY is the homotopy class, relative to {0, 1}, of a set of n-paths
{γ1(t), . . . , γn(t)}, γi : [0, 1] → C such that Y = {γ1(0), . . . , γn(0)} =
{γ1(1), . . . , γn(1)}, γ1(t), . . . , γn(t) are all distinct for t ∈ [0, 1]. An el-
ement of BY is called a braid based at Y. It is known that BY

∼= Bn
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(see [22] for details). For technical purposes, it is oftentimes conve-
nient to consider open braids starting at Y1 and ending at Y2, where
Y1,Y2 ∈ Sn(M) as the homotopy class, relative to {0, 1}, as before
where Y1 = {γ1(0), . . . , γn(0)}, and Y2 = {γ1(1), . . . , γn(1)}. The ob-
vious composition operations endoweds the class of open braids with a
groupoid structure (see [7] for details).

Our purpose next is to describe natural identifications between BY

and BY.

Lemma 1.7. BY and BY are naturally anti-isomorphic.

Proof. Note that any orientation preserving homeomorphism of C
is isotopic to the identity (for a proof, see [53, Lemma 5.6.]). Also, let
[h] ∈ BY be an arbitrary element of BY and let H : C × [0, 1] →
C be an isotopy such that H(•, 0) = h and H(•, 1) = idC. Then,
H(t1, t), . . . , H(tn, t), t ∈ [0, 1], are paths such that

(i) {H(t1, 0), . . . , H(tn, 0)} = {H(t1, 1), . . . , H(tn, 1)} = Y, and
(ii) {H(t1, t), . . . , H(tn, t)} (t ∈ [0, 1]) is a set of n distinct points for

all t ∈ [0, 1], i.e., γh := {H(t1, t), . . . , H(tn, t)} gives an element of BY.
This correspondence [h] 7→ γh gives the announced anti-isomorphism

(for more details, see [53, Theorem 5.4.]). Q.E.D.

Lemma 1.7 assures the existence of a right action of BY on π1(C \
Y, ⋆), which coincides with the Hurwitz action for a proper choice of the
base point and the geometric basis (see for instance [7, Example 1.8]).
In particular, any homomorphism from a group G to Bn induces a right
action of G on π1(C \Y, ⋆).

1.2. Zariski-van Kampen method and braid monodromy

Let C ⊂ P2 be a reduced projective plane curve of degree d. Choose
a line L ⋔ C and a point P ∈ L \ C, and consider the projection centered
at P . Let us take homogeneous coordinates [X : Y : Z] in P2 such
that L : Z = 0 and P = [0 : 1 : 0]. In what follows we will focus
on C2 := P2 \ L with affine coordinates x := X

Z , y := Y
Z , and whose

projection may be written as Π : C2 → C, Π(x, y) := x. The affine curve
Caff := C ∩ C2 = C \ L can be defined by a reduced monic polynomial
f(x, y) in the variable y such that degy f = deg f = d.

Let Df := {x ∈ C | discy f(x) = 0} and let L be the union of the
lines Lt : x = t, t ∈ Df . The main point of the Zariski-van Kampen
method is the following:

Lemma 1.8. The restriction π := Π|C2\(Caff∪L) : C2 \ (Caff ∪ L) →
C \Df is a locally trivial fibration whose fiber is isomorphic to C with d
punctures.
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This follows from Ehresmann’s Fibration Theorem (see [41, p.15]),
since the vertical lines having less than d distinct intersection points
with Caff have been removed.

Since π is a locally trivial fibration whose fiber is diffeomorphic to
C with d punctures, the polynomial f induces an algebraic mapping
f̃ : C \ Df → Sn(M) given by x0 7→ {y ∈ C | f(x0, y) = 0} ∈ Sn(M).
In order to define braid monodromy we need to consider ∗ ∈ C \ Df a
regular value on the boundary of a disk ∆f containing Df in its interior
and denote by Y∗ the set of roots of the polynomial f(∗, y) = 0.

Definition 1.9.

(i) The homomorphism∇∗ : π1(C\Df , ∗)→ BY := π1(Sn(M),Y∗)

induced by f̃ is called a braid monodromy.
(ii) Fix an isomorphism ιY∗ : BY∗ ∼= Bd (Note that the isomor-

phism depends on the choice of Y∗, i.e. ∗) and define ∇∗,Y∗ :=
ιY∗ ◦∇∗. Given any geometric basis γ1, . . . , γr of π1(C\Df , ∗),
where r := #(Df ), the r-tuple (∇∗,Y∗(γ1), . . . ,∇∗,Y∗(γr)) ∈
(Bd)r is called a factorization of the braid monodromy of (C, L, P )
or simply a braid monodromy factorization of (C, L, P ).

(iii) The image by∇∗,Y∗ of a pseudo-Coxeter element (Definition 1.4)
will be referred to as a pseudo-Coxeter braid.

Note that a braid monodromy factorization depends on the choice
of the geometric basis of π1(C \ Df , ⋆) and ιY. By Proposition 1.5, any
change of geometric basis is given by a Hurwitz move. We will expound
upon this in section §1.3.

Now we are in the position to state the results obtained by Zariski-
van Kampen in [130, 59] with the purpose of describing a presentation
of the fundamental group of an affine curve. In order to do so consider
∆f as above and ∆y a closed disc such that Caff ∩Π−1(∆f ) ⊂ ∆f ×∆y,
and Caff ∩ (∂∆f ) × (∂∆y) = ∅. Let Γ := {γ1, . . . , γr} be a geometric
basis of π1(C \ Df , ∗) and choose a base point (∗, ∗̂) (∗̂ ∈ ∂∆y). Since
π−1(∆f ) ∩ (∆f ×∆y) → ∆f has a section, there exists a lifting αt for
each γt. Note that π1(C \ Df , ∗) ∼= π1(∆f \ Df , ∗) and αt is a meridian
of Lt. Under these conditions, and using the long exact sequence of
homotopy, one has the following:

Proposition 1.10. Let (ρ1, . . . , ρr) ∈ (Bd)r be a braid monodromy
factorization of (C, L, P ) and let {g1, . . . , gd} be a geometric basis of
π1(C \Y∗, ∗̂). Then π1(C2 \ (Caff ∪ L), (∗, ∗̂)) has the following presen-
tation:

(4)
〈
g1, . . . , gd, α1, . . . , αr

∣∣ gρi

j = gαi

j , i = 1, . . . , r, j = 1, . . . , d
〉
.
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As a corollary to Proposition 1.10, one obtains the celebrated Zariski-
van Kampen Theorem:

Corollary 1.11 (Zariski-van Kampen Theorem). Under the
previous hypotheses, π1(C2 \ Caff) has the following presentation:

(5)
〈
g1, . . . , gd

∣∣ gρi

j = gj , i = 1, . . . , r, j = 1, . . . , d
〉
.

A presentation of π1(P2 \ C) is given by

(6)
〈
g1, . . . , gd

∣∣ gd · . . . · g1 = 1, gρi

j = gj, i = 1, . . . , r, j = 1, . . . , d
〉
.

The main tool of the proof of Corollary 1.11 is in [47, Lemma 4.18].

Lemma 1.12 ([47]). Let A ⊂ X be a divisor in a smooth quasi-
projective variety X, and let B ⊂ X be an irreducible divisor not con-
tained in A. Then, the inclusion induces an epimorphism π1(X \ (A ∪
B)) ։ π1(X \A) whose kernel is generated by the meridians of B.

Proof of Corollary 1.11. It is an iterated application of Lemma 1.12.
For (5), we use that the loops α1, . . . , αr in (4) are meridians of the lines
Lt, t ∈ ∆. For (6), note that (gd · . . . · g1)−1 is a meridian of the pro-
jection point P in L⋆ = L⋆ ∪ {P} ⊂ P2, i.e. a meridian of the line at
infinity L in P2. Q.E.D.

Since we are mostly interested in the isomorphism class of the fun-
damental group, and since the spaces studied are connected, unless nec-
essary for technical reasons, the base point of the fundamental group of
a curve complement will be omitted.

Remark 1.13. We can decrease the number of relations in (4), (5)
and (6).

(a) Since the Hurwitz action fixes the product gd · . . . · g1, it is
enough to consider j = 1, . . . , d− 1.

(b) Since L is transversal to C it is well known that ρr ·. . .·ρ1 = ∆2
d,

that is the full twist, where ∆2
d = (σd−1 · . . . · σ1)

d, which is a
generator of the center of Bd. Thus its Hurwitz action coincides
with the conjugation by gd ·. . .·g1. Therefore, in (5) it is enough
to consider i = 1, . . . , r− 1, j = 1, . . . , d− 1, and add relations
to make gd · . . . · g1 into a central element. Analogously, in (6)
it is enough to consider i = 1, . . . , r − 1, j = 1, . . . , d − 1, and
gd · . . . · g1 = 1.

(c) There is another possible reduction in the number of relations
which was already indicated in [130]. Let us explain it in mod-
ern terms.
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One can identify π1(Sd(M),d) (where d := {−1, . . . ,−d})
and Bd as follows: each generator σi (i = 1, . . . , d−1) represents
a positive half-twist interchanging −i and −(i+ 1). Note that
any open braid τ starting at Y∗ and ending at d defines an
isomorphism from π1(Sd(M),Y∗) onto Bd by conjugation.

Any meridian γ of t ∈ ∆ can be decomposed as α−1 ·η⋆̂,S ·α
as in Definition 1.2. On the other hand, any open braid τ ′

starting at the set of roots of f(⋆̂, y) and ending at d, can be
decomposed as ∇(γ) = ρ−1 · β · ρ, where ρ, β ∈ Bd satisfying:

• ρ is obtained by the juxtaposition of τ ′−1, f̃∗(α) and τ ;

• β is obtained by the juxtaposition of τ ′−1, f̃∗(η⋆̂,S) and
τ ′.

The braid β reflects the local structure of the singularities of
the projection Π with respect to C at t. Let us use the following
notation:
• Lt ∩ C := {p1, . . . , ps},
• (Lt · C)pi

= ℓi + 1.
Note that s +

∑s
i=1 ℓi = d. Moreover, for generic projections

one can assume that ℓi > 0⇔ i = 1, also if p1 is smooth then
ℓ1 = 1, and finally if p1 is singular then ℓ1+1 is the multiplicity
of C at p1.

The braid β is obtained as the unlinked union of s braids
βi ∈ Bℓi+1, i = 1, . . . , s. Note that each βi is the local algebraic
braid obtained via the Puiseux expansion of the branches of C
at pi with respect to the variable x. Also note that each βi is
a positive braid (i.e., represented as a word in positive powers
of σi’s). A braid β obtained as an unlinked union of local
algebraic braids is called a Puiseux braid. In this scenario, the
following relations suffice:

(7) gβ·ρni+k
= gρni+k

, k = 1, . . . , ℓi, i = 1, . . . , s,

where ni :=
∑i−1

j=1(ℓj + 1). Each point pi produces ℓi relations
which are transported via ρ. Regular points for the projection
give no relations.

Example 1.14. Examples of braids β for several arrangements of
{p1, . . . , ps} are presented below:

(a) (C, p1) has a local equation y2 − x = 0 and C ⋔pi
Lt, i =

2, . . . , d − 1. This means that Lt is a simple tangent to C.
Thus β = σ1.
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(b) (C, pi) has local equations y2 − x = 0, i = 1, 2, and C ⋔pi
Lt,

i = 3, . . . , d − 2. This means that Lt is a simple bitangent to
C. Thus β = σ1σ3.

(c) (C, p1) has a local equation y3 − x = 0 and C ⋔pi
Lt, i =

2, . . . , d − 2. This means that Lt is a tangent at an ordinary
inflection point of C. Thus β = σ2σ1.

(d) (C, p1) has local a equation yk − x = 0 and C ⋔pi
Lt, i =

2, . . . , d − k + 1. This means that Lt is a tangent at a higher
order flex of C. Thus β = σk−1 · . . . · σ1.

(e) (C, p1) has a local equation y2 − xk+1 = 0 and C ⋔pi
Lt, i =

2, . . . , d − 1. This means that Lt intersects C transversally at
an Ak-point. Thus β = σk+1

1 .
(f) (C, p1) has a local equation y3 − x2 = 0 and C ⋔pi

Lt, i =
2, . . . , d−2. This means that Lt is tangent to C at an ordinary
cusp. Thus β = (σ2σ1)

2.
(g) (C, p1) has a local equation y3 − x4 = 0 and C ⋔pi

Lt, i =
2, . . . , d − 2. This means that Lt is transversal to C at an E6-
point. Thus β = (σ2σ1)

4. One can check that local equation
y3 + x4 = 0 provides a different braid, namely, β = (σ1σ2)

4.
(h) (C, p1) has a local equation yk − xk = 0 and C ⋔pi

Lt, i =
2, . . . , d− k + 1. This means that Lt intersects C transversally
at a k-fold ordinary point. Thus β = (σk−1 · . . . · σ1)

k = ∆2
k.

A general algorithm to obtain a positive braid from Puiseux factoriza-
tions has been developed by S. Mart́ınez Juste.

In general, the computation of a braid monodromy factorization is
a hard numerical task. Computer-based algorithms have been produced
by D. Bessis and J. Michel [21], and J. Carmona [25]. There are some
particular cases where a more or less direct computation is possible:

(C1) Arrangements of lines by Arvola [18] via wiring diagrams.
(C2) Strongly real curves [3, 4, 5, 123, 12, 9, 88], i.e., curves with real

equation such that the real picture and the topological type of
the singular points contain all the topological information of
the embedding of the curve.

(C3) A combination of (C1) and (C2) was considered by M. Salvetti
in [103]. Explicit constructions can be found in [10].

The computation of the fundamental group allows us to compute
the first homology group.

Proposition 1.15. Let d1, . . . , dr be the degrees of the irreducible
components of C, d := deg C =

∑r
i=1 di, and d0 := gcd(d1, . . . , dr). Then

(8) H1(P2\C,Z) = 〈x1, . . . , xr | d1x1+· · ·+drxr = 0〉 ∼= Zr−1×Z/d0Z.
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There is a natural mapping Mer : π1(P2\C)→ Z/dZ sending any merid-
ian to 1 mod d.

Proof. It is enough to abelianize (6) and recall that two meridians
are in the same conjugacy class if and only if they are meridians of the
same irreducible component (Definition 1.2). Q.E.D.

In some sense π1(P2 \ C) and π1(C2 \ Caff) determine each other (it
is important to recall that we assume in this subsection that L ⋔ C).

Proposition 1.16. The fundamental group π1(C2 \Caff) is the pull-
back of

(9)
Z
↓

π1(P2 \ C) → Z/dZ

where the horizontal arrow is the homomorphism Mer in Proposition 1.15
and the vertical one is the standard projection. In particular, if a presen-
tation of π1(P2 \C) is given whose generators g1, . . . , gδ are meridians of

C, whose relations are of type g
wi(ḡ)
ℓi

= gmi
, and

∏d
j=1 g

zj(ḡ)
nj = 1, where

ℓi,mi, nj ∈ {1, . . . , δ}, and wi(ḡ), zj(ḡ) are words in g1, . . . , gδ, then
(10)

π1(C2\Caff)=

〈
h1, . . . , hδ

∣∣ hwi(h̄)
ℓi

= hmi
,




d∏

j=1

hzj(h̄)
nj

, hk


=1, 1 ≤ k ≤ δ

〉
,

where wi(h̄) and zj(h̄) are words in h1, . . . , hδ obtained from wi(ḡ), zj(ḡ)
replacing gi’s by hi’s, respectively.

Proof. The pull-back of (9) is given by

G := {(g, n) ∈ π1(P2 \ C)× Z | Mer(g) ≡ n mod d}.

Note that π1(C2 \ Caff) induces a commutative diagram in (9) using as
a vertical arrow the mapping coming from inclusion and as a horizontal
arrow the mapping that sends any meridian to 1 ∈ Z. Hence there is a
natural mapping π1(C2 \ Caff)

ψ→ G. Using Reidemeister-Schreier, it is
easily seen that (10) is a presentation of G.

For the first part, one may assume that the presentations of π1(P2 \
C) and π1(C2 \ Caff) are those of (6) and (5), respectively. Since L is
transversal to C, Remark 1.13(b) implies that presentation (5) can also
be obtained from (6). For convenience, the generators of π1(P2 \ C)
will be denoted by g̃i. Note that ψ(gi) = (g̃i, 1) and ψ(gd · . . . · g1) =
(1, d). Since G and π1(C2 \ Caff) have the same presentations, ψ is an
isomorphism. Q.E.D.
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Presentations of fundamental groups of affine plane curves π1(C2 \
Caff) have special properties. For instance, π1(C2\Caff) can be generated
by meridians and any two meridians of the same irreducible component
are in the same conjugacy class (Definition 1.2). A useful type of pre-
sentations of π1(C2 \ Caff) is the following:

Let C1, . . . , Cr be the irreducible components of Caff and let us fix a
meridian xi of Ci. Note that, as mentioned above, any other meridian
x̃i of Ci is in the conjugacy class of xi, in particular, it can be written as
xi ·y, y ∈ π1(C2 \Caff)′, π1(C2 \Caff)′ being the commutator subgroup of
π1(C2\Caff). We call a presentation of a group satisfying these properties
a Zariski presentation, whose precise definition is as follows:

Definition 1.17. Let G be group. We denote its commutator
group by G′. A presentation 〈x1, . . . , xr, y1, . . . , yu | wi(x̄, ȳ) = 1〉,
x̄ := (x1, . . . , xr), ȳ := (y1, . . . , yu), of a group G is called a Zariski
presentation if

(ZP1) The Abelian groupG/G′ ∼= Zq⊕Z/p1Z⊕· · ·⊕Z/psZ (q+s = r)
is generated by the classes of x1, . . . , xr, where xpi

q+i ∈ G′ for
i = 1, . . . , s.

(ZP2) The classes of y1, . . . , yu in G/G′ vanish.
(ZP3) The words wi(x̄, 1̄) are products of commutators in x̄ and xpi

q+i.

To be more precise, we have just proved the following.

Proposition 1.18. Under the conditions above, π1(C2\Caff) admits
a Zariski presentation, where s ≤ d− r, and d := deg Caff.

1.3. Braid monodromy and topology

In this section we want to examine in more detail the type of objects
presented in Definition 1.9 in the previous subsection. They have been
used to obtain presentations of fundamental groups, but they actually
contain much more information.

Consider (τ1, . . . , τr) ∈ (Bd)r a braid monodromy factorization of the
triple (C, L, P ) obtained from the geometric basis γ1, . . . , γr. As men-
tioned after Definition 1.9, any change of geometric basis produces a new
braid monodromy factorization, which is given by a Hurwitz move. Since
the family of possible geometric bases is parametrized by Br (Proposi-
tion 1.5), the braid group induces a Hurwitz action on (τ1, . . . , τr). Also,
a change of the base point ιY∗ produces a new braid monodromy factor-

ization, which is given by conjugation (τβ1 , . . . , τ
β
r ), where β is a certain

braid in Bd.
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The different factorizations derived from all the different choices
can be described as natural Br and Bd actions on (Br)r on the right as
follows:

Br: Let (τ1, . . . , τr) ∈ (Bd)r and let σi (i = 1, . . . , r−1) be canonical
generators. Then the action is given by

(11) τ
σj

i :=





τi+1 if i = j

τi ∗ τi−1 if i = j + 1

τi if i 6= j + 1.

for i = 1, . . . , n− 1, j = 1, . . . , n.
Bd: Let (τ1, . . . , τr) ∈ (Bd)r and let β ∈ Bd. Then the action is given

by

(τ1, . . . , , τr)
β := (τβ1 , . . . , τ

β
r )

These actions of Br and Bd commute; and hence they define a Br × Bd
action on (Bd)r.

For more details, see [7]. Summing up, we have the following:

Proposition 1.19. Let (τ1, . . . , τr) be a braid monodromy factoriza-
tion of (C, L, P ). Then (τ̃1, . . . , τ̃r) ∈ (Bd)r is another braid monodromy
factorization of (C, L, P ) if and only if (τ̃1, . . . , τ̃r) is in the orbit of
(τ1, . . . , τr) with respect to the Br × Bd action as above.

Remarks 1.20.

(1) The definitions and results in § 3.1 and § 1.2 where geomet-
ric bases are required can be substituted by pseudo-geometric
bases. In particular, the concept of braid monodromy factor-
ization can also be obtained from a pseudo-geometric basis and
Proposition 1.10, and Corollary 1.11 remain true.

(2) Note that a continuous change of the generic line L and the pro-
jection P produces a situation similar to the change of the base
point in the following sense. A continuous change of the generic
line L and fixing P (that is, in the pencil of lines through P )
only produces a new pseudo-geometric basis, whose associated
factorization is the same as the original one. On the other
hand, a continuous change of P on L also defines a new pseudo-
geometric basis, whose associated factorization is conjugated of
the original one by the braid defined by the motion of P on the
generic fiber. Combinations of these two motions allow one to
move from (C, L, P ) to any other triple (C, L′, P ′).

This motivates the following:
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Definition 1.21. Two triplets (C, L, P ) and (C, L′, P ′) as above are
said to have equivalent braid monodromies if their braid monodromy fac-
torizations are in the same orbit. We will refer to the class of equivalent
braid monodromies as the braid monodromy of the curve C.

A special – and very useful – type of braid monodromy factoriza-
tion can be obtained as follows. Let us fix a pseudo-geometric basis
(γ1, . . . , γr) of π1(C \∆; ⋆) and decompose each γi in the form of a con-
jugation as in Definition 1.2. Following the ideas in Remark 1.13(c), one
obtains a braid monodromy factorization of the form (ρ1 ·β1 ·ρ−1

1 , . . . , ρr ·
βr · ρ−1

r ), where β1, . . . , βr are Puiseux braids. These are not difficult to
obtain from a Puiseux expansion of each local singularity. The difficult
numerical part comes from the computation of the braids ρi.

Definition 1.22. We say that ((ρ1, β1), . . . , (ρr, βr)) is a Puiseux-
braid monodromy factorization of C if (ρ−1

1 · β1 · ρ1, . . . , ρ
−1
r · βr · ρr) is

a braid monodromy factorization of C and the braids ρi, βi are obtained
from the decomposition of a meridian (in a pseudo-geometric basis) as
in Remark 1.13(c).

Remark 1.23. Note that if ((ρ1, β1), . . . , (ρr, βr)) is a Puiseux-braid
monodromy factorization of C, then in particular β1, . . . , βr are Puiseux
braids. Also, if (C1, C2) is a Zariski pair one can obtain Puiseux-braid
monodromy factorizations ((ρ1

i , βi))
r
i=1 and ((ρ2

i , βi))
r
i=1 such that the

Puiseux braids coincide.

Remark 1.24. Note that Definition 1.22 is very restrictive. Let
((ρ1, β1), . . . , (ρr, βr)) be a r-tuple of pairs of braids such that (ρ−1

1 ·β1 ·
ρ1, . . . , ρ

−1
r ·βr ·ρr) is a braid monodromy factorization of C and β1, . . . , βr

are Puiseux braids. This is a necessary condition for ((ρ1, β1), . . . , (ρr, βr))
to be a Puiseux-braid monodromy. Since Definition 1.22 imposes that
the factorization ρ−1

i ·βr ·ρi must come from a very particular geometrical
decomposition of a meridian, one cannot ensure that ((ρ1, β1), . . . , (ρr, βr))
is a Puiseux-braid monodromy factorization of C.

The construction leading to the Zariski-van Kampen method is closer
to Puiseux-braid than to general braid monodromy, but it is not easy
to define good equivalence relations between Puiseux-braid monodromy
factorizations. From Corollary 1.11 one deduces that braid monodromy
factorizations determine π1(P2 \ C) and π1(C2 \ Caff).

In [73], Libgober showed the relationship between Puiseux-braid
monodromy factorizations and homotopy type as follows.

Theorem 1.25 (Libgober [73]). The CW-complex associated with
the finite presentation of π1(C2 \ Caff) obtained from (5), with the re-
duction in the number of relations described in Remark 1.13(c), has the
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homotopy type of C2 \ Caff. In particular, a Puiseux-braid monodromy
factorization of C determines the homotopy type of C2 \ Caff.

The following results show the strength of Theorem 1.25 and are
evidence of the importance of braid monodromy.

Theorem 1.26 (Kulikov-Teicher [70]). If C has only ordinary nodes
and cusps, then a braid monodromy factorization of C determines the
diffeomorphism type of (P2, C).

Theorem 1.27 (Carmona [25]). A braid monodromy factorization
of C determines the oriented homeomorphism types of the pairs (C2, Caff)
and (P2, C).

Carmona uses the local results of M. Namba and M. Takai [87] to
prove that one can produce a topological model of the pairs (C2, Caff)
and (P2, C) from any decomposition as in Remark 1.24. With this model
one can apply Libgober’s techniques in [73] to prove that C2\Caff has the
homotopy type of the CW-complex associated with a presentation ob-
tained from a Puiseux-braid factorization, after the reduction explained
in Remark 1.13(c).

1.4. Generic and non-generic braid monodromies

Up to now, all the statements in §1 assume a generic projection, i.e.,
P /∈ C and L ⋔ C. We also assume that the lines Lt, t ∈ ∆, satisfy the
following:

• Either Lt passes through a singular point of C and Lt does not
belong to its tangent cone, or

• Lt is an ordinary tangent to a smooth point of C (i.e., not a
flex).

Also, all other intersections of Lt are transversal, i.e., in the notation
of Remark 1.13(c), one has ℓi = 0 if i > 1. The braid monodromy ob-
tained under these hypotheses does not depend on the particular choice
of L and P , P ∈ L (Remark 1.20(2)). Moreover, it is an invariant of the
connected components of the combinatorial strata of curves.

Oftentimes, non-generic braid monodromies arise in a natural way,
and in general they are very useful. Let us explain different situations
where a braid monodromy is non-generic.

(NG1) We can choose a non-generic line L and P generic in L; in
particular, P /∈ C and L 6⋔ C. In this case Proposition 1.10
and Corollary 1.11 are still true, because Libgober’s proof of
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Theorem 1.25 also applies here and so does Carmona’s The-
orem 1.27. One can eliminate relations for the fundamental
group using Remark 1.13(c), but not (b).

(NG2) The line L is generic but P is non-generic and P /∈ C, i.e., for
some t ∈ ∆ either we have several non-transversal intersections
or Lt is tangent to C at a flex. All the results of §1.2 and §1.3 are
true word-for-word. In general, this braid monodromy is not
an invariant of connected components of combinatorial strata
of curves.

(NG3) P is a smooth (non-flex) point of C and L is the tangent line.
In this case the affine parts of §1.2 and §1.3 remain true. This
is due to the fact that Caff admits an equation f(x, y) = 0,
where f is monic in y. In general we cannot eliminate the
relations as in Remark 1.13(b). This braid monodromy defines
an invariant of connected components of combinatorial strata
of curves.

(NG4) The point P ∈ C is either a flex or a singularity whose tangent
cone is irreducible. In either case we choose L to be the tangent
line. The braid monodromy in this case behaves as in (NG3)
(because C admits a monic equation in y) though in general it
will not be an invariant of the connected component of com-
binatorial strata of curves. In this case, as well as in (NG3),
one can also compute π1(P2 \ C), but some additional informa-
tion about the behavior of the strings of the braid at infinity
is needed, see [5, 9, 12] for examples.

(NG5) Choose P,L in order to have vertical asymptotes, i.e., P ∈ C
and at least one tangent line to C at P is not L. This case
has been deeply studied in [25]. Braid monodromy and some
additional data allow one to apply a modified version of the
Zariski-van Kampen Theorem and to codify the embedding of
C in P2.

Why are non-generic braid monodromies interesting? There are at
least two reasons. The first one comes from effectiveness of computation.
For a curve C, generic braid monodromy factorizations are orbits in
(Bd)r, where r is the sum of the degree of the dual curve and the number
of singular points of C. This number could be reduced significantly by
considering non-generic projections. Also, under certain circumstances,
a generic braid monodromy factorization can be recovered from a non-
generic one. The second reason has to do with a partial converse of
Theorem 1.27 and will be developed in page 26.
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Proposition 1.28. Let us assume that Lt, t ∈ ∆, is as in (NG2).
Let τ be the braid associated with Lt. If Lt, t ∈ ∆, has h non-transversal
intersections, then τ is the product of h pairwise commuting braids.

Let us assume now that any Lt has only one non-transversal inter-
section p1 ∈ Lt ∩ C. Then:

(1) If Lt is tangent to C at a smooth point p1 with (C · Lt)p1 = n,
then r decreases by n− 2. Moreover, τ decomposes into n− 1
braids conjugated to σ1 when P is slightly moved in L.

(2) If Lt, t ∈ ∆, passes through p1 ∈ Sing(C) of multiplicity m and
(C · Lt)p1 = n, then r decreases by n − m and τ decomposes
into n−m+ 1 braids, n−m of them conjugated to σ1 when P
is slightly moved in L.

Proof. The situation becomes generic by slightly moving the point
P in L, which implies a change in the projection direction. In this case,
if Lt intersects non-transversally at h points, then after changing the
projection direction, Lt splits into h non-transversal lines in a small
neighborhood of Lt, which correspond to disjoint and unlinked strings.
Thus the first statement follows. For example, in the case of a bitangent
(Figure 2) as in Example 1.14(b), τ = ρ · (σ3 · σ1) · ρ−1 decomposes into
the commuting braids ρ · σ3 · ρ−1 and ρ · σ1 · ρ−1.

Fig. 2. Bitangent

Let us prove (1). Note that, in this situation τ = ρ·(σn−1 ·. . .·σ1)·ρ−1

as in Example 1.14(d), and hence τ decomposes into n−1 braids ρ·σi·ρ−1,
i = 1, . . . , n− 1 – see Figure 3.

If p1 is a singular point of multiplicity m and (C · Lt)p1 = n, then a
perturbation of the projection produces m− n+ 1 non-transversal lines
close to Lt: one of them passing through p1 (not in the tangent cone)
and the other ones ordinary tangents. This gives the statement of (2).
Let us see what happens if p1 is a cusp as in Example 1.14(f), where
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Fig. 3. Flex

τ = ρ · (σ2 · σ1)
2 · ρ−1. The decomposition is given by ρ · σ3

2 · ρ−1 and
ρ · σ−1

2 · σ1 · σ2 · ρ−1. Q.E.D.

Fig. 4. Cusp

Also, for projections as in (NG1) one can prove the following.

Proposition 1.29. For each non-transversal point p ∈ C ∩ L, with
multp C = m and (C · L)p = n, the decreasing of r is given by:

(1) n− 1 if L is tangent to C at a smooth point p.
(2) n−m+ 1 if L passes through p ∈ Sing(C).
In this case the line at infinity can be deformed into a generic line

through P . The new braid factorization is of type (NG2) and has an
extra term, which is obtained as the product of ∆2

d by the inverse of the
product of the original braid factorization.

Therefore a combination of Propositions 1.28 and 1.29 allows one to
obtain a generic braid monodromy factorization.
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Remark 1.30. If P ∈ C and multP C = m, then not only r decreases
but also its braid monodromy takes values in Bd−m. As for the funda-
mental group, one needs additional data in order to recover the generic
braid monodromy but the complete description of these additional data
and the recovering process has not been developed yet.

The second reason stands on this partial converse of Theorem 1.27.
Let us introduce some notation. Let L * C be a line and P ∈ L. Let
us also assume that the tangent cone of C at P is contained in L (the
tangent cone is empty if P /∈ C). In other words, keeping the notations
of §1.2, we are assuming that f is monic in y. For t ∈ ∆ let L̄t be the
projective closure of Lt (recall that P ∈ L̄t).

Definition 1.31. A triple (C, L, P ) as above is called a horizontal
triple. The braid monodromy obtained choosing P as projection point
and L as line at infinity is called the braid monodromy of the horizontal
triple. The fibered curve Cϕ associated with the horizontal triple is C ∪
L ∪⋃t∈∆ L̄t.

We recall the following results by the first two authors and Carmona.

Theorem 1.32 ([7]). Let (C1, L, P ) and (C2, L, P ) be two horizontal
triples. Let F : P2 → P2 be an orientation-preserving homeomorphism
such that:

(i) F (P ) = P , i.e, F respects the base point of the fibration.
(ii) F (L) = L preserving orientations.
(iii) F (Cϕ1 ) = Cϕ2 preserving orientations.

Then (C1, L, P ) and (C2, L, P ) have the same braid monodromy.

For the special case of line arrangements this result has an ordered
version.

Definition 1.33. An ordered arrangement of lines L is an ordered
list of lines in P2. A triple (L, L, P ) is called a horizontal triple arrange-
ment if it defines a horizontal triple and the lines {L̄t}t∈∆ are ordered.
The fibered arrangement Lϕ associated with the horizontal triple ar-
rangement is the ordered arrangement L+ (L) + (L̄t)t∈∆.

Let us consider a braid monodromy factorization of (L, L, P ). Since
L is an arrangement of lines, this representative belongs to (PBd)r, where
PBd is the pure braid group. Moreover, by the choice of an order in L
only conjugations by elements of PBd are allowed (otherwise meridians
of different components are interchanged). Moreover, since {L̄t}t∈∆ is
also ordered by the incidence relations, only pure Hurwitz moves are
allowed.
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Definition 1.34. A pure braid monodromy is an orbit of (PBd)r by
the action of PBd × PBr. A horizontal triple arrangement (L, L, P ) has
associated with it a pure braid monodromy.

Theorem 1.35 ([10]). Let (L1, L, P ) and (L2, L, P ) be two horizon-
tal triple arrangements. Let F : P2 → P2 be an orientation-preserving
homeomorphism such that:

(i) F (P ) = P .
(ii) F (L) = L preserving orientations.
(iii) F (Lϕ1 ) = Lϕ2 preserving orientations and orders.

Then (L1, L, P ) and (L2, L, P ) have the same pure braid monodromy.

1.5. Fundamental group, braid monodromy and Zariski

pairs

Fundamental groups are a primary tool in the problem of finding
Zariski pairs. In the example mentioned in the Introduction (Z5), Zariski
proved that the combinatorially-equivalent curves had different funda-
mental groups (Z/2Z ∗ Z/3Z and Z/2Z × Z/3Z). In fact, before com-
pleting all the computations, Zariski had found other weaker invariants
that also served to distinguish the members of the pair. The first one is
the study of branched Galois coverings ramified along the curve: in only
one case do D6-coverings exist – a proof in modern terms can be found
in §3.3. In §3, we present how the algebraic study of Galois coverings is a
powerful tool to study Zariski pairs, obtaining information about funda-
mental groups without having to compute them. The second invariant
is the Alexander polynomial which, along with some generalizations, is
studied in §2.

These two kinds of invariants are useful for several reasons. As we
have seen in this section, computation of fundamental groups can be a
very tricky task. On one hand, some algebraic properties of the curves
can give rise to invariants of the fundamental group, and thus a difference
in such invariants means a difference in fundamental groups. On the
other hand, even if the fundamental group is computed, what one obtains
is a finite presentation of it. The undecidability of the isomorphism
problem makes this task feasible only in the simplest examples.

As explained in the Introduction note that, even though π1(P2 \ C)
is an invariant of the embedded topology of a curve C, any homeomor-
phism of pairs (P2, C) should send meridians to meridians. Therefore,
π1(P2 \ C) with a peripheral structure given by the conjugacy class of
meridians of the irreducible components of C is sometimes a more useful
invariant. For example, if we are counting the number of irreducible
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representations of π1(P2 \ C) onto a given finite group, the peripheral
structure introduces some restrictions on the images of the meridians.
Analogously, if we are considering Betti numbers of Abelian coverings,
the peripheral structure allows us to describe such coverings canonically
and thus point out possible differences. In general they will not be
invariants of the sole fundamental group, but they will be useful for de-
tecting Zariski pairs. These techniques fail when we look for arithmetic
Zariski pairs, since in this case most invariants of finite coverings are of
an arithmetic nature.

We end up this section with referring examples for various kinds of
Zariski pairs. For details, see the cited references

Example 1.36. Once one has an example of a Zariski pair which
is distinguished by the fundamental group, it is possible to give infinite
families of Zariski pairs using Cremona transformations and covering
maps. These techniques have been used by Oka [91], Shimada [105, 106]
and A.M. Uludağ [123].

Example 1.37 ([62]). In their paper Kharlamov-Kulikov use braid
monodromy factorizations to find a special kind of Zariski pair, called
oriented Zariski pair. An oriented Zariski pair is characterized by the
non-existence of orientation-preserving homeomorphisms. Note that
complex conjugation preserves the orientation of P2, but reverses the
orientations of the curves. In [63], they also find examples of complex-
conjugated surfaces such that the complex conjugation does not pre-
serve canonical divisors, thus they do not admit orientation-preserving
homeomorphisms. If we apply Chisini’s conjecture, the branch curves of
generic coverings give oriented Zariski pairs. For each m the produced
Zariski pair involves curves of degree 333m2.

Example 1.38 ([9]). Let us consider the combinatorial stratum of
curves with the following combinatorics: sextics with two irreducible
components of degrees 5 and 1. The quintic curve has three singular
points of types E6, A3 and A2 and the line intersects the quintic at two
smooth points with intersection multiplicities 4 and 1.

It is not hard to prove that this space has two connected components
(each one is isomorphic to PGL(3; C)). For one component there is a

representative C+ with equation in Q(
√

2)[X,Y, Z]. Its conjugate C− be-
longs to the other connected component. Let us denote by (C±, L±, P±)
the horizontal triples, where P± is the E6 point of C± and L± is the
tangent line.
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Using techniques for strongly real curves one can compute a non-
generic braid monodromy factorization of type (NG4) of (C+, L+, P+):

(σ8
2 , σ

4
2σ

2
1σ

−4
2 , σ3

2σ
3
1σ

−3
2 , σ2σ

4
1σ

−1
2 , σ−3

1 σ2σ
3
1),

and one of (C−, L−, P−):

(σ3
2 , (σ2σ

−1
1 σ2)σ1(σ2σ

−1
1 σ2)

−1, σ2σ
8
1σ

−1
2 , σ−2

1 σ4
2σ

2
1 , σ

−3
1 σ2

2σ
3
1).

In fact, these are Puiseux-braid monodromy factorizations. Since the
additional data at infinity are easy to obtain, one can compute π1(P2 \
C±). It turns out that both groups are isomorphic to Z×GL(2; F7).

The main point is that these two braid monodromy factorizations
are non-equivalent. Taking representations of the braid group onto
GL(2,Z/32Z), the image of the braid monodromies becomes a finite
set. One can simply check using GAP [49] that both images are dis-
joint. By Theorem 1.32, (Cϕ+, Cϕ−) is an arithmetic Zariski pair. Similar
examples in [9] also provide examples of oriented Zariski pairs.

Example 1.39. Let us consider the combinatorial stratum of sextic
curves with 4 singular points of types E7, E6, A4, and A2. As in the
previous example, this space consists of two irreducible components,
each one isomorphic to PGL(3; C). Representatives can be taken in

each component with equations in Q(
√

5)[x, y, z] as follows:

fs(x, y, z) :=− (200 + 90 s)x6 − (1575 + 705 s)x5y − (552 + 254 s) zx5

− (3963 + 1779 s) zx4y − (456 + 222 s) z2x4

− (63 + 27 s) zx3y2 − (2817 + 1251 s) z2x3y

− (56 + 21 s) z3x3 + (666 + 324 s) z2x2y2

+(−45 + 15 s) z3x2y + (48 + 16 s) z4x2 + (1737 + 783 s) z3xy2

+(384 + 192 s) z4xy + 54z3y3 + (1008 + 432 s) z4y2,

where s2 = 5. Let us consider the triples associated with the E7-point
P = [0 : 1 : 0] and the tangent line L = {z = 0} at P . First we will
compute their braid monodromy factorization based on the real picture,
since both curves are strongly real (see (C2)).

Figure 5 shows the real picture of C√5 := {f√5 = 0}, the choice
of the generic line L⋆, and the choice of the generators of the braid
group based on L⋆ \ C√5. We recall that the way the σi are chosen in

general corresponds to the lexicographic order in C where a1 +b1
√
−1 <

a2 + b2
√
−1 if and only if a1 < a2, or a1 = a2 and b1 < b2.
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Fig. 5. Real graph of C√5.

A2

Q
E6

A4

L⋆ L⋆
σ2

σ1

The only singular fibers occur at x = − 32
5 (where the A2-point

(− 32
5 ,− 1584

5 −144
√

5) lies), at x = −1 (where the E6-point (−1, 0) lies),
and at x = 0 (where the A4-point (0, 0) lies). This can be checked by
factorizing the discriminant of f√5 with respect to y.

The dotted curve in Figure 5 represents the real parts of the complex
conjugated branches. When at most two branches are complex conju-
gated per fiber of the projection (as is our case) this picture plus the
local braids contain all the necessary information to compute the braid
monodromy factorization.

In our case, the local braids around the A4 and the A2 are obvious
because the branches involved are real. Therefore the first factor of the
factorization should be σ5

1 and the last one should be a conjugated of
σ3

2 (Example 1.14(e)). In this case note that half a turn around the A4

point corresponds to σ2
1 . Therefore the factorization this far looks like

(σ5
1 , σ

2
1 ∗β, (σ2

1β1α)∗σ3
2), where β is the local braid around the E6-point,

β1 is half the braid around the E6-point, and α is the braid from E6 to
A2.

To obtain α it is enough to note that a local crossing of type Q as
in Figure 5 corresponds to σ−1

2 σ1 (always according to our lexicographic
order in C) as shown in Figure 6. Since there are no more crossings
between E6 and A2 one has that α = σ−1

2 σ1.
For the E6-point one has to work a little bit more. One first considers

a parametrization for the local branches of fs at this point: something

of the form y = ω1x + ω2ξ
kx

4
3 , k = 0, 1, 2, where ξ2 + ξ + 1 = 1.
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Fig. 6. Description of the crossing at Q.

σ2

σ1

σ1

σ2

√
−1

1 CC

Basically the sign of the real part of ω2 determines the local braid as
shown in Example 1.14(g). In our case one obtains β = (σ1σ2)

4 and
hence β1 = (σ1σ2)

2.
Therefore the braid monodromy factorization in this example is

(σ5
1 , σ

2
1 ∗ (σ1σ2)

4, (σ2
1(σ1σ2)

2(σ−1
2 σ1)) ∗ σ3

2).

Using the relation σ1 ∗ σk2 = σ−1
2 ∗ σk1 and the obvious σri ∗ σki = σki ,

the last term can be reduced to σ1 ∗ σ3
2 , obtaining Table 1.

σ5
1 σ2

1 ∗ (σ1σ2)
4 σ1 ∗ σ3

2

Table 1.

Claim 1.40. The (non-generic) braid monodromy factorizations of
(C√5, L, P ) and (C−√

5, L, P ) coincide.

Proof. For C−√
5 one has an analogous situation as shown in Fig-

ure 7, which has the same local and global information of the strongly
real picture. Therefore, their braid monodromy factorizations coin-
cide. Q.E.D.

Moreover, note that, even though the combinatorial stratum consists
of two irreducible components, the associated affine curves are isomor-
phic. In particular

f̃√5(ω(x, y)) =
(
51841 + 23184

√
5
)
f̃−

√
5(ℓ(x, y)),
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Fig. 7. Real graph of C
−

√

5.

A2

Q

E6

A4

L⋆

where f̃s, denote the affine equation of fs,

ω(x, y) :=

(
x,−y +

(
1620 + 648

√
5
)
x−

(
25

2
+

35
√

5

6

)
x2

)

is a Jung automorphism, and

ℓ(x, y) :=

(
x,

(
8075

2
− 10657

√
5

6

)
x+

(
−47

2
+

21
√

5

2

)
y

)

is a linear automorphism of C2. Note that this does not give another
proof of Claim 1.40 via Theorem 1.27 since the latter can only be applied
in principle to generic projections. But it does tell us that the generic
braid monodromies of C√5 ∪ L and C−√

5 ∪ L are equivalent.
A geometrical interpretation of the Jung automorphism can be given

as follows. In Figure 8, we show the dual graph of the total transform
of L after an embedded resolution of the E7-point. The successive ex-
ceptional divisors are denoted by Ei, i = 1, 2, 3. The branch B1 denotes
the strict transform of the cusp of E7, the branch B2 denotes the strict
transform of the smooth branch of the E7 and the branch B3 denotes
the branch at the smooth point of C on L ∩ Cs.
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LE1 E2E3

B1 B2 B3

−1−1 −2−3

Fig. 8.

Note that, contracting the strict transform of L one achieves a
combinatorially-symmetric situation where B2 and B3 cannot be dis-
tinguished. Note that, by the Jung automorphism, B2 and B3 are in-
terchanged.

We can still recuperate valuable information to add to equivalent
braid monodromies that can distinguish the different behavior at infinity.
The idea is to color the different branches at infinity. This idea will be
developed in what follows.

Remark 1.41. Let (C, L, P ) be a horizontal triple of degree d and let
us choose L∗, a generic member ofHP , as the base line of the pencil. Let
us also fix a continuous uniparametric family of lines Lt (t ∈ [0, 1]) in the
pencil such that L0 = L∗ and L1 = L. The continuity of Lt allows us to
associate a branch of C at L to each point of C∩L∗. The combinatorics of
C at L defines a partition on the set of such branches and hence induces
a partition P∗ on C ∩ L∗ (which turns out to be independent of the
chosen path Lt). Ordering the points of C ∩L∗ induces a partition P in
{−1, . . . ,−d}. Let ΣP be the subgroup of Σd preserving the partition
and let BP be the preimage of ΣP in Bd. By restriction to BP one
can define the P-braid monodromy of (C, L, P ). The same proof of
Theorem 1.32 can be applied to this particular scenario to obtain the
following.

Theorem 1.42. The statement of Theorem 1.32 also holds if we
replace braid monodromy by P-braid monodromy, where P has the same
combinatorial meaning at infinity for both triples.

Now we can show that
(
P2, Cϕ√

5
∪ L
)

and
(

P2, Cϕ−√
5
∪ L
)

form an

arithmetic-Zariski pair.
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Proposition 1.43. Let us consider the curves C√5 and C−√
5 in

Example 1.39. There is no homeomorphism between the pairs (P2, Cϕ√
5
∪

L) and (P2, Cϕ−√
5
∪ L), but their complements are homeomorphic, that

is P2 \
(
Cϕ√

5
∪ L
)
∼= P2 \

(
Cϕ−√

5
∪ L
)
.

Proof. Let us prove the last statement first. Note that the home-
omorphism between P2 \

(
C√5 ∪ L

)
and P2 \

(
C−√

5 ∪ L
)

preserves the
pencil of lines through P , therefore, it induces a homeomorphism be-

tween P2 \
(
Cϕ√

5
∪ L
)

and P2 \
(
Cϕ−√

5
∪ L
)
.

Let us prove now that the pairs are not homeomorphic. In order
to do so we will consider the partitions of Remark 1.41. We order the
points of C ∩ L∗ as in Figure 6. One has the following situation:

for C√5: (1, 2, 3)↔ (B1, B2, B3).
for C−√

5: (1, 2, 3)↔ (B1, B3, B2).

Hence, the group BP is simply the pure braid group. Let us de-
note by n√

5 the braid monodromy in Table 1. It defines a P-braid
monodromy for C√5. In order to have a representative of the P-braid
monodromy for C−√

5 we have to permute the second and third strings,
for instance n−

√
5 := σ2 ∗ n√

5.

Let Hs, s
2 = 5, be the monodromy groups in B3. If these curves

have the same P-braid monodromy, thenH√
5 andH−

√
5 are conjugated

by an element in BP . Using GAP4 [49], it is easily seen that this is the
case and that H√

5 6= H−
√

5.

Let cs be the pseudo-Coxeter braid of ns, s
2 = 5, (see Defini-

tion 1.9(iii)). Note that

c := c√5 = c−
√

5 = (σ1 ∗ σ3
2)(σ2

1 ∗ (σ1σ2)
4)σ5

1 = σ1σ
3
2σ1∆

2
3σ1σ2σ

3
1 =

∆2
3σ1σ

3
2σ

2
1σ2σ

3
1 = ∆2

3σ1σ
2
2σ

−1
1 ∆2

3σ
2
1 = ∆4

3σ1σ
2
2σ1,

where ∆2
3 = (σ1σ2)

3 = (σ1σ2σ1)
2 is the generator of the center of B3

(see Remark 1.13(b)).
If n−

√
5 and n√

5 are P-equivalent, there exists a pure braid τ such
that τ ∗ H√

5 = H−
√

5 and [c, τ ] = 1. It can be easily computed (for
innstance, via the standard representation in the special linear group
SL(2,Z)) that the intersection of the pure braid group and the commu-
tator of c is the subgroup generated by c and ∆2

3. This group is contained
in the normalizer of H√

5 and hence, such a τ cannot exist. Q.E.D.

Example 1.44 ([10]). This is the first example of arithmetic Zariski
pairs of lines. It consists of two arrangements M± of eleven lines having
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conjugate equations in with coefficients in Q(
√

2). In particular, their
fundamental groups have isomorphic profinite completions.

The real pictures of M± are shown in Figure 9 (lines at infinity
included). In order to prove that they provide an arithmetic Zariski
pair, one can proceed by contradiction as follows.

Fig. 9. Zariski pair of real line arrangements

L+

L−

Let us assume that a homeomorphism ψ : (P2,M+) → (P2,M−)
exists. This homeomorphism must preserve the orientation of P2. Using
standard intersection theory, one can assume that it either preserves
the orientations of all the lines in M± or it reverses them. Taking
complex conjugation into account, one can assume that ψ preserves the
orientations of the lines in M±. For combinatorial reasons ψ(L+) = L−
in Figure 9. Let us consider the arrangements L± obtained by removing
both the vertical lines and L± from M±. Since M± has a unique point
of multiplicity five, it is easy to see that ψ(L+) = L−. Thus, one can
order these arrangements in such a way that the ith line of L+ and
L− are conjugate in Q(

√
2). The choice of the lines L± implies that ψ

preserves the order. Moreover, the vertical lines can be ordered so as to
fulfill the same property.

Let P be the point of intersection of the vertical lines and let L∞ be
the line at infinity. Then (L±, L∞, P ) are horizontal triple arrangements
such that L

ϕ
± = M± \ {L±}. By Theorem 1.35, (L±, L∞, P ) have the

same pure braid monodromy, but this contradicts [10, Theorem 4.19].
Note that no ordered homeomorphism exists from L

ϕ
+ to L

ϕ
− , but

it is not hard to prove that there exists a projective transformation in
PGL(3,C) sending L

ϕ
+ to L

ϕ
− (thus not respecting orders).

Whether or not this is an example of a π1-equivalent Zariski pair
(that is, if the groups are actually isomorphic) or a complement-equivalent
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Zariski pair (that is, if the complements are homeomorphic) remains an
open problem.

Example 1.45. [88] Example 1.44 and Rybnikov’s example are
particularly interesting cases of Zariski pairs, since they come from line
arrangements. What happens with conic arrangements? A nice example
of a Zariski pair of conic arrangements has been provided by Namba
and Tsuchihashi [88]. An elementary and exhaustive approach to it
occupies §4.

§2. Alexander invariants

2.1. Alexander polynomials

Alexander polynomials have been largely used for knots and links in
connection with cyclic branched coverings of their complement (see [50]
for a survey on the matter). The first application of cyclic coverings
to complements of plane curves was already proposed by Zariski (as
mentioned in the Introduction), and later formalized by Libgober [71].
Since then the bibliography on the subject has become extensive. In
what follows, we will give the basic definitions and present the main
results on this invariant.

Consider XC := P2 \ C, where C = C0 ∪ C1 ∪ · · · ∪ Cr, Ci is an
irreducible curve of degree di with equation {Ci = 0}, and d0 = 1 (this
last condition is purely technical to simplify notation). Note that, under
these conditions,

H1(XC ; Z) =

⊕r
i=0 γiZ

〈γ0 + d1γ1 + · · ·+ drγr〉
≈ Zr,

where γi is the homology class of a meridian of Ci. Let ε : H1(XC ; Z)→ Z
be an epimorphism. This epimorphism is defined by (ε1, . . . , εr) ∈ Zr,
where εi := ε(γi).

The kernel Kε of the composition G := π1(XC)
ab→H1(XC ; Z)

ε→Z de-
fines a covering of XC , say πε : XC,ε → XC , whose group of deck trans-
formations is G/Kε = Z.

Remark 2.1. Given n ∈ N the composition of ε ◦ ab with the natu-
ral quotient Z → Z/nZ produces an n-fold cyclic finite covering πε,n :
Xn

C,ε → XC whose group of deck transformations is Z/nZ. Note that

if n divides εi then πε,n could be extended above Ci \
⋃
j 6=i Cj as an

unramified covering.
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The group G/Kε = Z acts on Kε/K
′
ε = H1(XC,ε; Z) by conjugation

as follows

∗ : G/Kε ×Kε/K
′
ε → Kε/K

′
ε

(ε(g), k̄) 7→ ε(g) ∗ k̄ := g · k · g−1.

Note that if g′ = gh1 (h1 ∈ Kε) and k′ = kh2 (h2 ∈ K ′
ε), then

(
g′ · k′ · g′−1

) (
g · k−1 · g−1

)
=
(
(gh1) · (kh2) · (h−1

1 g−1)
) (
g · k−1 · g−1

)

= g ·
(
h1kh2h

−1
1 k−1

)
· g−1

= g ·
(
(h1k) · h2 · (h1k)

−1 h1kh
−1
1 k−1

)
g−1

∈ K ′
ε.

Hence “∗” does not depend on the choice of g mod Kε or k mod K ′
ε.

This action endows MZ
C,ε := H1(XC,ε; Z) with a Λε-module struc-

ture, where Λε := Z[G/Kε] ≈ Z[t±1]. One can tensor such a module
by a field K = Q,C,Fp, . . . to obtain a module MK

C,ε over ΛK
ε = K[t±1].

Since G is finitely presented, MK
C,ε is finitely generated as a ΛK

ε -module

(by as many 1-cells as generators of G). The rings ΛK
ε are principal ideal

domains and hence one can define ∆K
C,ε(t) as the order of MK

C,ε. We
recall that, if R is a principal ideal domain, the order of an R-module
M , is defined as

(12) ∆ :=





0 if M has a free summand,

1 if M = 0,∏m
i=1 λi if M ≈ R

(λ1) ⊕ · · · ⊕ R
(λm) .

Such a polynomial can be assumed to be unique by adding the extra
condition λi(0) = 1. This is known as the Alexander polynomial of C
associated with ε. In general, if K = Q or C, then the reference to the
field will be omitted.

The classical Alexander polynomial (denoted ∆C(t)) corresponds to
the special case when K = Q, C0 is transversal to Ci for any i = 1, . . . , r,
and ε is the epimorphism that sends any meridian γi around Ci to 1,
except for i = 0, where ε(γ0) = −d, where d :=

∑r
i=1 di. We will

refer to this morphism as the trivial morphism. If ε(γi) 6= ±1 for any
i = 0, 1, . . . , r we will call ε a non-coordinate epimorphism. The Oka
polynomials (denoted ∆C,ε(t)) correspond to K = Q, and a transversal
C0 ([94]).
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Remark 2.2.

(1) Note that MZ
C,ε is not necessarily a torsion module in general.

For example, if C is a union of r + 1 lines passing through a
common point and ε is the trivial morphism, then π1(XC) =
Z ∗ · · · ∗ Z a free product of rank r, and it is easy to see that

MK
C,ε =

(
ΛK
ε

)r−1
.

(2) Also note that MZ
C,ε depends only on G = π1(XC) and ε. Hence

one can associate an Alexander polynomial ∆G,ε(t) to any
finitely presented group G and epimorphism ε : G/G′ → Z.
In fact, such a polynomial corresponds to the Alexander poly-
nomial of the CW-complex XG associated with any finite pre-
sentation of G, and ε : H1(XG; Z)→ Z.

(3) Assume that

(
ΛK
ε

)m A→
(
ΛK
ε

)n →MK
G,ε

is a free resolution of MK
G,ε, where A is an n×m matrix with

coefficients in ΛK
ε . Then ∆G,ε(t) can also be defined as 0 if

m < n, or as the greatest common divisor of all the minors
of maximal order of A if n ≤ m. From (2) above, n can be
considered as the number of generators in a presentation of G.

A very useful remark on Alexander polynomials is the following:

Lemma 2.3. [71, Proposition 2.1] Let G
ψ→→ H be an epimor-

phism of finitely presented groups and consider εH : H/H ′ →→ Z an-
other epimorphism. Then ∆K

H,εH
divides ∆K

G,εG
, where εG = εH ◦ ψ1

and ψ1 : G/G′ → H/H ′ is induced by ψ.

Proof. A presentation of H can be given from one of G just by
adding a finite number of relations. Therefore from Remark 2.2(3), a
presentation matrix for MK

H,εH
is the result of adding a finite number

of columns to the presentation matrix of MK
G,εG

. Therefore the ideal

generated by the minors of maximal order of MK
G,εG

is contained in the

one of MK
H,εH

. Q.E.D.

This situation appears in a natural way when an equisingular family
of curves {Ct}t∈(0,δ] degenerates into a reduced curve C0.

Proposition 2.4. Under the above conditions there is an epimor-
phism of fundamental groups

π1(XC0)
j→→ π1(XCδ

).

Hence ∆K
Cδ,ε1

divides ∆K
C0,ε2

, where ε2 = ε1 ◦ j1 as in Lemma 2.3.
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Proof. A proof of the first part can be found in [41, Corollary §3
(3.2)]. The second part is an immediate consequence of Lemma 2.3.

Q.E.D.

Example 2.5.

(1) Consider a family of r+1 lines Ct := ℓt,0∪· · ·∪ℓt,r, t ∈ (0, 1] in
general position degenerating into r+1 lines C0 := ℓ0 ∪ · · · ∪ ℓr
passing through a common point. If ε is the trivial morphism
ε(γi) = 1, i = 1, . . . , r and ε(γ0) = −r, then one has the
following

(13)
MK

C1,ε
=
(

ΛK

ε

(t−1)

)r−1

⇒ ∆K
C1,ε

(t) = (t− 1)r−1

MK
C0,ε

=
(
ΛK
ε

)r−1 ⇒ ∆K
C0,ε

(t) = 0.

(2) Consider the three-cuspidal quartic C1 presented in (Z6) and
a generic line C0. In order to give a presentation for the fun-
damental group of C := C0 ∪ C1 one can simply apply Proposi-
tion 1.16 to the presentation (1) and obtain

(14) 〈a, b | aba = bab, [a, a2b2] = [b, a2b2] = 1〉.

Note that there is basically only one possible morphism ε, the
abelianization morphism, which we will omit in the notation.
An easy computation produces

MK
C =

K[t±1]

(3, t+ 1)

and hence

∆K
C (t) =

{
t+ 1 if char(K) = 3

1 otherwise.

Since the three-cuspidal quartic is dual to a nodal cubic, we
know it has a bitangent, say ℓ0. The fundamental group of
C′ := ℓ0 ∪ C1 has the following presentation (see [97, Example
4.5(3)])

(15) 〈a1, a2, a3, a4 | aiai+1ai = ai+1aiai+1(i = 1, .., 3), a2a4 = a1a2〉,

which produces

MK
C′ =

K[t±1]

(t2 − t+ 1)
⊕ K[t±1]

(t2 − t+ 1)
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and hence
∆K

C′(t) = (t2 − t+ 1)2.

Note that if char(K) = 3, then (t2− t+1) = (t+1)2, and hence
∆K

C′(t) = (t+ 1)4.

All computations in Example 2.5 above have been performed directly
from a presentation of the fundamental group. We refer the reader to
Section §2.5 for more details on this.

Remark 2.6. Very often the Alexander polynomial is defined as the
torsion of H1(XC,ε, π−1

ε (p); Q) for some p ∈ XC. This definition comes
handy for computational purposes, since it can be obtained as the de-
terminantal variety of corank 1 of the Fox derivative matrix associated
with the group G, as in the case of knots ([35]).

The geometrical interpretation of the classical Alexander polynomial
is given as follows (see [101]). The polynomial C1 · . . . ·Cr defines a non-
isolated singularity at the origin of C3. The monodromy of the Milnor
fiber defines an automorphism on the H1 and the classical Alexander
polynomial is the characteristic polynomial of the monodromy of the
Milnor fiber.

Theorem 2.7. [94, Theorem 43] The Alexander polynomial of C
with respect to the epimorphism ε : H1(XC)→→ Z (εi ≥ 0, i = 1, . . . , r)
is equal to the characteristic polynomial of the monodromy h∗ : H1(F )→
H1(F ) where F is the Milnor fiber of the polynomial Cε11 · . . . · Cεr

r .

Since the monodromy has a finite order, this implies the following.

Corollary 2.8. All the zeroes of the Alexander polynomial ∆C,ε(t)
of a curve C with respect to an epimorphism ε are roots of unity.

Alexander polynomials depend on the local type of singularities of
C. To describe this dependency we will consider L1, . . . , Ls the local
links of the singularities of the affine part Caff := C1 ∪ · · · ∪ Cr and L∞
the link at infinity, that is, the intersection of Caff with the boundary
of a tubular neighborhood of the line at infinity C0. The inclusion S3 \
Lk →֒XC induces a map π1(S3 \Lk)→ π1(XC). Therefore ε also induces
epimorphisms π1(S3 \Lk)→→Z. The Alexander polynomials associated
with such maps will be called local Alexander polynomials and denoted
by ∆Lk,ε for simplicity.

This dependency can be described for classical Alexander polyno-
mials.

Theorem 2.9 ([71]). The classical Alexander polynomial of C di-
vides both the product of the local Alexander polynomials

∏s
k=1 ∆Lk

(t)
and ∆L∞(t).



A survey on Zariski pairs 41

This dependency also has an expression for general Alexander poly-
nomials.

Theorem 2.10. Under the above conditions

( r∏

i=1

(1− tεi)si−χ(Ci)
) ∏

k=1,...,s,∞
∆Lk,ε(t) = ∆2

C,ε(t) · detϕt(C),

where si := #Sing(Caff) ∩ Ci, χ is Euler characteristic and ϕt(C) is an
intersection form on H2(XC,ε,Q[t±1]) with twisted coefficients.

Proof. It is an immediate consequence of [31, Theorem 5.6] and

the fact that ∆Q
C,ε(t

−1) = ∆Q
C,ε(t) (by Corollary 2.8). Q.E.D.

The fact that Alexander polynomials are not combinatorial invari-
ants was already known (with a different language) by Zariski as men-
tioned in the Introduction with the first example of a classical Zariski
pair.

A topological interpretation of classical Alexander polynomials can
be given as follows: an n-th root of unity (n > 1) is a root of the classical
Alexander polynomial of a curve C if and only if the cyclic covering of the
complement XC ramified along each irreducible component of Caff with
order n has a bigger first Betti number than h1(XC ; C) ([71, Corollary
3.2]). Moreover the difference between the two Betti numbers is exactly
the sum of the multiplicities of such roots. The reason for this is that
the Alexander invariant MC is semisimple in this case, that is, it is a
direct sum of modules with no proper submodules (also called simple
modules).

Analogously, for general Alexander polynomials one has the follow-
ing:

Theorem 2.11. Let C be a curve and ε : H1(XC ; Z) → Z an epi-
morphism. If an n-th primitive root of unity (n > 1) is a root of the
Alexander polynomial ∆C,ε(t) then the covering Xn

C,ε has a bigger first

Betti number than h1(XC ; C).
Moreover,

(16) h1(X
n
C,ε; C) = h1(XC ; C) +

m∑

i=1

αni ,

where αni is the number of common roots between tn−1
t−1 and λi(t) from (12).



42 E. Artal, J.I. Cogolludo, and H. Tokunaga

Remark 2.12.

(1) A similar formula for homology with coefficients in other fields
exists [83, Theorem 4.6]. The field needs to contain all the n-th
roots of unity.

(2) Note that in general one cannot just count multiplicities in or-
der to compute the first Betti number of cyclic (or Abelian)
coverings since the Alexander invariant need not be semisim-
ple. For instance, consider the Example 2.5(2) of the three cus-
pidal quartic and the bitangent line C′. According to Matei-
Suciu [83] if ε is the trivial morphism and n = 2, then the
formula (16) is still valid

h1(X
2
C′,ε; F3) = h1(XC′ ; F3) +

2∑

i=1

α2
i ,

but in this case h1(X
2
C′,ε; F3) − h1(XC′ ; F3) = 2 even though

t = −1 has multiplicity 4 in ∆F3

C′ (t).

2.2. Characteristic varieties

Characteristic varieties were introduced by Hillman [55] for links,
then systematically studied by Arapura [1] for Kähler manifolds, and
first applied to algebraic curves by Libgober [74]. They can be defined
analogously to Alexander polynomials as follows.

Let C := C1 ∪ · · · ∪ Cr similarly as at the beginning of this section,
except that we are not asking any component to be a line. Let τ :=
gcd(d1, . . . , dr). Then

(17) H1(XC ; Z) =

⊕r
i=1 γiZ

〈d1γ1 + · · ·+ drγr〉
≈ Zr−1 ⊕ Z

τZ
,

where γi is the homology class of a meridian of Ci.
We can study the projective plane curve C as follows; let ab : G :=

π1(XC) → H1(XC ; Z) be the abelianization epimorphism. The kernel
G′ of ab defines the universal Abelian covering of XC , say XC,ab → XC ,
whose group of deck transformations is G/G′ = H1(XC ; Z). Such a
group acts on G′/G′′ = H1(XC,ab; Z) by conjugation as before endow-
ing MZ

C,ab := H1(XC,ab; Z) with a ΛC-module structure, where ΛC :=

Z[G/G′] ≈ Z[t±1
1 , . . . , t±1

r ]/(td11 · . . . · tdr
r − 1).

One can tensor MZ
C,ab by a field K = Q,C,Fp, . . . to obtain a module

MK
C,ab over ΛK

C = K[t±1
1 , . . . , t±1

r ]/(td11 ·. . .·tdr
r −1) (in general we only ask

ΛK
C to be integrally closed and Noetherian). Since G is finitely presented,
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MK
C,ab is again a finitely generated ΛK

C -module (by as many 1-cells as

generators of G). If r ≥ 2, then ΛK
C is not a Principal Ideal Domain

and hence one has to study the module invariants of MK
C,ab, that is, the

Fitting ideals of MK
C,ab.

Let us briefly recall the notion of Fitting ideals. Let R be a commu-
tative Noetherian ring with unity and M a finitely generated R-module.
One has a finite free presentation for M , say φ : Rm → Rn, where
M = coker φ. The homomorphism φ has an associated (n ×m) matrix
Aφ with coefficients in R such that φ(x) = Aφx

t.

Definition 2.13. The k-th Fitting ideal Fk(M) of M is defined as
the ideal generated by





0 if k ≤ max{0, n−m}
1 if k > n

minors of Aφ of order (n− k + 1) otherwise.

It will be denoted Fk if no ambiguity seems likely to arise.

Definition 2.14. [74] Under the above conditions the k-th charac-
teristic variety of M can be defined as

Chark(M) := SuppR (R/Fk(M)) ⊂ SpecR.

The subindex k is also known as the depth of a characteristic variety.
Similarly, the k-th projective characteristic variety CharK

k,P(C) of a

curve C is the k-th characteristic variety of MK
C,ab as a ΛK

C -module.

If L is a line not contained in C then ΛK
L∪C is naturally isomorphic

to K[t±1
1 , . . . , t±1

r ]. Moreover, if L ⋔ C then the ΛK
L∪C-module MK

L∪C,ab
does not depend on L by Proposition 1.16 and CharK

k,P(L ∪ C) is called

the k-th affine characteristic variety and denoted simply by CharK
k (C).

One can also define the k-th characteristic variety CharK
k (G) of a

finitely presented group G as the k-th characteristic variety of the mod-
uleMK

G obtained by considering the CW-complex associated with a given
presentation (of course, such invariant is independent of the finite pre-
sentation of G).

In the particular case when K = C and M = MC
C,ab one has:

• Spec ΛL∪C = Tr = (C∗)r, for the affine case, and

• Spec ΛC = TC = {ωi}τ−1
i=0 × (C∗)r−1 = V (td11 · . . . · tdr

r −1) ⊂ Tr,
where ω is a τ -th primitive root of unity for the projective case.
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In the case of a finitely presented group G where G/G′ = Zr ⊕
Z/τ1Z⊕ · · · ⊕ Z/τsZ we obtain

Spec ΛG = TG = {(ωi11 , . . . , ωiss ) | ik = 0, . . . , τk−1, k = 1, . . . , s}×(C∗)r,

where ΛG = C[G/G′] and ωi is a τi-th primitive root of unity.
One might want to keep the non-reduced structure of the Fitting

ideal. In that case we define the projective (resp. affine) k-th Fitting
ideal of the curve C over the field K and denote it as FK

k,P(C) (resp.

FK
k (C)).

Remarks 2.15.

(1) Note that any isomorphism between two finitely presented groups
G1 and G2 produces an automorphism of the ambient torus
TG1 = TG2 such that Chark(G1) and Chark(G2) are isomor-
phic.

Note however, that in some particular cases, like funda-
mental groups of link complements (which will not be con-
sidered here) or curve complements, the ambient torus has a
natural system of coordinates. For instance in the latter case,
a natural system of coordinates for TC is given by the pre-
ferred basis of H1(XC ; Z) described in (17). In that respect,
the characteristic varieties of C as subspaces of the torus TC
are not directly an invariant of the group G, rather they are
invariant of the embedding of C in P2, which is the group G
with some peripheral information about the homology classes
of the meridians of the irreducible components of C.

(2) In the particular case of plane algebraic curves, due to the
Hodge decomposition of H1(Xε,C ; C) for appropriate branched
coverings, the ring homomorphism ΛZ

C → ΛZ
C given by ti →

t−1
i induces an automorphism of the components of Chark(C)

containing ε (see [75, Theorem 3.1.c]).

Proposition 2.16. If (P2, C) and (P2,D) are homeomorphic, then
ΛC := ΛC

C = ΛC
D in a natural way, and MC

C,ab ≈ MC
D,ab are isomorphic

as ΛC-modules. In particular CharC
k (C) = CharC

k (D).

Proof. Let us denote by f : (P2, C)→ (P2,D) the homeomorphism
of pairs. Note that the image by f of any disk transversal to a component
Ci of C will be sent to a disk transversal to a component, say Di, of D.
Since irreducible components intersect pairwise and always positively, it
is possible to prove that f must either respect or reverse orientations on
all the irreducible components of the curves. Therefore meridians will be
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sent to meridians (up to sign) and the induced homomorphism of groups
f∗ : H1(XC ; Z)→ H1(XD; Z) has the expected property f∗(γCi

) = δγDi
,

i = 1, . . . , r (δ = ±1). By Remark 2.22 below, one can assume that
δ = 1. Finally note that di := deg Ci = degDi is preserved, since it
is a topological invariant and hence the first part follows and ΛC =
C[t±1

1 , . . . , t±1
r ]/(td11 · . . . · tdr

r − 1). The fundamental groups of XC and
XD are isomorphic and the action of each ti on both MC

C,ab = ΛC ⊗Λ

π1(XC)′/π1(XC)′′ and MC
D,ab = ΛC ⊗Λ π1(XD)′/π1(XD)′′ is preserved

by f . Therefore the second part follows. Q.E.D.

Remark 2.17.

(1) Note that the isomorphism of ΛK-modules exhibited in Propo-
sition 2.16 is of a very special kind, since it comes from an
isomorphism of fundamental groups inducing the identity on
the abelianization. Since the Alexander invariant G/G′′ of a
group G can be seen as an extension of G/G′ by G′/G′′, this
type of isomorphisms of ΛK-modules will be called extension
isomorphisms.

(2) Closely related to Remark 2.15.(1), if one wants to say some-
thing about whether or not the fundamental groups of two
curves are isomorphic, verifying that MK

C,ab 6≈ MK
D,ab as mod-

ules over an abstract Λ or Chark(C) 6= Chark(D) is not enough.
Instead, invariants of the isomorphism class of Chark(C) and
Chark(D) should be used such as their total number of irre-
ducible components of a certain dimension (see Section §4), or
their combinatorial structure (see §2.3).

Example 2.18.

(1) Let G = Zq∗Z/p1Z∗· · ·∗Z/psZ. According to Proposition 2.39

MK
G =

⊕
1≤i<j≤r ΛK

Gxi,j

T + J ,

where
• ΛK

G = K[t±1
1 , . . . , t±1

q+s]/(t
p1
q+1 − 1, . . . , tps

q+s − 1),

• T is the submodule generated by
t
pi
q+i−1

tq+i−1 , i = 1, . . . , s, and

• J is the Jacobian submodule.
In this situation it is easy to see that

FK
1 (G) =

(
tp1q+1 − 1

tq+1 − 1
, . . . ,

tps

q+s − 1

tq+s − 1

)
.
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And hence,

Char1(G) = (C∗)q × {(ω1, . . . , ωs) | ωpi

i = 1, ωi 6= 1, i = 1, . . . , s}.

(2) Consider the Hopf link of d components. For convenience we
denote its components as Li,j(i), j(i) = 1, . . . , di, i = 1, . . . , r,

where
∑r
i=1 di = d. A natural presentation of its fundamental

group G is given by meridians γi,j(i) for each component and
an extra generator σ, and whose relations are [σ, γi,j(i)] = 1
and

σ

r∏

i=1

di∏

j(i)=1

γi,j(i) = 1,

i.e, G is the direct product of Z and the free group in d − 1
generators. Then, ΛK

G is a ring of Laurent polynomials in the
variables s and ti,j(i), j(i) = 1, . . . , di, i = 1, . . . , r, where the
product of all variables equals 1. Applying Proposition 2.39
one obtains

MK
G =

⊕
1≤i<j<d ΛK

Gxi,j

Wd + J ,

where Wd is the submodule generated by s − 1, and J is the
Jacobian submodule. Hence

FK
1 (G) = (s− 1) = (

r∏

i=1

di∏

j(i)=1

ti,j(i) − 1).

Remark 2.19. Note that if 0→M ′ →M →M ′′ → 0 is an exact se-
quence of R-modules, then CharK

1 (M) = CharK
1 (M ′)∪CharK

1 (M ′′). Let
L be a line transversal to C, and consider T (L) a tubular neighborhood
of L. In this situation there is a surjection

G∞ := π1(∂T (L) \ C)→→GL := π1(P2 \ (L ∪ C)).

Following the notations of Example 2.18(2), we assume that the image
of γi,j(i) by this surjection is a meridian of Ci.

Since ΛK
GL

= K[t±1
1 , . . . , t±1

r ], the above morphism induces a ring

morphism ΛK
G∞
→→ ΛK

GL
given by ti,j(i) 7→ ti and s 7→ (td11 · . . . · tdr

r )−1.

Therefore, the surjection MG∞,GL
:= MG∞ ⊗ ΛK

GL
→ ML∪C,ab induces

an inclusion

CharK
1 (C) = CharK

1 (GL) ⊂ CharK
1 (MG∞ ⊗ ΛK

GL
) = V (td11 · . . . · tdr

r − 1),
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where the last equality can be computed from Example 2.18(2) above.
In other words, even though the affine Char1(C) seems to sit in the

bigger torus Tr than the projective Char1,P(C), the fact is that both
are contained in TC . Moreover, they coincide as subtori of TC ([75,
Proposition 1.2.3]). In what follows we will use either one indistinctly.

D. Arapura, in [1, Theorem 1.6] gives the following description of
the structure of first characteristic varieties for certain Kähler varieties.
We adapt the original statement for our particular case of curve com-
plements. In order to do that we need the following concept.

Definition 2.20. A (fixed component free) pencil of curves in P2

is said to completely contain a curve C, if the induced morphism f̂ :

P̂2 → P1 (after blowing-up the corresponding base points) satisfies that

Ĉ ⊂ f̂−1(P ), where P is a finite subset of P1, and Ĉ is the strict transform

of C in P̂2. Note that, if a pencil completely contains C, then f restricts
to a well-defined holomorphic map f : P2 \C = XC → P1 \P . A pencil is
said to contain a curve C, if it completely contains at least one irreducible
component of C. In addition, a pencil is called primitive if the fibers of

f̂ are connected.

Theorem 2.21 ([1]). There exist a finite number of torsion points
εi ∈ TC, unitary points ε̃j ∈ TC , and primitive pencils containing C,
fi : XC → Di = P1 \ Pi such that

Char1,P(C) :=
⋃
εif

∗
i H

1(Di; C∗) ∪
⋃
ε̃j .

An analogous result follows for the affine case Char1(C).
Note that any element of H1(Di; C∗) = Hom(H1(Di; C),C∗), i.e.

any character on H1(Di; C) can be seen as a point of Spec(ΛC
Di

) =

Spec(C[H1(Di; C)]) = Th1(Di;C) and vice versa. Therefore f∗
i H

1(Di; C∗)
is a subset of TC . Also note that εif

∗
i H

1(Di; C∗) refers to coordinatewise
multiplication in TC . Finally, εi is a torsion point if εni = (1, . . . , 1) =: 11r
for some n ∈ Z and ε̃j is unitary if ε̃j ∈ (S1)r ⊂ TC .

Remark 2.22. According to a recent work by Libgober [78] unitary
non-torsion isolated points cannot exist in Chark,P(C). Therefore, ac-
cording to Remark 2.15(2), the ring automorphism ΛZ

C → ΛZ
C given by

ti → t−1
i induces a skew automorphism of the corresponding modules

MC
C,ab.

Certain components of Chark,P(C) can be inherited from subarrange-
ments of C. More specifically, let us assume that V ⊂ Chark,P(C(i))
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is a non-empty component of the k-th characteristic variety of C(i) =
C1 ∪ · · · ∪ Ci−1 ∪ Ci+1 ∪ · · · ∪ Cr. Then the natural surjection

ΛC →→ ΛC(i)

tj 7→
{
tj if j 6= i

1 if i = j

induces an inclusion

Spec(ΛC(i)
) = TC(i)

⊂ TiC

where TiC = {(ε1, . . . , εr) ∈ TC | εi = 1}.
This allows us to see both MC,ab and MC(i),ab as ΛC-modules and

consider the natural surjectionMC,ab→→MC(i),ab, as a surjection of mod-

ules. Remark 2.19 and the previous discussion imply that Chark,P(C(i)) ⊂
Chark,P(C) ∩ TiC .

Definition 2.23. We call a component V of Chark,P(C) essential
if it is not contained in any Chark,P(C(i)). Otherwise we say V is non-
essential. We call V a coordinate component if it is contained in a
coordinate torus TiC . Otherwise we say V is non-coordinate.

Note that non-coordinate components are necessarily essential by
the discussion above.

Libgober proved in [75] that any positive dimensional coordinate
component is necessarily non-essential. In [75] he also introduced ideal

sheaves called ideals of quasi-adjunction denoted by AX̄C , where X̄ ∈
(0, 1)r and X̄ is determined by the configuration of singularities of C,
and showed that points in Charnc

1,P(C) (the non-coordinate components of
Char1,P(C)) can be detected by studying the superabundance (see below

for its definition) of a finite family of ideal sheavesAX̄C (d−3−ℓX̄), where
ℓX̄ :=

∑r
i=1 diXi ∈ N (see [75] for details).

It is known that, for a given C, AX̄C satisfies the following properties.

• The number of points X̄ ∈ (0, 1)r determined by the configu-
ration of singularities of C is finite.

• OP2/AX̄C is supported on the singularities of C.
• Let ξ̄ := (ξ1, . . . , ξr) ∈ TC be a torsion point such that ξd11 · . . . ·
ξdr
r = 1, and ξi 6= 1. We define Xi := log ξi

2π
√
−1
∈ (0, 1). Under

these notations, ξ̄ ∈ Char1,P(C) if the homomorphism σX̄ is
not surjective.

(18)

0→ H0(P2,AX̄C (d− 3− ℓX̄))→

→ H0(P2,O(d− 3− ℓX̄))
σX̄→⊕P∈Sing C OP2,P /(AX̄C )P ,
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We say that there is a superabundance of dimension superabun-
dance of dimension dim cokerσX̄ . In Example 2.24 below, we

describe (AX̄C )P in the case when P ∈ Sing(C) is a double point.

Moreover, in that case the exponential of the irreducible system
of equations given by the local and global conditions provides an irre-
ducible component of Char1,P(C) (by an irreducible system of equations
with integer coefficients we mean an equivalent system where the integer
coefficients of the variables are relatively prime).

Example 2.24.

(1) One of the simplest examples of positive dimensional non-
coordinate characteristic varieties is the case of two conics
C = C1 ∪ C2 intersecting at two tacnodes. It is not hard to
see that the pencil generated by C1 and C2 induces an epi-
morphism G := π1(XC)→→ Z ∗Z/2Z =: G2, where a meridian
of C1 is sent to (1, 0) and a meridian of C2 is sent to (−1, 1)
(see [14, §4] for more details on this). By Example 2.18(1)

CharK
1 (C) ⊂ CharK

1 (G2) = V (t̄2 + 1), where the embedding
comes from the following morphism of rings:

ΛK
C := K[t±1

1 , t±1
2 ]/(t21t

2
2 − 1) → ΛK

G2
:= K[t̄±1

1 , t̄±1
2 ]/(t̄22 − 1)

t1 7→ t̄1
t2 7→ t̄−1

1 t̄2

Since the classical Alexander polynomial of C is trivial, Char1(C)
6= TC , and hence {(t,−t−1) | t ∈ C∗} ⊂ TC is an irreducible
component of Char1(C).

(2) Let us describe the local quasiadjunction ideals of the Ak-
singularities (locally described as y2 − xk+1).
(a) If k = 2s, then there is only one local branch. In this case,

r = 1. Given x1 ∈ (0, 1) we associate

(Ax1

C )P :=





(y, xδ)
if there exists δ ∈ N such that

2s− 2δ − 1 < 2(2s+ 1)x1 ≤ 2s− 2δ + 1

O if 2s− 1 < 2(2s+ 1)x1,

(b) If k = 2s − 1, then there are two local branches. In this
case, r = 2. Given (x1, x2) ∈ (0, 1)2 we associate

(A(x1,x2)
C )P :=





(y, xδ)
if there exists δ ∈ N such that

s− δ − 1 < s(x1 + x2) ≤ s− δ
O if s− 1 < s(x1 + x2),
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Finally note that the description of ideals given here is
local, analytical and not global, algebraic. In other words,
if C has an Ak singularity at P , then the equation D of
a curve D belongs to the local ideal mδ := (y, xδ) at P if
the multiplicity of intersection of D with each branch of
C at the singular point P is at least δ.

The role of essential coordinate components is oftentimes important.
For instance, in [8] an example of an Alexander equivalent Zariski pair
was exhibited by computing the characteristic varieties. It turns out that
they only differ in essential coordinate components. The problem with
such components is that up to now, no algebro-geometrical condition
has been found for their existence, so one needs to compute them via a
presentation of the fundamental group.

As we mentioned above, non-coordinate components can be detected
by considering the singularities of C both locally and globally. To be
more specific, all singularities seem to play a role, except for nodes, as
the following result claims.

Proposition 2.25. [31, Proposition 6.1] Let Cλ, λ ∈ (0, 1] be an eq-
uisingular continuous family of curves degenerating into a curve C0 with
the same non-nodal singularities as Cλ. Consider also a continuous fam-
ily of non-coordinate epimorphisms ελ : H1(XCλ

; Z) → Z degenerating
into ε0 : H1(XC0 ; Z)→ Z, then

∆Cλ,ελ
(t) = ∆C0,ε0(t).

Moreover, if C0 has the same number of irreducible components as Cλ,
then one also has

Charnc
1 (Cλ) = Charnc

1 (C0) ⊂ TC0 ,

where Charnc
1 (C) denotes the union of the non-coordinate components of

Char1(C).
Note that the definition of non-coordinate epimorphisms is given in

the paragraph preceding Remark 2.2.
Finally we want to compare Fitting ideals, characteristic varieties,

and Oka-polynomials.

Theorem 2.26. Let C = C0 ∪ C1 ∪ · · · ∪ Cr be a curve where C0
is a transversal line, denote by G its fundamental group, consider ε =
(ε1, ..., εr) ∈ Hom(G,Z) an epimorphism, and the evaluation morphism

ϕε : ΛK
C = K[t±1

1 , . . . , t±1
r ] → ΛK

ε = K[t±1]
ti 7→ tεi .
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Then (t−1)qϕε(F
K
1 (C)) is a principal ideal generated by the Oka-polynomial

∆K
C,ε(t).

In particular, CharK
1 ∩{(tε1 , . . . , tεr ) | t ∈ K∗} = Supp

(
ΛK
ε /∆

K
C,ε(t)

)
.

Proof. Let MK
C,ab be the Alexander invariant. Let

Λ̃K =
ΛK
C [t±1]

(t1−ϕε(t1), . . . , tr−ϕε(tr))
.

Using for example the identity

MK
C,ab =

ker(∂1 : C1(XC,ab)→ C0(XC,ab))

Im(∂2 : C2(XC,ab)→ C1(XC,ab))
,

and the fact that gcd(ε1, . . . , εr) = 1 it is easy to check that

ker(∂1 : C1(XC,ab)→ C0(XC,ab))⊗ Λ̃K

= ker(∂1 : C1(XC,ε)→ C0(XC,ε))⊗ (t− 1)ΛK
ε

and Im(∂2 : C2(XC,ab) → C1(XC,ab)) ⊗ Λ̃K = Im(∂2 : C2(XC,ε) →
C1(XC,ε)). Hence

MK
C,ab ⊗ Λ̃K = MK

C,ε ⊗ (t− 1)ΛK
ε

as ΛK
ε -modules. The results follows from the exact sequence

0→MK
C,ε ⊗ (t− 1)ΛK

ε →MK
C,ε →

MK
C,ε

MK
C,ε ⊗ (t− 1)ΛK

ε

=

(
ΛK
ε

(t− 1)

)q
→ 0

and from [55, Lemma III.6]. Q.E.D.

In other words, varying the epimorphisms ε ∈ Hom(G,Zr) and com-
puting their corresponding Oka-polynomials, one is able to recuperate
Char1(C).

2.3. The special case of line arrangements

Characteristic varieties and Alexander polynomials of line arrange-
ments have been largely studied in the recent years by Cohen-Orlik [32],
Cohen-Suciu [33, 34], M. Falk [46], E. Hironaka [56, 57], Libgober [75],
Libgober-Yuzvinsky [76, 77], M. Marco [81], and S. Yuzvinsky [129]
among others. It turns out that the set of positive dimensional com-
ponents passing through the origin 11 of the characteristic variety of a
line arrangement is combinatorially determined (this is also the case for
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rational arrangements [30]). Components not passing through the origin
sometimes exist [110, Example 10.6], but it is not known whether or not
they are combinatorially determined.

The example we want to describe in more detail was proposed by
G.Rybnikov in the mid 90’s ([102]). He presented a Zariski pair of line
arrangements (in particular, both arrangements had the same combi-
natorics). His final purpose was to prove that both arrangements had
non-isomorphic fundamental groups. An alternative proof was proposed
in [11] using the Alexander invariants plus an extra property that made
the Alexander invariant an invariant of the fundamental group (this is
usually not the case as mentioned in Remark 2.17(2)).

We will briefly recall the concept of combinatorial type or (abstract)
line combinatorics:

Definition 2.27. A combinatorial type (or simply a (line) combi-
natorics) is a couple C := (L,P), where L is a finite set and P is a
family of subsets of L, satisfying that:

(1) For all P ∈ P , #P ≥ 2;
(2) For any ℓ1, ℓ2 ∈ L, ℓ1 6= ℓ2, there exists a unique P ∈ P such

that ℓ1, ℓ2 ∈ P .

An ordered combinatorial type C ord is a combinatorial type where L is
an ordered set.

In what follows we will present a typical technique that allows one
to find Zariski pairs of line arrangements. It is directly related to
the Alexander invariant and extension isomorphisms (Remark 2.17(1)).
Other possible techniques related to Massey products have also been
explored [82]. First we will describe some combinatorial types.

Example 2.28 (Rybnikov’s combinatorics). For details on this ex-
ample see [11]. Let us consider V := F2

3 \ {(0, 0)}, where F2
3 is the

2-dimensional affine space on the field F3 of three elements. We define
CML := (LCML

,PCML
), where LCML

is the set of points in V and PCML
is

the set of affine lines in V . Note that any affine line in V contains either
two or three points of V (which implies property (1) in Definition 2.27).
Also note that any two points in V define exactly one line in V (which
implies property (2) in Definition 2.27). Thus CML is a combinatorial
type that will be referred to as MacLane’s combinatorial type.

Recall that a combinatorics is called real if it admits a realization
in CP2 whose global equation has real coefficients, whereas it is called
strongly real if each line admits a real equation. Note that strongly
real combinatorics admit strongly real curves as equations in the sense
of (C2).
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It is well known that the MacLane combinatorics is real but not
strongly real and that its combinatorial stratum is connected, however
its ordered combinatorial stratum has two connected components whose
representatives have eight complex conjugated lines. Moreover, five of
them are real and the remaining three have coefficients in Q[ω], where

ω := exp (2π
√
−1

3 ).
We will refer to such ordered realizations as

Lω := {ℓ0, ℓ1, ℓ2, ℓ3, ℓ4, ℓ5, ℓ6, ℓ7} and Lω̄ := {ℓ0, ℓ1, ℓ2, ℓ3, ℓ4, ℓ̄5, ℓ̄6, ℓ̄7}.

Let us decompose Lω = L0 ∪ L+ and Lω̄ = L0 ∪ L−, where L0 :=
{ℓ0, ℓ1, ℓ2} and consider a projective transformation ρ fixing the initial
ordered set L0 (that is, ρ(ℓi) = ℓi i = 0, 1, 2) and such that ρL+ and
ρL− intersect both L+ and L− only in double points. Note that ρ can
be chosen with real coefficients. Let us consider the following ordered
arrangements of thirteen lines: Rα,β = L0 ∪ Lα ∪ ρLβ, where α, β ∈
{+,−}. They produce a combinatorics CRyb with 13 lines, 33 double
points, and 15 triple points.

Using complex conjugation one can see that (P2, R+,+) ≈ (P2, R−,−)
and that (P2, R+,−) ≈ (P2, R−,+). Hence, we will only deal with the
Alexander invariants M+ (resp. M−) of R+,+ (resp. R+,−).

One can prove ([11, Theorem 3.8]) that there is no extension iso-
morphism (see Remark 2.17(1)) from M+ to M− as Λ-modules, where
Λ = Z[t1, . . . , t12] and each ti represents a meridian around each affine
line of R±,± in P2 \ ℓ0.

Let C = C0 ∪ C1 ∪ · · · ∪ Cr be a line arrangement. We will denote by
IZ the submodule of ΛZ

C,ab generated by (t1 − 1, . . . , tr − 1) and it will
be referred to as the augmentation ideal.

Proposition 2.29. The truncation MZ
C,ab⊗ΛZ

C/IZ of the Alexander
invariant of C is completely determined by the combinatorics of C.

Proof. A Zariski presentation of G := π1(XC) can be given as in
Definition 1.17, where the set of relations of the presentation are com-
binatorial up to conjugation. For instance, at each ordinary multiple
point P of multiplicity k one obtains the following relations [x

αj

ij
, X ] = 1

where X :=
∏k
j=1 x

αj

ij
, ab = b−1 ·a · b, xi is a meridian of the line ℓi, and

i1, . . . , ik are subindices of the k lines intersecting at P . The result is an
immediate consequence of [11, Proposition 2.15] which assures that the
class of [x

αj

ij
, X ] in MZ

C,ab⊗ΛZ
C/IZ only depends on the Abelian class of

each x
αj

ij
, that is xij , and hence it is combinatorial. Q.E.D.
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Let L denote the combinatorial type of a line arrangement C. Since
H1(XC) only depends on L, it will be denoted it by HL. Consider
Aut(HL) the set of automorphisms of HL. Any h ∈ Aut(HL) induces a
transformation of MZ

C,ab ⊗ ΛZ
C/IZ as follows h([xi, xj ]) = [h(xi), h(xj)]

(since the elements [xi, xj ] generate G′ this defines a transformation,
but not necessarily an automorphism). The set of those elements in
Aut(HL) that induce automorphisms of MZ

C,ab ⊗ ΛZ
C/IZ (as a group)

will be denoted by Aut1(HL). Let Γ(L) ⊂ Aut(HL) denote the set of
automorphisms that preserve the combinatorics. Note that if ϕ ∈ Γ(L),
then ±ϕ ∈ Aut1(HL). Thus {±1} × Γ(L) ⊂ Aut1(HL).

Definition 2.30. A line combinatorics L is called homologically
rigid if Aut1(HL) = {±1} × Γ(L).

Proposition 2.31. If C is a line arrangement whose combinatorics,
say L, is homologically rigid, then the Alexander invariant MZ

C,ab as

a ΛZ
C-module is an invariant of the fundamental group π1(XC) (up to

extension isomorphisms).

Example 2.32. Rybnikov’s combinatorics CRyb is homologically
rigid ([11, Proposition 4.22]). We have mentioned above that no exten-
sion isomorphism exists from M+ to M−. Therefore one concludes that
π1(XR+,+) 6≈ π1(XR+,−).

2.4. Twisted Alexander polynomials

Twisted Alexander polynomials have been developed and exten-
sively studied in the mid 90’s for knots. In many instances where Abelian
invariants were not able to identify a certain property of knots, non-
Abelian invariants such as these, were able to do it – see [67, 79, 124].
Later P. Kirk and C. Livingston [65, 66] were able to give partial answers
to questions of mutation and concordance for general CW-complexes.
Our purpose here is to define and briefly describe twisted Alexander
polynomials for curves and some of their recent applications follow-
ing [31].

Let us consider the general setting of §2.1, that is, a curve C, its
complement XC , the epimorphism ε : G := π1(XC) → Z, Kε := ker ε,
and the infinite cyclic covering XC,ε. In addition let us consider a K-
vector space V of finite dimension and an (anti)representation

ρ : G −→ GL(V ).

Note that V inherits a right K[G]-module structure denoted by Vρ. Let
XC,ab → XC denote the universal Abelian covering of XC . Analogously
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as mentioned in Remark 2.1 and the subsequent discussion, the cellu-
lar chain complex C∗(XC,ab; K) also becomes a finitely generated (left)
K[G]-module generated by the lifts of the cells of XC . Hence, one defines

Cε,ρ∗ (XC ; K[t±1]) := Vρ ⊗K[Kε] C∗(XC,ab)

as a K[t±1]-module, where K[t±1] is a trivial K[G]-module, as follows:

tn · (v ⊗ c) = vγ−n ⊗ γnc

where γ ∈ G verifies ε(γ) = t.

Definition 2.33. The homology of (XC , ε, ρ) is defined as the K[t±1]-
module

Hε,ρ
∗ (XC ; K[t±1]) = H∗(C

ε,ρ(XC ,K[t±1])).

Definition 2.34. The k-th twisted Alexander polynomial ∆k
C,ε,ρ(t)

of (XC , ε, ρ) is the order of Hε,ρ
k (XC ; K[t±1]). For short, we denote by

∆C,ε,ρ(t) =
∆1

C,ε,ρ(t)

∆0
C,ε,ρ(t)

the element of K(t).

See (12) for a definition of order of a module over a principal ideal
domain.

Remark 2.35.

(1) Note that even if ε : G→ Z/mZ was an epimorphism onto the
finite cyclic group Z/mZ, all the definitions can be modified
accordingly to suit this case.

(2) Note that ∆C,ε,ρ(t) does not have to be a polynomial. For
example, we can consider the projective three-cuspidal quartic
Q, whose fundamental groupG is shown in (1). SinceG is finite
we can consider the regular representation ρ : G→ GL(12,K)
and the trivial morphism ε : G→ Z/4Z. In this situation

∆Q,ε,ρ(t) =

{
1
t−1 if char K = 3

1
t2−1 otherwise.

Under certain very general conditions, however, ∆C,ε,ρ(t)
is a polynomial [31, Proposition 5.4].

(3) An alternative definition of ∆C,ε,ρ(t) can be given by means of
Fox calculus – see [124].

Twisted Alexander polynomials can also be seen ([120, 121]) as the
Reidemeister torsion of the complex of vector spaces obtained by ten-
soring the usual CW-complex C∗ describing the homotopy type of XC
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by Vρ and by K(t). Since the Reidemeister torsion behaves well with re-
spect to surgery of complexes, a division formula for twisted Alexander
polynomials that generalizes Theorem 2.10 can be obtained. In order to
do so, one needs the following construction:

Suppose that we are given a curve C, an epimorphism ε : H1(XC)→
Z, and a representation ρ : π1(XC) → GL(V ). Let S3

1, . . . ,S
3
s be suf-

ficiently small 3-spheres around the singular points {P1, ..., Ps} of C.
Denote by Lk = C ∩ S3

k the link of the singularity at Pk. Also choose a
base point Qk ∈ S3

k \ Lk and denote by πk = π1(S3
k \ Lk;Qk) the local

fundamental groups at Pk. The inclusion maps ik : πk → π1(XC) and
(ε, ρ) induce morphisms

εk : πk −→ Z

and ρk : πk −→ GL(V ),

for any k = 1, ..., s. Analogously, one can consider S∞ a sufficiently large
3-sphere, L∞ = C ∩ S∞ the link at infinity and define accordingly π∞,
ε∞, and ρ∞.

Theorem 2.36. [31, Theorem 5.6] Let C be a curve, ε an epimor-
phism, and ρ a unitary representation. Suppose also that the induced
triples (XC ∩ S3

k, εk, ρk), k = 1, ..., s,∞ are acyclic. Then

( r∏

ℓ=1

det(Id−ρ(νℓ)tqℓ)sℓ−χ(Cℓ)
)
·

∏

k=1,...,s,∞
∆Lk,ρk

= ∆C,ε,ρ ·∆C,ε,ρ · detϕε,ρ(C),

where νℓ is the homology class of a meridian of the irreducible compo-
nent Cℓ, sℓ = #Sing(C) ∩ Cℓ, and ϕε,ρ(C) is an intersection form on
Hε,ρ

2 (XC ,Q[t±1]) with twisted coefficients.

Remark 2.37. The condition of acyclicity is purely technical and can
be expressed as follows. A triple (X, ε, ρ) is acyclic if the chain complex
Cε,ρ∗ (X ; K(t)) is acyclic over K(t).

In the irreducible case, something is known about the roots of the
twisted Alexander polynomial of unitary representations.

Theorem 2.38. [78, Theorem 5.3.] Let C be an irreducible curve
and L is a line at infinity. Let ρ be a unitary representation of the
fundamental group and let K be the extension of Q generated by the
eigenvalues of ρ(γ) where γ is a meridian of C. Then the roots of ∆ρ(C)
belong to a cyclotomic extension of K.
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Note that in this case the morphism ε is uniquely determined up to
orientation.

Finally, let us point out that twisted Alexander polynomials are sen-
sitive to nodal degenerations, that is, Proposition 2.25 is no longer true
for twisted Alexander polynomials as the following example illustrates.

We say a plane projective curve D of degree, say d, is a type-I curve
if D is irreducible and has an ordinary (d−2)-ple point at some point, say
P . Consider D a type-I curve and let L1 and L2 be lines through P such
that either Li is tangent to a smooth point Pi ∈ D or Li passes through
a double point Pi 6= P of type A2r. Let us denote C = L1 + L2 + D.
Assume that D has only nodes as singular points apart from P . We
recall the following properties of such curves:

• There exist nodal degenerationsDλ → D0 of non-rational type-
I curves Dλ (λ > 0) into a rational type-I curve D0 ([13,
Corollary 3]).
• Let Dλ → D0 be a nodal degeneration as above. This produces

a degeneration Cλ → C0, where Cλ = L1 + L2 + Dλ, λ ≥ 0. If
Gλ denotes π1(XDλ

), then Gλ, λ > 0 is Abelian, whereas G0

is not ([13, Proposition 6.1]). Moreover, a presentation of G0

can be given as follows:

G0 =〈 ℓ, x1, x2 | [x1, x2] = 1, ℓ−1x1ℓ = x2, ℓ
−1x2ℓ = x1 〉,

where ℓ is a meridian around a line and x1, x2 are meridians
around D0.

Consider Cλ → C0 a degeneration as above. Let us denote by ν1,
ν2 and νℓ the homology classes of the corresponding generators of G0.
Since x1 and x2 are meridians of the same irreducible component, one
has that ν = ν1 = ν2. Our purpose is to find a suitable representation
that produces a sensitive twisted Alexander polynomial. Let us consider
ε the usual morphism ε(νℓ) = ε(ν) = 1, and the rank 2 representation

ρ(ℓ) =

(
1 0
0 −1

)
, ρ(x1) =

(
−1 0
1 −1

)
, ρ(x2) =

(
−1 0
−1 −1

)
.

Using ε and ρ one obtains

(19) ∆C0,ε,ρ(t) = (t2 − 1).

Note that ρ(G0) ∼= Z/2Z ∗ Z/2Z.
Finally note that, by Proposition 2.25, the classical Alexander poly-

nomial ∆Cλ
(t) and the torsion non-coordinate characteristic varieties

are invariant for λ ∈ [0, 1]. Since Gλ is Abelian, this implies that
∆C1,ε = ∆C0,ε = (t− 1) and Char∗1(C1) = Char∗1(C0) = ∅.
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On the other hand, formula (19) shows that C0 has a non-trivial
twisted Alexander polynomial, whereas any twisted Alexander polyno-
mial of Cλ, λ ∈ (0, 1] is trivial since Gλ is Abelian.

2.5. Computational methods

We have used the following result which is a straightforward gener-
alization of [11, Proposition 2.8].

Proposition 2.39. Let 〈x̄, ȳ; W̄ 〉 be a presentation of G such that

(1) x̄ be the free group generated the words x1, ..., xr whose Abelian
classes generate G/G′ = Zq ⊕Z/p1Z⊕ · · · ⊕Z/psZ, q+ s = r,

(2) ȳ = 〈y1, . . . , yu〉 ⊂ G′,
(3) ∀w(x̄, ȳ) ∈ W̄ , one has that w(x̄, 1) is a product of commutators

in x̄ and xpi

q+i.

Then the module MZ
G admits a presentation Γ̃/(T + J +W), where

Γ̃ :=


 ⊕

1≤i<j≤r
xijΛ

Z


⊕


 ⊕

1≤k≤u
ykΛ

Z


 ,

(1) ΛZ = Z[t±1
1 , . . . , t±1

r ]/(tp1q+1 − 1, . . . , tps
r − 1),

(2) T is the submodule of Γ̃ generated by the torsion relations
tpi

i+q − 1

ti+q − 1
, i = 1, . . . , s,

(3) J is the Jacobian submodule of Γ̃ generated by the relations

J(i, j, k) := (ti−1)xjk−(tj−1)xik+(tk−1)xij , 1 ≤ i < j < k ≤ r, and

(4) W is the submodule of Γ̃ generated by subset of Γ̃ obtained by

rewriting the relations W̄ in terms of Γ̃.

Proof. The same proof used in [11, Proposition 2.8] can be ap-
plied using the Reidemeister-Schreier method to obtain a presentation
of G′/G′′ (which is not finitely presented in general) and then apply the
module structure to give the finite presentation as a module. Q.E.D.

By Proposition 1.18, the fundamental group of the complement of
any plane curve admits a presentation as in Proposition 2.39. In order
to obtain the submodule W the following properties are very useful.

Proposition 2.40. The following equalities hold in MZ
G:

(1) [x, x] = 0,
(2) [x, y] = −[y, x],
(3) [x−1, y] = −t−1

x [x, y],
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(4) [x, p] = (tx − 1)p ∀p ∈ G′,
(5) [xy, z] = [x, z] + tx[y, z],
(6) [x ∗ y, z] = [y, z] + (tz − 1)[y, x], where x ∗ y = xyx−1,

(7) [x1 ·. . .·xn, y1 ·. . .·ym] =

n∑

i=1

m∑

j=1

Tij [xi, yj], where Tij =

i−1∏

k=1

txk
·

j−1∏

ℓ=1

tyℓ
.

(8) Jacobi relations:

J(x, y, z) := (tx − 1)[y, z] + (ty − 1)[z, x] + (tz − 1)[x, y] = 0,

where tx represents the image of x ∈ G in ΛZ
G.

Proof. Property (1) is obvious (it is even true in G). For (2) note

that xyx−1y−1 =
(
yxy−1x−1

)−1
. Property (3) follows from x−1yxy−1 =

x−1
(
xyx−1y−1

)−1
x. To prove (4) note that xpx−1 p−1 = txp−p. Prop-

erty (5) follows from [xy, z] = x
(
yzy−1z−1

)
x−1

(
xzx−1z−1

)
. For (6),

[x ∗ y, z]= [[x, y]y, z]
(5)
= [[x, y], z] + [y, z]

(4)
= [y, z]− (tz − 1)[x, y]

(2)
= [y, z] + (tz − 1)[y, x].

Property (7) follows by induction and using property (2). Finally, for
the Jacobi relations, note that on the one hand, by (5)

(20) [xy, z] = [x, z] + tx[y, z].

On the other hand, [xy, z] = [(x∗ y)x, z], then by properties (5) and (6),
one has
(21)
[xy, z] = [(x∗y)x, z] (5)

= [(x∗y), z]+ty[x, z] = [y, z]−(tz−1)[x, y]+ty[x, z].

The difference between (20) and (21) equals zero and the result follows.
Q.E.D.

§3. Non-Abelian Branched coverings and Zariski pairs

In §2 we have mainly dealt with invariants associated with different
sorts of Abelian coverings. In this section we will give an approach to
invariants related to non-Abelian coverings. A more group-theoretical
approach is given by the Hall invariants studied by Matei-Suciu [83] in
relation with the Alexander invariant. The Hall invariant δΓ(G) of a
group G associated with a finite group Γ is defined as the number of
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epimorphisms from G to Γ up to automorphisms of Γ. Matei-Suciu [83]
prove that in the case of metabelian groups Γ = (Z/qZ)s ⋊ Z/pZ, where
p and q are distinct primes and s is the order of q mod p in (Z/pZ)×,
the Hall invariant δΓ(G) can be computed in terms of the characteristic

varieties CharFqs (G).
Our approach here is more algebraic, in the sense that we ask our-

selves whether or not there are any algebraic conditions on the singu-
lar points of a curve C that can characterize the existence of certain
metabelian coverings (in this case dihedral coverings). A posteriori tor-

sion points in CharFqs (C) have an algebraic interpretation in terms of
position of singularities.

3.1. Preliminaries

LetX and Y be normal varieties. We callX a (branched) covering of
Y if there exists a finite surjective morphism π : X → Y . When needed,
the covering morphism will be specified as a covering π : X → Y .

Let π : X → Y be a covering. The corresponding rational function
fields will be denoted by C(X) and C(Y ), respectively. Note that C(X)
is an algebraic extension of C(Y ) and deg π = [C(X) : C(Y )] (see e.g.
[86, p. 46, Proposition 3.17]).

Definition 3.1. Let X,Y and π : X → Y be as above.

(i) We callX a Galois covering of Y if the field extension is Galois.
(ii) Let G be a finite group. We call X a G-covering if X is a

Galois covering of Y with Gal(C(X)/C(Y )) ∼= G.

We say that x ∈ X is a ramification point of π if π∗mY,f(x)OX,x 6=
mX,x , where mX,x and mY,f(x) are the maximal ideals of OX,x and
OY,f(x), respectively. Geometrically, this means that π is not a local
isomorphism around x. The set of all ramification points will be denoted
by Rπ. Its image π(Rπ) is the branch locus of π and will be denoted by
∆π or ∆(X/Y ). By the purity of the branch locus [133], if Y is smooth
then ∆π is an algebraic subset of pure codimension 1.

When we apply the algebraic theory of branched coverings to the
study of Zariski pairs, we consider their associated analytic spaces. Here
we summarize some results from algebraic geometry and analytic geom-
etry which will be needed later.

Let Y be a normal algebraic variety over C. We denote by Y an its
associated analytic space. The following statements are key in relating
branched coverings of Y with those of Y an.

Theorem 3.2. Let Y be a proper normal variety over C. Let X
be a normal complex analytic space and let f : X → Y an be a proper
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morphism with finite fiber. Then there exists a unique normal variety
X (up to isomorphism over Y ) and a finite morphism π : X → Y such
Xan ∼= X and πan = f (up to isomorphism between Xan and X ).

For a proof, see [52, EXPOSÉ XII, Corollaire 4.6]. The following

theorem can also be found in [52, EXPOSÉ XII] or [51, Theorem 5.4].

Theorem of Grauert-Remmert 3.3. Let Y be a normal analytic
space and let B be a closed analytic subset of codimension 1. Let πo :
U → Y \ B be an étale finite covering of Y \ B. Then there exist a
normal analytic space X containing U and a finite surjective morphism
π : X → Y such that π−1(Y \ B) = U and π|U = πo. Moreover X is
unique up to isomorphism over Y.

Notation 3.4. Let π : X → Y be a G-covering of a smooth pro-
jective variety Y . Let B be a reduced divisor on Y whose irreducible
decomposition will be denoted by B = B1 + · · ·+Br. Given a morphism
σ : X → Y between smooth projective varieties and a divisor D in Y ,
σ∗(D) (resp. σ−1(D)) will denote its inverse image as a divisor (resp.
as a set). Its strict transform will be denoted by σ−1

q (D).

Definition 3.5. A covering π is said to be branched at e1B1 + · · ·+
erBr (ei ≥ 2) if

• ∆π = B and
• the ramification index along the smooth part of Ban

i is ei.
Namely, for any smooth point y ∈ Ban

i and x ∈ (πan)−1(y),
there exist neighborhoods Ux and Vy , respectively, such that
πan is locally given by

(z1, . . . , zn) 7→ (w1, . . . , wn) = (zei

1 , . . . , zn),

where (z1, . . . , zn) and (w1, . . . , wn) denote local coordinates on
Ux and Uy, respectively, such that x = (0, . . . , 0), y = (0, . . . , 0)
and Ban

i ∩ Vy is given by w1 = 0.

Let γi be a meridian around Bi as in Figure 1, and [γi] denote its
class in π1(Y

an \Ban, po).

Proposition 3.6. Let Y be a smooth projective variety and let B =
B1 + · · · + Br be the decomposition into irreducible components of a
reduced divisor B on Y . If there exists a G-covering π : X → Y branched
at e1B1 + · · ·+erBr, then there exists a normal subgroup Hπ of π1(Y

an\
Ban, po) such that:

(i) [γi]
ei ∈ Hπ, [γi]

k 6∈ Hπ, (1 ≤ k ≤ ei − 1), and
(ii) π1(Y

an \Ban, po)/Hπ
∼= G.
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Conversely, if there exists a normal subgroup H of π1(Y
an \Ban, po)

satisfying the above two conditions for Hπ, then there exists a G-covering
πH : XH → Y branched at e1B1 + · · ·+ erBr.

Proof. Since G acts on X such that Y = X/G ([114]), G also acts
on Xan ([52, §3]) transitively on each fiber (πan)−1(y), y ∈ Y . Hence
Xan/G = Y an. Since Xan \ (πan)−1(Ban) → Y an \ Ban is étale, our
statement easily follows from the standard theory of covering spaces.

Conversely, let H be the normal subgroup in the statement. Let X ′
H

be an étale covering of Y an \Ban corresponding to H . By Theorem 3.3,
there exists a normal analytic space XH and a finite morphism πan

H :
XH → Y an extending the covering morphism X ′

H → Y an \ Ban. Since
G ∼= π1(Y

an \ Ban, po)/H acts on X ′
H so that X ′

H/G = Y an \ Ban, G
also acts on XH ([52, Proposition 5.3]). Hence one has a morphism
XH/H → Y , which is finite and an isomorphism on Y an \ Ban. By
Zariski’s main theorem (e.g., see [122, Theorem 1.11]), XH/G ∼= Y .

By Theorem 3.2, there exists a normal variety XH and a finite mor-
phism πH : XH → Y . Since G acts on XH , it also acts on XH over
Y . This implies that G ⊂ AutC(Y )(C(X)). Since deg πH = #G, XH

is a G-covering of Y and thus the statement on the ramification index
follows from how we extend X ′

H to XH along Bi. Q.E.D.

Remark 3.7. We recall some facts on Galois theory of Galois cover-
ings. Let Y be a normal algebraic variety. Let K be a finite extension
of C(Y ) and let XK be the normalization of Y in K called the “K-
normalization of Y ”. There exists a canonical finite surjective morphism
πK : XK → Y . Hence XK is a covering of Y with C(XK) = K. If K is
a Galois extension, then πK : XK → Y is a Galois covering. Conversely,
note that any covering π : X → Y defines a finite field extension C(X)
of C(Y ).

Let G be a finite group and let H be a normal subgroup. Consider
a Galois extension K of C(Y ) with Gal(K/C(Y )) ∼= G.

Let π : X → Y be aG-covering corresponding the extensionK/C(Y ).
Let KH be the fixed field by H . The field KH is also a Galois exten-
sion of C(Y ) with Gal(KH/C(Y )) ∼= G/H . Let DH(X/Y ) be the KH-
normalization of C(Y ). Since K/KH is an H-extension and KH/C(Y )
is a G/H-extension, XK is an H-covering of DH(X/Y ) and DH(X/Y )
is a G/H-covering of Y . The corresponding covering morphisms will be
denoted by

(22) β1,H(π) : DH(X/Y )→ Y, and β2,H(π) : X → DH(X/Y ).

Note that π = β1,H(π) ◦ β2,H(π).
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3.2. Dihedral coverings

Let D2n denote the dihedral group of order 2n. The following
presentation of D2n will be extensively used throughout this section
〈σ, τ | σ2 = τn = (στ)2 = 1〉.

Remark 3.8. Since we consider non-Abelian branched coverings, we
will always assume that #D2n ≥ 6.

Following the notation introduced in §3.1, we will study the case
G = D2n and H = 〈τ〉. Since there is no ambiguity for H , we will
use notations D(X/Y ), β1(π) and β2(π) for simplicity. The notion of
generic and non-generic D2n-coverings will be key in our arguments.

Definition 3.9. AD2n-covering π : X → Y of a smooth variety Y is
said to be generic if ∆π = ∆β1(π), otherwise π is said to be non-generic.

Note that, if π : X → Y is a D2n-covering, then D(X/Y ) is a
double covering of Y and X is an n-cyclic covering of D(X/Y ), whose
morphisms will be denoted by β1(π) and β2(π) respectively, as in (22).

Remark 3.10. In what follows, Y will be assumed to be smooth and
simply connected. Also note that ∼ will denote linear equivalence of
divisors.

Let us start with a sufficient condition for the existence of D2n-
coverings.

Proposition 3.11. Let Z be a smooth double covering of Y with
covering morphism f : Z → Y and D be an effective divisor on Z such
that:

(i) D and σ∗D have no common component, where σ denotes the
covering transformation,

(ii) if D =
∑h

i=1 aiDi is the irreducible decomposition, then for all
i = 1, . . . , h, 0 < ai and gcd{a1, . . . , ah, n} = 1, and

(iii) there exists a line bundle L on Z such that D − σ∗D ∼ nL.
Then there exists a D2n-covering X of Y such that

(a) D(X/Y ) = Z,
(b) the branch locus ∆β2(π) of β2(π) is contained in Supp(D +

σ∗D), i.e., ∆(X/Y ) ⊂ ∆β1(π) ∪ f(Supp(D)) and

(c) if Di ⊂ ∆β2(π), then the ramification index along Di is
n

gcd(n, ai)
.
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Proof. For n odd, our statement is a special case of [117, Propo-
sition 1.1], except for part (c), which follows from the proof of [117,
Proposition 0.4]. For n even, a similar proof to that of [117, Proposition
1.1] also works by [117, Remark 3.1, Proposition 0.6]. Q.E.D.

As for a necessary condition for the existence of D2n-coverings, one
has the following:

Proposition 3.12 ([112, §2, §3]). Let π : X → Y be a D2n-covering
such that D(X/Y ) is smooth. Let us denote by σ the covering transfor-
mation of β1(π). Then there exist (possibly empty) effective divisors,
D1 and D2, and a line bundle L on D(X/Y ) satisfying the following
conditions:

(i) D1 and σ∗D1 have no common components. Moreover, if we
denote its irreducible decomposition by

∑
j ajD1,j , then 0 ≤

aj < n.
(ii) If D2 6= ∅, then n is even and D2 is a reduced divisor such that

there exists a divisor B2 on Y satisfying D2 = f∗B2.
(iii) D1 + n

2D2 − σ∗D1 ∼ nL.
(iv) ∆(X/D(X/Y )) = Supp(D1 + σ∗D1 + D2). The ramification

index along D1,j (resp. an irreducible component of D2) is
n

gcd(ai, n)
(resp. 2).

Corollary 3.13. Let D be an irreducible component of β1(π)(∆β2(π)).

If the ramification index of β2(π) along β1(π)−1(D) is > 2, then the di-
visor β1(π)∗D is of the form D′ + σ∗D′ for some irreducible divisor D′

on D(X/Y ) such that D′ 6= σ∗D′.

3.3. Zariski’s example and D6-coverings

Let us review Zariski’s example of sextics with six cusps using D6-
coverings as in Zariski’s original proof. Our purpose is to give a de-
tailed proof in modern language of (Z5). Let us start with the following
Lemma.

Lemma 3.14. Let B be a sextic with 6 cusps such that a D6-
covering π : S → P2 with ∆(S/P2) = B exists. Then the following
statements hold:

(i) β1(π) : D(S/P2)→ P2 is a double covering branched at 2B.
(ii) The branch locus of β2(π) : S → D(S/P2) is contained in

Sing(D(S/P2)) and S is smooth.
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Proof. For (i), since P2 is simply connected one has ∆β1(π) 6=
∅. This means ∆β1(π) = B. For (ii), we first show that ∆β2(π) ⊂
Sing(D(S/P2)) and ∆β2(π) 6= ∅. Since D6 has no element of order 6,

β2(π) cannot be branched along β1(π)−1(B). This means that ∆β2(π) ⊂
Sing(D(S/P2)). Let µ : Z → D(S/P2) be the minimal resolution. Since
KZ ∼ 0 and the irregularity q = 0 by a general theory of double coverings
(see [58, §2]) one has that Z is a K3-surface. In particular, Z is simply
connected. If β2(π) : S → D(S/P2) is unramified, then Z ×D(S/P2) S
gives an étale cyclic triple covering of Z, but this is impossible. Hence
∆β2(π) 6= ∅. By [118, Lemma 8.8], ∆β2(π) = Sing(D(S/P2)). Finally, the
local structure of π around a cusp of B (described in [111, §2, Example
3]) forces S to be smooth. Q.E.D.

Lemma 3.15. Let B be a sextic with 6 cusps. If a D6-covering
π : S → P2 branched at 2B exists, then

(i) the quotient surface X := S/〈σ〉 is smooth for any element of
σ ∈ D6 of order 2,

(ii) KX ∼ −π∗l, where π : X → P2 denotes the induced non-Galois
triple covering and l denotes a line of P2, and

(iii) X is a del-Pezzo surface of degree 3.

Proof. For (i), due to the local structure of π : S → P2 around each
cusp of B ([112, Example 3, §2]), π∗B is of the form 2(R1 + R2 + R3),
where Ri is a smooth divisor such that τ acts on the set {R1, R2, R3}
transitively. One may assume that the fixed locus of σ is R1, and this
implies that X is smooth.
For (ii) and (iii), note that S is a K3-surface. Let us assume that the
ramification locus of the quotient morphism α : S → X is R1. Since
R2

1 = 6 and R1 is smooth, R1 is numerically effective by [19, Proposition
VIII 13]. Also note that 0 ∼ KS ∼ α∗KX+R1, and hence α∗KX ∼ −R1.
Thus −KX is numerically effective and K2

X = 3. This implies that X is
a rational surface.
Now choose a general point x of P2. Let ρ : X̂ → X be the composition
of the blowing-ups at the three points of π−1(x). The pencil of lines

through x on P2 induces an elliptic fibration ϕx : X̂ → P1 and the three
exceptional curves of ρ give sections of ϕx.

In order to complete the proof we need the following result.

Claim 3.16. ϕx : X̂ → P1 is relatively minimal.

Proof of Claim. Since K2
X̂

= 0 and X̂ is a rational surface, the

topological Euler number of X̂ is 12. This implies that ϕx is relatively
minimal. Q.E.D.
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By this Claim, KX̂ ∼ −F , F being a fiber of ϕx. By our construction

of X̂ , ρ∗(π∗l) ∼ F + E1 + E2 + E3, where Ei (i = 1, 2, 3) denote the
exceptional curves of ρ. Hence

ρ∗(π∗l) ∼ F + E1 + E2 + E3 ∼ −KX̂ + E1 + E2 + E3 ∼ −ρ∗(KX).

Therefore π∗l ∼ −KX . In particular, −KX is ample and thus X is a
del-Pezzo surface of degree 3. Q.E.D.

We are now in a position to prove the following:

Proposition 3.17. Let B be a sextic with 6 cusps. Then there exists
a D6-covering branched at 2B if and only if B is given by an equation
of the form F 3 +G2 = 0, where F (X0, X1, X2) and G(X0, X1, X2) are
homogeneous polynomials of degree 2 and 3, respectively.

Proof. Suppose that B is given by the equation F 3 + G2 = 0 as
above. Consider the cubic surface X in P3 given by

X : X3
3 + 3F (X0, X1, X2)X3 + 2G(X0, X1, X2) = 0,

where [X0 : X1 : X2 : X3] denotes a homogeneous coordinate system
of P3. Let P = [0 : 0 : 0 : 1] and let prP : P3 99K P2 be the projec-
tion centered at P . The restriction prP to X gives a non-Galois triple
covering prP |X : X → P2. By its defining equation, ∆(X/P2) = B.

The Galois closure K of C(X) is a D6-extension of C(P2) and the K-
normalization S of P2 is a D6-covering π : S → P2. By [111, Lemma
1.4], ∆(S/P2) = ∆(X/P2) = B and by Lemma 3.14, π is branched at
2B. These arguments follow Zariski’s original idea.

The converse is the less detailed part in [130]. Suppose that there
exists a D6-covering π : S → P2 branched at 2B. Let π : X → P2

be a non-Galois triple covering as in Lemma 3.15. By [111, Lemma
1.4], ∆(S/P2) = ∆(X/P2) = B and X is a del-Pezzo surface of degree 3
according to Lemma 3.15. Hence X is embedded as a cubic hypersurface
in P3 and its embedding is given by φ|−KX |. Moreover, since KX ∼ −π∗l
by Lemma 3.15, one has the following commutative diagram:

X
φ|−KX |−−−−−→ P3 \ {P0}

π

y
ypr

P2 P2,

where pr denotes the projection centered at a suitable point P0 ∈ P3 \
φ|−KX |(X). By choosing homogeneous coordinates [X0 : X1 : X2 : X3]
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appropriately, one may assume that P0 = [0 : 0 : 0 : 1]. This implies
that pr is given by

[X0 : X1 : X2 : X3] 7→ [X0 : X1 : X2],

and that φ|−KX |(X) is given by the equation

X3
3 + g1(X0, X1, X2)X

2
3 + g2(X0, X1, X2)X3 + g3(X0, X1, X2) = 0,

where gi(X0, X1, X2) are homogeneous polynomials of degree i. Now the
defining equation of B is given by the discriminant of the above cubic
equation which is

−4

(
g2 −

1

3
g2
1

)3

− 27

(
−1

3
g1g2 + g3 +

2

27
g3
1

)2

.

Q.E.D.

Remark 3.18. Any sextic given by an equation of the form F 3 +
G2 = 0, where F and G are homogeneous polynomials of degrees 2 and
3, respectively, is called a (2, 3)-torus sextic. Zariski pairs of sextics
given by (2, 3)-torus and non-torus sextics are extensively studied by
Oka [95, 96]. He uses Alexander polynomials to distinguish the topology
of the complements. It may be interesting to revisit his proofs using the
geometry of cubic surfaces.

3.4. Generic D2n-coverings and Zariski pairs

In this section, an application of generic D2n-coverings for the study
of Zariski pairs will be shown. This method was used in [12, 15, 113,
115, 116]. Let Σ be a smooth projective surface and let B be a reduced
divisor on Σ.

Remark 3.19. Thoughout this section, Σ is assumed to be simply
connected.

Our purpose is to answer the following question:

Question 3.20. Are there necessary and sufficient algebraic condi-
tions on B for the existence of generic D2n-coverings with ∆π = B?

Suppose that Question 3.20 has a positive answer and let (P ) be
such a condition. The existence of a pair (B1, B2) of reduced divisors on
Σ such that B1 satisfies (P ), while B2 does not, implies that (Σ, B1) 6≈
(Σ, B2). Hence if Σ = P2 and the combinatorial data of B1 and B2 are
the same, (B1, B2) is a Zariski pair.
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Now let us consider Question 3.20 in the case of n odd. The existence
of a double covering f ′ : Z ′ → Σ with ∆f ′ = B will always be assumed.
Let

Z ′ ←−−−−
µ

Z

f ′

y
yf

Σ ←−−−−
ρ

W.

denote the canonical resolution of Z ′ (see [58] for a definition).

Lemma 3.21. Let π : S → Σ be a generic D2n-covering with ∆π =
B (n is not necessarily odd in this lemma). Then

(i) D(S/Σ) ∼= Z ′ over Σ and
(ii) ∆β2(π) ⊂ Sing(D(S/Σ)).

Proof. By hypothesis, the branch locus of β1(π) : D(S/Σ) → Σ is
B. Since Σ is simply connected, any double covering of Σ is determined
by its branch locus up to isomorphism over Σ. This implies (i). The
statement (ii) is immediate by hypothesis. Q.E.D.

Suppose that a generic D2n-covering π : S → Σ with ∆π = B exists.
Let S̃ be the C(S)-normalization of W and let µ̃ : S̃ → S be an induced

morphism. The induced covering morphism from S̃ to W will be denoted
by π̃. Note that S̃ is again a D2n-covering and one may assume that
D(S̃/W ) = Z, since C(Z ′) = C(Z) and the C(S)-normalization of Z is

also S̃. Thus one has the following commutative diagram:

S ←−−−−
µ̃

S̃

β2(π)

y
yβ2(π̃)

Z ′ ←−−−−
µ

Z

f ′=β1(π)

y
yf=β1(π̃)

Σ ←−−−−
ρ

W.

By Lemma 3.21(ii), β2(π̃) : S̃ → Z is an n-cyclic covering whose
branch locus is contained in the exceptional locus of µ.

Conversely, suppose that there exists an n-cyclic covering g : X → Z
such that:

(D1) ∆g is contained in the exceptional locus of µ and
(D2) the composition f ◦ g : X →W gives rise to a D2n-covering.
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The Stein factorization of ρ◦ f ◦ g : X → Σ gives a generic D2n-covering
of Σ with ∆(X/Σ) = B. Thus Question 3.20 is reduced to the following:

Question 3.22. Find a sufficient and necessary condition for the
existence of an n-cyclic covering g : X → Z satisfying (D1) and (D2)
above.

As usual, let us denote by σ the covering transformation of the
double covering f . Propositions 3.11 and 3.12 provide a partial answer
to Question 3.22 as follows:

Proposition 3.23. Assume that Z is simply connected. A generic
D2p-covering (p odd prime) π : S → Σ with ∆π = B exists if and only
if there exist a non-empty effective divisor D and a line bundle L on Z
satisfying the following conditions:

(i) D and σ∗D have no common components. Moreover, if D =∑
i aiDi denotes its irreducible decomposition, then gcd(ai, p) =

1.
(ii) Supp(D + σ∗D) is contained in the exceptional set of µ.
(iii) D − σ∗D ∼ pL.
Proof. As noted above, a generic D2n-covering π : S → Σ with

∆π = B exists if and only if there exists another D2n-covering π̃ : S̃ →
W satisfying conditions (D1)-(D2) above. Applying Propositions 3.11
and 3.12 to β2(π̃) = f : Z →W the statement follows, since the branch
locus of β2(π̃) is non-empty and is contained in the exceptional set of µ.

Q.E.D.

From now on, we assume that singularities of B are at most simple
singularities (see [20] for simple singularities). In this case, another
version of Proposition 3.23 can be stated. In order to explain it, we
need some preparation.

Let us keep the assumption in Proposition 3.23. Since Z is simply
connected, H2(Z,Z) is a unimodular lattice with respect to the inter-
section pairing. Let NS(Z) be the Néron-Severi group of Z. It is a
sublattice of H2(Z,Z) such that H2(Z,Z)/NS(Z) is torsion-free. Since
Z is simply connected, the Picard group Pic(Z) coincides with NS(Z).
For x ∈ Sing(Z ′), Rx denotes the subgroup of NS(Z) generated by the
irreducible components of the exceptional set arising from x. The lat-
tice Rx is a negative definite sublattice of NS(Z). One can define the
following sublattice of NS(Z):

T :=
⊕

x∈Sing(Z′)

Rx.
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The type of x GRx

An Z/(n+ 1)Z
Dn n ≡ 1 mod 2 Z/4Z
Dn n ≡ 0 mod 2 (Z/2Z)⊕2

E6 Z/3Z
E7 Z/2Z
E8 {0}

Table 2.

Given a lattice L, its dual lattice will be denoted by L∨ and its quo-
tient modulo L by GL := L∨/L. Associated with T one has GT ∼=⊕

x∈Sing(Z′)GRx
. For a rational double point x, the results of Table 2

are well known.
One can consider both Rx and R∨

x as subgroups of Rx⊗Q and give a
Q-divisor which produces a generator of GRx

in the cases of x = E6 and
An. This will come in handy for later use. For this purpose, let us label
the irreducible components of the exceptional divisors for singularities
of type An and E6 as in Figure 10. Note that σ∗Θk = Θn+1−k if x is of
type An, and σ∗Θ1 = Θ6, σ

∗Θ2 = Θ5 if x is of type E6.

Fig. 10.

Θ1 Θ2 Θn−1Θn

Θ1

Θ2
Θ3

Θ4 Θ6

Θ5
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Lemma 3.24. GRx
is generated by the class of Q-divisors

Dx

n+ 1

(resp.
Dx

3
) for x of type An (resp. x of type E6), where

Dx =





n
2∑

k=1

(n+ 1− k)(Θk −Θn+1−k) if x is of type An, n even

∑n−1
2

k=1 (n+ 1− k)(Θk −Θn−k)+
n+1

2 Θ n+1
2

if x is of type An, n odd,

and
Dx = (Θ1 −Θ5) + 2(Θ2 −Θ6) if x is of type E6.

Proof. Our statement easily follows by considering the inverse of
the intersection matrix of Rx. Q.E.D.

Let us now concentrate on the torsion part (NS(Z)/T )tor of NS(Z)/T .

Lemma 3.25.

(NS(Z)/T )tor
∼= T⊥⊥/T,

where •⊥ denotes the orthogonal complement in H2(Z,Z).

Proof. Since H2(Z,Z)/NS(Z) is torsion free, one has NS(Z)⊥⊥ =
NS(Z). This implies that T⊥⊥ ⊂ NS(Z). Since (NS(Z)/T ))tor ⊂
T⊥⊥/T , the result follows. Q.E.D.

Let ν be the homomorphism T⊥⊥ → T∨ → GT . Let L be an
element in T⊥⊥ such that its image in GT has order p (p odd prime).
Since GT ∼=

⊕
x∈Sing(Z′)GRx

, one has

ν(L) = (γx)x∈Sing(Z′) ∈
⊕

x∈Sing(Z′)

GRx
.

Note that γx = 0 unless x is a singular point of type An (n+1 ≡ 0 mod p)
or type E6 (the latter case happens only when p = 3).

Lemma 3.26. Assume that γx 6= 0. If x is a singular point of type
An (n+ 1 ≡ 0 mod p), then

γx = the class of kx

p Dx 0 < kx ≤ p− 1,

and if x is a singular point of type E6, then p = 3 and

γx = the class of kx

3 Dx kx = 1, 2,

where Dx denotes the divisor in Lemma 3.24.
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Proof. Since Rx is a cyclic group generated by the class described
in Lemma 3.24, the result follows. Q.E.D.

Now we are in a position to state another version of Proposition 3.23.

Theorem 3.27. A generic D2p-covering (p odd prime) of Σ with
∆π = B exists if and only if NS(Z)/T has a p-torsion element.

Proof. Suppose that there exists a genericD2p-covering with branch
locus B. Then by Proposition 3.23, there exists a non-empty divisor D
and a line bundle L satisfying the three conditions. One can show that
L gives rise to a p-torsion element of NS(Z)/T . By the condition (iii)
of Proposition 3.23, pL ∈ T . Hence it is enough to show that L 6∈ T .
Suppose that L ∈ T . Hence L ∼ ∑x∈Sing(Z′)

∑
imi,xΘi,x, where Θi,x

denotes the irreducible components of the exceptional set arising from
x. By plugging this relation into the one given in condition (iii), one
obtains a non-trivial linear relation among Θi,x’s. This leads to contra-
diction.

For the converse, let us suppose that NS(Z)/T has a p-torsion el-
ement. By Lemma 3.25, there exists an element L1 in T⊥⊥ such that
whose class in T⊥⊥/T has torsion p. By Lemma 3.26,

L1 ∼Q

∑

x∈Sing(Z′)

kx
p
Dx mod T,

where ∼Q denotes Q-linear equivalence of divisors. This implies that
there exists an element L2 in T such that

L1 + L2 ∼Q

∑

x∈Sing(Z′),γx 6=0

kx
p
Dx.

Let us define a divisor D on Z as follows:

D =
∑

x∈Sing(Z′)

D+
x ,

where D+
x is defined as:

• D+
x = 0, if γx = 0.

• D+
x = kx

(∑n
2

i=1(n+ 1− i)Θi

)
, if γx 6= 0 and x is of type An

(n even).

• D+
x = kx

(∑n−1
2

i=1 (n+ 1− i)Θi

)
, if γx 6= 0 and x is of type An

(n odd).
• D+

x = kx(Θ1 + 2Θ2), if γx 6= 0 and x is of type E6.
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By the definition of D,

D − σ∗D ∼ p(L1 + L2 − L3),

where

L3 =
∑

x=Anx(nx≡1 mod 2),γx 6=0

kx(nx + 1)

2p
Θ nx+1

2
.

Moreover, the greatest common divisor of the coefficients of the ir-
reducible components of D and p is 1. Thus the pair (D,L), L =
L1 + L2 − L3, satisfies the conditions in Proposition 3.23. Q.E.D.

Example 3.28. Let us consider Zariski’s example from the view-
point of Theorem 3.27, where Σ = P2 and B is a sextic with 6 cusps.
In this case, the double covering f ′ : Z ′ → P2 with ∆f ′ = B has 6
A2-singularities xi (i = 1, . . . , 6) and its canonical resolution Z is a
K3-surface. Hence Z is simply connected. Let us denote by Θi,j the ex-
ceptional curves arising at xi (j = 1, 2). By Proposition 3.17, a generic
D6-covering π : S → P2 of P2 with ∆π = B exists if and only if B is a
(2, 3)-torus curve.

If B is a (2, 3)-torus curve, there exists a conic Q passing through
the 6 cusps. One can show that Q gives rise to a 3-torsion element
in NS(Z)/T . Let ρ−1

q Q be the proper transform of Q in W . Then

f∗(ρ−1
q Q) is of the form Q+ +Q−. After relabeling Θi,j if necessary, we

may assume that Q+ ·Θi,1 = 1,Q− ·Θi,2 = 0 (i = 1, . . . , 6).

Claim 3.29. 3Q+ ∼ 3f̃∗l −∑6
i=1(2Θi,1 + Θi,2), where l denotes a

generic line in P2 and f̃ = ρ ◦ f .
Proof of Claim. Let us consider

D := 3Q+ − 3f̃∗l +
6∑

i=1

(2Θi,1 + Θi,2).

One can see that (f̃∗l)·D = 0 and D2 = 0. By the Hodge index theorem,
one has that D ≈ 0. Since Z is simply connected, D ∼ 0. Q.E.D.

By the Claim, note that the class of Q+ − f̃∗l in NS(Z)/T gives a
3-torsion element. On the other hand, if B is not a (2, 3)-torus curve, no
D6-covering branched at 2B exists. Hence, NS(Z)/T has no 3-torsion.

Remark 3.30.

(i) When using Theorem 3.27, we often replace T by M⊕T , where
M is a sublattice of NS(Z) orthogonal to T and such that
p 6 | discM , disc • being the discriminant of a lattice •. For

example, M = f̃∗ NS(Σ) in case p 6 | disc NS(Σ).
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(ii) By Theorem 3.27, the problem of the existence of generic D2p-
coverings of Σ with ∆π = B is reduced to that of primitive and
non-primitive embeddings of T into NS(Z). In the case when
Σ = P2 and B is a sextic with at most simple singularities, Z
is a K3-surface. In this case, using Nikulin’s lattice theory and
the surjectivity of the period map, more detailed results than
the existence of generic D2p-coverings are obtained in [39].

3.5. Non-generic D2n-coverings and Zariski k-plets

In this section, we will consider non-generic D2n-coverings and their
application to Zariski k-plets.

Let B = B1 + B2 be a reduced divisor such that:

(i) there exists a double covering f ′ : Z ′ → Σ with ∆f ′ = B1, and
(ii) B2 is irreducible.

Let
Z ′ ←−−−−

µ
Z

f ′

y
yf

Σ ←−−−−
ρ

W

be the canonical resolution of Z ′.

Proposition 3.31. Suppose that Σ is simply connected and the di-
visor f∗(ρ−1

q B2) consists of two distinct irreducible components B+
2 and

B−
2 . Assume also that there exist both an effective divisor D and a line

bundle L on Z satisfying:

(i) D = B+
2 +D′. D′ and σ∗D′ have no common components,

(ii) Supp(D′ + σ∗D′) is contained in the exceptional set of µ, and
(iii) D − σ∗D ∼ nL.

Then there exists a D2n-covering π : S → Σ branched at 2B1 + nB2

such that ∆β1(π) = B1.

Proof. By Proposition 3.11, there exists a D2n-covering π̃ : S̃ →W
such that β1(π̃) = f , D(S̃/W ) = Z, B+

2 ∪ B−
2 ⊂ ∆β2(π) ⊂ Supp(D +

σ∗D) and whose ramification index along B±
2 is n. Since the irreducible

components of D′ are in the exceptional set of µ, the Stein factorization
of ρ ◦ π̃ gives the desired D2n-covering. Q.E.D.

Proposition 3.32. Under the notation above, if a D2n-covering
branched at 2B1 + nB2 with ∆β1(π) = B1 exists, then the following
holds:
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(i) f∗(ρ−1
q B2) consists of two irreducible components, B±

2 ,
(ii) there exist effective divisors D1 and D2, and a line bundle L

on Z such that
• Supp(D1 +σ∗D1 +D2) is contained in the exceptional set

of µ,
• D1 and σ∗D1 have no common components,
• if D2 6= ∅, then n is even, D2 is reduced, and D′ = σ∗D′

for each irreducible component D′ of D2, and
• (B+

2 +D1 + n
2D2)− (B−

2 + σ∗D1) ∼ nL.
Proof. Let us denote by π : S → Σ the D2n-covering given by

hypothesis. Let S̃ be the C(S)-normalization of W . The induced mor-

phism π̃ : S̃ → W is a D2n-covering with D(S̃/W ) = Z and ∆β2(π̃) is

contained in the union of Supp(f∗(ρ−1
q B2)) with the exceptional subset

of µ. Since f∗(ρ−1
q B2) is a part of ∆β2(π̃), by Corollary 3.13, f∗(ρ−1

q B2)

is of the form B+
2 +B−

2 , which implies part (i). For part (ii) let D̃1, D̃2,

and L̃ be the two effective divisors and the line bundle on Z respectively,
given by Proposition 3.12 applied to π̃ : S̃ → W . Then by hypothesis,
D̃1 is of the form aB+ +D′

1. Moreover, Supp(D′
1 + σ∗D′

1 + D̃2) is con-
tained in the exceptional set of µ. By the assumption on the ramification
index along B2, one has that gcd(a, n) = 1 and there exists an integer
a′ (0 < a < n) such that aa′ ≡ 1 mod n. Note that a′ is odd if n is even,
therefore

a′(D̃1 +
n

2
D̃2) = B+

2 + aD′
1 +

n

2
D̃2 + nM,

for some effective divisor M . Hence,

(B+
2 + a′D′

1 +
n

2
D̃2) + (B−

2 + a′σ∗D′
1) ∼ n(a′L+ σ∗M −M).

The result follows by considering D1 := a′D′
1, D2 := D̃2 and L :=

a′L+ σ∗M −M . Q.E.D.

As an application of Propositions 3.31 and 3.32 one has the follow-
ing:

Theorem 3.33. Let B1 +B2,j (j = 1, . . . , k) be reduced divisors on
Σ satisfying:

• B1 is smooth,
• B2,j (j = 1, . . . , k) are irreducible and not homeomorphic to

B1,
• B1 +B2,j (j = 1, . . . , k) have the same combinatorial data,
• there exists a double covering f : Z → Σ with ∆f = B1 such

that
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– Z is simply connected and
– f∗B2,j is of the form B+

2,j +B−
2,j , B

+
2,j 6= B−

2,j,

• there exist distinct positive integers nj (j = 1, . . . , k) and non-
trivial line bundles L1, . . . ,Lk such that
– B+

2,j −B−
2,j ∼ njLj, and

– no line bundle Mj satisfies Lj ∼ djMj for any j and
dj ≥ 2.

Hence (Σ, B1 +B2,i) 6≈ (Σ, B1 +B2,j).

Proof. By Proposition 3.31, there exists a non-genericD2nj
-covering

πj : Sj → Σ branched at 2B1 + njB2,j with ∆β1(πj) = B1 for each j.
Since B2,j (j = 1, . . . , k) are not homeomorphic to B1, there does not
exist any homeomorphism f : P2 → P2 such that f(B1) = B2,j and
f(B2,j′ ) = B1 for any j, j′. Hence, in order to prove this statement,
it is enough to show that there exists no D2nl

-covering π′
l : S′

l → Σ
branched at 2B1 + nlB2,j with ∆β1(π′

l)
= B1 if l 6= j. If such a covering

existed, then by Proposition 3.32, there should exist a line bundle L′
such that B+

2 − B−
2 ∼ nlL′. On the other hand, B+

2 − B−
2 ∼ njLj .

Let d = gcd(nl, nj) and set nj = n′
jd, nl = n′

ld. Thus n′
lL′ ∼ n′

jLj ,
as Z is simply connected. Choose an integer b so that n′

jb = mn′
l + 1.

Thus Lj ∼ n′
l(bL′ −mLj) and n′

l > 1, which contradicts the hypothe-
sis. Q.E.D.

Theorem 3.33 serves as the main tool to find the Zariski k-plet given
in [16], where Zariski k-plets are explicitly obtained for any k. We recall
that Zariski k-plets for any k were also obtained by V.S Kulikov in [68]
in a more theoretical way. He proves the Chisini conjecture in many
cases, i.e., if a curve C is the branch locus of a generic projection, then
C determines the monodromy of the associated covering. In that case,
C is an irreducible curve having only ordinary nodes and cusps as sin-
gularities, and its numerical invariants are determined by the numerical
invariants of the surface. F. Catanese [26, 27] had shown that there exist
moduli spaces of surfaces with given numerical invariants but different
topologies and that is how the theoretical existence of Zariski k-plets
was proved.

In what follows we will sketch an explicit construction of a Zariski
k-plet.

Example 3.34. Let C0 be a smooth conic on P2 and let f : Z → P2

be a double covering with ∆f = C0. It is well known that Z = P1 ×
P1, the covering transformation σ exchanges the two rulings on Z, and
Pic(Z) ∼= Z ⊕ Z. Hence a class in Pic(Z) can be described by a pair of
integers. Note that σ∗(a, b) = (b, a) and D0 := (f∗C0)red ∼ (1, 1).
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Let gn(t) ∈ C(t) be a rational function of degree n. Given any
(a, b) ∈ Pic(Z) one can define a morphism ηa,b from P1 to P1 × P1 by

t 7→ (ga(t), gb(t)),

where t denotes a non-homogeneous coordinate of P1. If ga(t) and gb(t)
are generic, then the image Da,b := ηa,b(P1) satisfies the following prop-
erties:

• Da,b(∼ (a, b)) is a rational curve with ab− (a+ b) + 1 distinct
nodes.

• Da,b and σ∗Da,b meet at a2 + b2 distinct points, a+ b of which
are on D0.

These two properties imply that f(Da,b) is a rational curve of degree

a + b tangent to C0 at a + b distinct points and with
(
a+b−1

2

)
distinct

nodes.
Let us fix an integer m ≥ 4. Take ⌊m2 ⌋ distinct pairs of inte-

gers: (m − j, j), j = 1, . . . , ⌊m2 ⌋, where ⌊•⌋ denotes the greatest in-
teger not exceeding •, and consider a nodal rational curve Dm−j,j as
above. Consider B1 = C0, B2,j = f(Dm−j,j) (j = 1, . . . , ⌊m2 ⌋). Since
Dm−j,j − σ∗Dm−j,j ∼ (m − 2j, 2j −m) = (m − 2j)(1,−1) and m − 2j
(j = 1, . . . , ⌊m2 ⌋) are all different, (B1+B2,1, . . . , B1+B2,⌊m

2 ⌋) is a Zariski

⌊m2 ⌋-plet by Theorem 3.33.

In Example 3.34, when m is odd, one has a stronger statement. In
this case, the fundamental groups themselves (disregarding the periph-
eral information) distinguish the Zariski pair.

Proposition 3.35. Let (B1 + B2,1, . . . , B1 + B2,⌊m
2 ⌋) be as in Ex-

ample 3.34. If m is odd, then

π1(P2 \ (B1 +B2,i), po) 6∼= π1(P2 \ (B1 +B2,j), po),

for any i < j.

Let us start by proving the following lemma.

Lemma 3.36. Let B1 + B2,j be as in Proposition 3.35. If a D2n-
covering (n odd) π : S → P2 with ∆π ⊂ B1 +B2,j exists, then

(i) ∆π = B1 +B2,j, D(S/P2) = Z and β1(π) = f , and
(ii) π is branched at 2B1 + nB2,j.

Proof. Since P2 is simply connected, ∆β1(π) 6= ∅. Also note that
the branch locus of a double covering is a reduced curve of even degree,
∆β1(π) = B1. This implies that D(S/P2) = Z and β1(π) = f . Since Z
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is also simply connected, ∆β2(π) 6= ∅ and thus ∆β2(π) = f∗(B2,j), which
proves (i).

In order to prove (ii) it is enough to show that the ramification
index along B2,j is n. Since n is odd, by [119], there exists a rational
function θ ∈ C(S) such that:

• C(S) = C(P2)(θ) and
• the action of D2n = 〈σ, τ | σ2 = τn = (στ)2 = 1〉 on θ is given

by

θσ =
1

θ
, θτ = ζnθ, ζn = exp

(
2π
√
−1

n

)
.

Considering ϕ := θn, one has that ϕ ∈ C(Z). Since C(S) =
C(Z)( n

√
ϕ), one may assume that the divisor (ϕ) of ϕ is of the form

(ϕ) = (aDm−j,j + nD′)− (aσ∗Dm−j,j + nD′′)

for some effective divisors D′ and D′′. We claim that gcd(a, n) = 1. If
gcd(a, n) = d > 1, then one has

(a
d
Dm−j,j +

n

d
D′
)
−
(a
d
σ∗Dm−j,j +

n

d
D′′
)
∼ 0,

for Z is simply connected. Hence there exists ψ ∈ C(Z) such that
ϕ = ψd. This means that the polynomial xn−ϕ = xn−ψd is reducible in
C(Z)[x], which contradicts C(Z) = C(Z)( n

√
ϕ). Therefore gcd(a, n) = 1

and hence β2(π) is branched at n(Dm−j,j + σ∗Dm−j,j). Q.E.D.

Proof of Proposition 3.35. Choose any i < j. Since a D2(m−2i)-
covering branched at 2B1 + (m − 2i)B2,i exists, there is a surjective
homomorphism π1(P2 \ (B1 + B2,i), po) → D2(m−2i). If π1(P2 \ (B1 +

B2,j), po) ∼= π1(P2\(B1+B2,j), po), then there also exists a surjective ho-
momorphism π1(P2\(B1+B2,j), po)→ D2(m−2i). Therefore a D2(m−2i)-

covering π : S → P2 with ∆π ⊂ B1 +B2,j has to exist. By Lemma 3.36,
D(S/P2) = Z, β1(π) = f , and π is branched at 2B1 + (m − 2i)B2,j .
Hence

Dm−j,j − σ∗Dm−j,j ∼ (m− 2j,−m+ 2j) ∼ (m− 2i)L

for some L ∈ Pic(Z), which is not possible. Therefore

π1(P2 \ (B1 +B2,i), po) 6∼= π1(P2 \ (B1 +B2,j), po),

for any i < j. Q.E.D.
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§4. The Zariski pair of Namba and Tsuchihashi

4.1. Description of the combinatorial stratum

In this section, an elementary construction of the first Zariski pair
of an arrangement of conics ([88]) will be given. In this paper Namba
and M. Tsuchihashi show the existence of two arrangements of smooth
conics both having the following combinatorics: if C1, C2, C3, C4 denote
four smooth conics, then C1 ⋔ C2, C3 ⋔ C4, and Ci, Cj are bitangent if
i = 1, 2, j = 3, 4. They computed the fundamental groups of two such
arrangements and proved that they are not isomorphic.

From a more geometrical point of view, our interest is to describe
the irreducible components of the combinatorial strata of such curves in
terms of position of singularities. In order to do so, other combinatorial
strata of curves will be defined along the way.

Let M ⊂ P8 be the combinatorial stratum described above. The

ordered version of M will be denoted by M̃ ⊂ (P2)
4. Following the

notations in [88], A ⊂ P6 will be the family of all curves which decompose
in three smooth conics C1, C2, C3 whose combinatorics results fromM⊂
P8 by removing any conic. Finally, Ã ⊂ (P2)

3 will denote the ordered
stratum associated with A ⊂ P6, that is, triples (C1, C2, C3) such that
C1 ⋔ C2 and Ci, C3 are bitangent (i = 1, 2).

Notation 4.1. Given a projective space P and A ⊂ P we will denote
Σ(A) the smallest projective subspace of P containing A.

Lemma 4.2. The families A and Ã are irreducible as algebraic
varieties (and thus, connected).

Proof. By a natural mapping Ã։ A given by (C1, C2, C3) 7→ C1 +

C2 + C3, it is enough to prove the statement for Ã.

Let Ã1 be the subset of (P1)
2 × P2 such that (L1, L2, C3) ∈ Ã1 if

and only if C3 is smooth and L1 + L2 + C3 has only ordinary double

points. Given (C1, C2, C3) ∈ Ã, one can consider the lines Li joining the
bitangent intersection points of Ci and C3, i = 1, 2. This defines a natural

mapping Ã → Ã1. It is straightforward to show that Ã1 is irreducible.
Therefore, it only remains to show that this mapping is surjective with

irreducible fibers. Note that given (L1, L2, C3) ∈ Ã1, its fiber is a Zariski
open subset of Σ(C3, 2L1)× Σ(C3, 2L2)× {C3}. Q.E.D.

Definition 4.3. Let S ⊂ P2 be a pencil of conics. A point P ∈ P2

is said to be associated with S if P is a singular point of a member of S
(recall that a multiple curve is singular).
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Lemma 4.4. Let C1, C2, C3 be conics (not in a pencil) such that
P /∈ Ci, i = 1, 2, 3, is associated with both Σ(C1, C2) and Σ(C2, C3). Then,
P is associated with Σ(C1, C3). Moreover, if D12 and D23 are singular
conics in Σ(C1, C2) and Σ(C2, C3), respectively, such that P is a double
point of both, then there is a singular conic D13 ∈ Σ(C1, C3), containing
P as a double point, such that D13 ∈ Σ(D12,D23).

Proof. If Ci (resp. Djk) denotes an equation for Ci (resp. Djk),
then there exist constants such that

α1C1 + α2C2 =D12

β2C2 + β3C3 =D23.

Since P /∈ C2 we have α1α2β1β2 6= 0. Then β2α1C1−α2β3C3 = β2D12−
α2D23. Since P is a double point of D12 and D23, the result follows.

Q.E.D.

Let B ⊂ P4 be the family of curves which decompose into two

transversal smooth conics and B̃ ⊂ (P2)
2 its ordered version. The pencil

spanned by each element in B has exactly three associated points, which
according to Lemma 4.4 are the double points of the three singular con-
ics in the pencil generated by the two transversal smooth conics. Let us
define the following combinatorial stratum

P := {(C1 + C2, P ) ∈ P4×P2 | C1 + C2 ∈ B, P associated with Σ(C1, C2)}

and denote by P̃ ⊂ (P2)
2 × P2 its ordered version.

Proposition 4.5. Let (C1, C2, C3) ∈ Ã and consider Li the line
joining the tangency points of Ci and C3, i = 1, 2. Then, P := L1∩L2 is
associated with Σ(C1, C2). Also, if D12 is the reducible conic of Σ(C1, C2)
containing P , then D12 ∈ Σ(2L1, 2L2).

Moreover, given (C1, C2, P ) ∈ P̃, there exists an irreducible quasipro-

jective subvariety U of P2 such that C3 ∈ U if and only if (C1, C2, C3) ∈ Ã
and P is obtained as above.

Proof. Let us fix (C1, C2, C3) ∈ Ã and let us consider L1, L2, P as
in the statement. Note that P is associated with Σ(C1, 2L1) = Σ(C1, C3)
and also with Σ(C2, 2L2) = Σ(C2, C3). Then, by Lemma 4.4, P is associ-
ated with Σ(C1, C2). Note also that 2L1 and 2L2 are the reducible conics
of the Moreover part of Lemma 4.4.

For the last statement, let D12 be the reducible conic of Σ(C1, C2)
containing P and fix a line L1 through P transversal to C1. In the
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pencil Σ(2L1, D12) there is another double line 2L2. For generic L1, L2

is transversal to C2. The projective subspace

S := Σ(C1, C2, 2L1, 2L2) = Σ(C1,D12, 2L1, 2L2) ⊂ P2

is of dimension 2 and contains the pencils Σ(2Li, Ci) which are lines in
S and thus intersect at a conic C3. Q.E.D.

Definition 4.6. The point P in Proposition 4.5 is said to be asso-
ciated with (C1, C2, C3).

Corollary 4.7. The spaces P̃ and P are irreducible.

Note that the natural projection M̃ ։ M is 4:1. For simplicity if

C̃ := (C1, C2, C3, C4) ∈ M̃, then C = C1 ∪ C2 ∪ C3 ∪ C4 will denote its
projection. Viceversa, we will add a tilde for any element in the fiber
of C.

Corollary 4.8. The spaces M̃ (resp. M) have two irreducible (and

connected) components M̃+,M̃− (resp. M+,M−).
Moreover, curves in M+ and M− can be distinguished as follows:

given C ∈ M, C̃ := (C1, C2, C3, C4) ∈ M̃, and Pi the point associated with
(C1, C2, Ci), i = 3, 4, then C ∈ M+ (resp. M−) if and only if P3 = P4

(resp. P3 6= P4).

There is another geometrical property which distinguishes the com-
ponentM+ fromM−.

Theorem 4.9. Let C ∈ M. Then C ∈ M+ if and only if there
exists a conic passing through its eight tacnodes.

Proof. Let us fix some notation. Given i ∈ {1, 2}, j ∈ {3, 4}, we
will consider Ci ∩ Cj := {Pij , Qij} and denote by Lij the line joining
Pij and Qij . Let us also define Pj := L1j ∩ L2j , j = 3, 4, which are
both points associated with Σ(C1, C2) according to Proposition 4.5. Let
us denote by Dj the conic in Σ(C1, C2) containing Pj as a double point.
Note that Dj ∈ Σ(2L1j, 2L2j) by Proposition 4.5.

Let us consider the pencils of conics Λi := Σ(Ci, Li3 +Li4), i = 1, 2,
and let S := Σ(Λ1,Λ2). The desired conic should belong to Λ1 ∩ Λ2,
and it exists (uniquely) if and only if dimS = 2. Also note that S =
Σ(C1,D3, L13 +L14, L23 +L24). Since P := P3 /∈ C1 and P ∈ D3 ∩L13 ∩
L23, one has:

SP := {C ∈ S | P ∈ C} = Σ(D3, L13 + L14, L23 + L24) $ S.

Let us suppose that the conic exists, i.e., dimS = 2 and dimSP = 1.
Since P is a base point of the pencil SP and a double point for one



82 E. Artal, J.I. Cogolludo, and H. Tokunaga

element in SP , either it is a double point for any element of the pencil,
or the tangent line at P of the general member is constant. The second
possibility cannot happen since L13 6= L23. Since P is a double point,
P3 ∈ L14 ∩ L24, i.e. P3 = P4.

Let us assume now that P = P3 = P4, in particular D3 = D4. Let
us choose coordinates such that P := [0 : 0 : 1], D3 : xy = 0, and
L13 : x − y = 0. Since D3 ∈ Σ(2L13, 2L23), it is easily seen that L23 :
x+ y = 0. Analogously, one can prove that there exists α ∈ C \ {0,±1}
such that L14 : x− αy = 0 and L24 : x+ αy = 0. An easy computation
concludes that D3 ∈ Σ(L13 + L14, L23 + L24), i.e., dimSP = 1 and
dimS = 2. Q.E.D.

For the computation of Alexander polynomials and characteristic
varieties it is useful to calculate the space of curves of a given degree
passing through some points. Let C ∈ M and let P1, . . . , P8 be the eight
tacnodes in C. Let us consider

Kk,8 := {D ∈ Pk | P1, . . . , P8 ∈ D},
Kk,6 := {D ∈ Pk | P1, . . . , P6 ∈ D}.

In principle there are several choices for Kk,6, but the kind of results we
will obtain for Kk,6 do not depend on the choice of such points. Let us
consider the mappings

σk,8 : H0(P2;O(k))→ C8

σk,6 : H0(P2;O(k))→ C6

defined as in the exact sequence (18) in §2.2. Then Kk,8 (resp. Kk,6) is
the projective space of kerσk,8 (resp. kerσk,6).

Proposition 4.10. If C ∈ M+ then dimK3,8 = 2, whereas if C ∈
M− then dimK3,8 = 1.

Proof. Assume first that C ∈ M+. Since there is a conic Q passing
through the eight points, Q is a base component of K3,8, i.e., any element
of K3,8 is of the form Q+L, L ∈ P1. This is trivial if Q is smooth. If it is
singular, then Q = L1 +L2. It is easily seen that no line can contain five
of these points; then both L1 and L2 are also base components. On the
other hand, Q+L ∈ K3,8, for all L ∈ P1. Then, dimK3,8 = dim P1 = 2.

By Theorem 4.9, it is enough to prove that dimK3,8 ≥ 2 forces the
eight points to be on a conic. Two cases will be considered:

Case. No three points among P1, . . . , P8 are aligned.

Let us consider a conic Q passing through P1, . . . , P5. The hypoth-
esis added for this case implies that Q is irreducible. Take P9, P10 ∈ Q
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different from the other eight points. Since dimK3,8 ≥ 2, the elements
of K3,8 passing through the two extra points P9 and P10 form a subspace
of dimension at least 0. Hence this space is not empty and Q is a base
component. Since the other three points cannot be aligned, one may
suppose that, say P6 ∈ Q. One can now repeat the above argument
on the elements of K3,8 passing through one extra point P9 ∈ Q. The
given subspace has dimension at least 1 and Q as a base component.
Therefore, say P7 ∈ Q, and thus, Q is a base component of K3,8. Since
the space of lines passing through P8 is of dimension 1 and dimK3,8 ≥ 2,
Q passes through the eight points P1, . . . , P8.

Case. P1, P2, P3 are aligned.

We will first prove that this case forces four points to be aligned.
Let L be the line through P1, P2, P3 and suppose that no other Pi is in L.
Choosing a generic extra point in L as above, one can deduce that L is a
base component of a subspace of K3,8 of dimension at least 1. Therefore
there exists a pencil of conics passing through P4, . . . , P8, which can only
happen if at least four of these points are aligned.

After reordering, one can assume that P1, . . . , P4 ∈ L. Then L is
a base component of K3,8 and hence there is a linear family of conics
through four points of dimension at least 2. Choosing an extra generic
point on P2 one obtains as a subspace a pencil of conics through five
points, hence four points are aligned. Note that the extra point can
be chosen in an open Zariski set of P2, thus the four aligned points
must be P5, . . . , P8. Therefore there is also a conic passing through
P1, . . . , P8. Q.E.D.

Proposition 4.11. If C ∈ M then dimK3,6 = 3.

Proof. It is enough to show that dimK3,6 > 3 leads to contradic-
tion. As in Proposition 4.10 two cases will also be considered:

Case. No three points among P1, . . . , P6 are aligned.

Let us consider the irreducible conic Q passing through P1, ..., P5.
Consider two extra points P9, P10 ∈ Q and two extra points P11, P12 /∈
Q. The subspace of cubics in K3,6 passing through P9, P10, P11, P12 is
not empty and contains Q as a base component. Since P11, P12 can be
chosen in such a way that P6, P11, P12 are not on a line, this implies
that P6 ∈ Q. Repeating the argument with P9 ∈ Q and three extra
points P10, P11, P12 /∈ Q one obtains again a non-empty subspace of
K3,6 containing Q as a base component. Since P10, P11, P12 need not be
on a line, a contradiction results.

Case. P1, P2, P3 are aligned.
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Let L1 be the line joining P1, P2, P3 and assume that no other point
Pi (i = 4, 5, 6) belongs to L1. Considering P9 ∈ L and P10, P11 /∈ L one
obtains a pencil in K3,6 having L1 as a base component. Hence the five
points P4, P5, P6, P10, P11 belong to a pencil of conics. Since P10, P11 can
be chosen so that the line joining them does not contain any other Pi, one
concludes that P4, P5, P6 are also aligned. Let L2 be such a line. Since we
assumed that no four points are aligned, P9 ∈ L1 ∩L2 is an extra point.
The subspace of curves in K3,6 passing through P1, P2, P3, P4, P5, P6, P9

has dimension at least 3 and has L1 ∪ L2 as a base component. This
leads to contradiction since dim P1 = 2.

Therefore four points, say P1, P2, P3, P4, belong to a line L, which
automatically becomes a base component of K3,6. Note that neither
P5 nor P6 can belong to L since multPi

(L, C) ≥ 2 and deg C = 8.
One can now choose four extra points P9, P10, P11, P12 /∈ L such that
P5, P6, P9, P10, P11, P12 do not belong to a conic. Since dimK3,6 > 3,
the subspace of curves in K3,6 passing through P1, ..., P6, P9, ..., P12 is
not empty and has L as base component. This contradicts the choice of
P9, P10, P11, P12. Q.E.D.

Proposition 4.12. If C ∈ M then dimK4,8 = 6.

Proof. It is enough to prove that σ4,8 is surjective. If C ∈ M−,

since σ3,8 is surjective, so is σ4,8. If C ∈ M+, then let
∑8
j=1 aixi =

0 be the equation of the image of σ3,8 and let us suppose that a8 6=
0. It is enough to find a quartic curve passing through P1, . . . , P7 and
not through P8; we can order this points such that P8 is not in the
line through P5, P6. In order to do so, one can choose a conic through
P1, . . . , P4, the line through P5, P6, and a generic line through P7.

Q.E.D.

4.2. Computation of characteristic varieties

We will first describe the geometrical method to compute some com-
ponents of the characteristic varieties of a curve C ∈ M as proposed by
Libgober in [75] – see also a brief sketch of it on page 48. After that, a
similar geometrical argument allows for a computation of their Alexan-
der polynomial as proposed in [80, 43, 2].

According to Example 2.24(2) a tacnode (that is, an A3-singularity)
has associated with it the sequence of ideals of quasiadjunction shown
in Figure 11.

We follow the notation introduced on page 48. Let ξ̄ := (ξ1, ξ2, ξ3, ξ4)
∈ (C∗)4 be a torsion point such that ℓX̄ = 2(X1 +X2 +X3 +X4) ∈ N,
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Fig. 11. Quasiadjunction ideals for tacnodes

m

O

(1
2 , 0)

(0, 1
2 )

where Xi = log ξi

2π
√
−1
∈ (0, 1). Then ξ̄ ∈ Char∗1(C) if and only if

σX̄ : H0(P2,O(5− ℓX̄))→
⊕

P∈Sing C
OP2,P /(AX̄C )P =: VX̄

is not surjective. Let P be a tacnode of Ci + Cj . Following Exam-

ple 2.24(2), (AX̄C )P 6= OP2,P if and only if 2(Xi+Xj) ≤ 1, in which case

(AX̄C )P = m the maximal ideal.
Note that we can restrict ourselves to the case ℓX̄ ≤ 5. Also note

that, using [75], at least one of these equations is satisfied:

(23) 2(Xi +Xj) = 1, i = 1, 2, j = 3, 4.

Without loss of generality, it can be assumed that 2(X1 + X3) = 1.
In that case 2(X2 + X4) = ℓX̄ − 1. The case ℓX̄ = 5 is not possible
since X2, X4 < 1. If ℓX̄ = 1, then X2 = X4 = 0, which corresponds to
coordinate components.

For ℓX̄ = 4, one has 2(X2 + X4) = 3 and dimH0(P2,O(1)) = 3.
Since only non-surjective σX̄ matter, an extra equation 2(Xi +Xj) ≤ 1
must be satisfied for some appropriate indices (i, j). Without loss of
generality, it can be assumed that 2(X1 +X4) ≤ 1, and 2(X2 +X3) ≥ 3,
which has no solution in the open hypercube (0, 1)4.

The same arguments apply to ℓX̄ = 3 but in this case one has
dimH0(P2,O(2)) = 6, X2 +X4 = 1, 2(X1 +X4) ≤ 1, and X2 +X3 ≥ 1.
There are solutions of the system in (0, 1)4. In this case dim VX̄ = 4 and
it is easily seen that σX̄ is surjective.
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We finish with the case ℓX̄ = 2, where 2(X2 + X4) = 1. In this
situation 2(X1+X4) = 1+2(X4−X3) and 2(X2+X3) = 1−2(X4−X3),
hence, either X3 = X4, or say 2(X1 + X4) > 1 and 2(X2 + X3) < 1.
In the latter case dimVX̄ = 6 and, by Proposition 4.11, σ3,6 = σX̄ is
surjective.

Therefore all of the equations in (23) are satisfied, in which case,
σX̄ = σ3,8 and its cokernel has dimension 1 (resp. 0) for curves in M+

(resp. M−) by Proposition 4.10.
Thus for M+ there is superabundance for solutions X̄ ∈ (0, 1)4 of

X1 +X2 +X3 +X4 = 1 and (23) i.e. for

{(X1, X1, 1/2−X1, 1/2−X1) | X1 ∈ (0, 1)},

whose exponential is {(t, t,−t−1,−t−1) | t ∈ C∗}. We have proved the
following.

Proposition 4.13.

Char∗1(C) =

{
{(t, t,−t−1,−t−1) | t ∈ C∗} if C ∈ M+

∅ if C ∈ M−.

Remark 4.14. As mentioned in Remark 2.17(2), since the number of
positive dimensional components of Char∗1(C) is different in these cases,
the fundamental groups are non-isomorphic.

Note that, according to Theorem 2.26 one can calculate the roots of
the Alexander polynomial of C as follows

Z(∆C(t)) \ {1} =

{
±
√
−1 if C ∈ M+

∅ if C ∈ M−
.

We will consider Ak := A( 1−k
d
,..., 1−k

d
)

C (according to the definition of
ideal sheaf of quasi-adjunction) and referred to this ideal as an Alexander
ideal sheaf of C. One can also obtain ∆C(t) geometrically using the
exponents of the singularities as follows.

Theorem 4.15 ([72, 2]). The Alexander polynomial of C can be
written as the product

∆C(t) = (t− 1)r−1
d−1∏

k=1

∆bk

k (t),

where ∆k =
(
t− exp(2πk

√
−1

d )
)(

t− exp(−2πk
√
−1

d )
)

and bk is the defect

of the Alexander ideal sheaf Ak(k − 3).
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Each exponent k
8 , k = 4, 5, 6, 7 has an Alexander ideal Ak(k − 3)

associated with it. The quotient sheaf O(k − 3)/Ak(k− 3) is supported
at the eight tacnodes of C as follows

(Ak)P =

{
OP if k = 4, 5

mP if k = 6, 7,

where mP is the maximal ideal at P –we refer to [43, 80, 2] for the
details. Hence h1(A4(1)) = h1(A5(2)) = 0, and thus the only two
interesting cases are the exponents 6

8 and 7
8 . For the first exponent, by

Proposition 4.10, h0(A6(3)) = dimkerσ3,8 =

{
3 if C ∈ M+

2 if C ∈ M−
, hence

h1(A6(3)) = h0(A6(3))− 2 =

{
1 if C ∈ M+

0 if C ∈ M−
.

For the second exponent, by Proposition 4.12, h0(A7(4)) = dimkerσ4,8 =
7, hence h1(A7(4)) = h0(A7(4))− 7 = 0. By Theorem 4.15 one has

∆C(t) =

{
(t− 1)3(t2 + 1) if C ∈ M+

(t− 1)3 if C ∈ M−
.

4.3. A tower of D2n-coverings

In this subsection, we will explain another way to study this example
by usingD2n-coverings. Let us start by introducing the notion of a tower
of dihedral coverings.

Definition 4.16. Let Y be a normal projective variety. A sequence
{πi : Xi → Y }i∈I of Galois coverings is called a tower of dihedral cover-
ings if it satisfies the following conditions:

(i) πi : Xi → Y is a D2ni
-coverings (ni ≥ 3) for each i.

(ii) If ni|nj , then there exists a morphism ηji : Xj → Xi such that
πj = πi ◦ ηji.

Here is an example of a tower of dihedral coverings, which we need
later.

Example 4.17. Let ϕn : P1 → P1 (n ≥ 3) be the family of mor-
phisms given by

t 7→ s =
1

2

(
tn +

1

tn

)
,
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where s, t are non-homogeneous coordinates. It is easy to see that ϕn
is a D2n-covering branched at 2[1 : ±1] + n[0 : 1], where [s0 : s1] are
homogeneous coordinates with s = s1

s0
. In fact, D2n acts on the source

P1 in such a way that tσ = t−1, tτ = ζnt, ζn = exp(2π
√
−1
n ). The set of

dihedral coverings {ϕn : P1 → P1}n≥3 is a tower of dihedral coverings.

Proposition 4.18. Let C = C1 ∪ C2 ∪ C3 ∪ C4 ∈ M. Then the
following two statements are equivalent:

(1) There exists a tower of dihedral coverings {πn : Xn → P2}n∈N

such that:
(a) Gal(Xn/P2) ∼= D2pn

, pn odd prime,
(b) πn is branched at 2(C1 + C2) + pn(C3 + C4), and
(c) pn 6= pm for any n 6= m.

(2) There exists a conic through the 8 tacnodes of C, i.e., C ∈ M+.

Note that Proposition 4.18 implies that a pair (C+, C−) (C+ ∈ M+,
C− ∈ M−) is a Zariski pair. We need several steps to prove Proposi-
tion 4.18.

Lemma 4.19. Let D1 and D2 be reduced plane curves of degree
2m such that all intersection points between D1 and D2 give rise to
tacnodes in D1 +D2 (i.e., D1 is tangent to D2 at 2m2 distinct points).
Let Λ = {λ1D1 + λ2D2}[λ1,λ2]∈P1 be the pencil of curves spanned by
D1 and D2. If there exists a unique reduced plane curve, E, of degree
m passing through all the 2m2 intersection points of D1 and D2, then
2E ∈ Λ.

Proof. Since E meets D1 at 2m2 distinct points, E is smooth at
each intersection point and meets D1 transversely. Choose a general
point x on E. Let Cx be a member of Λ passing through x. Then
Cx meets E at 2m2 + 1 points. Hence E is contained in Cx. Write
Cx = E + E′. Then E′ is a curve of degree m. Since the base points
of Λ consists of D1 ∩ D2 with multiplicity 2 at each base point, E′

also passes through all the intersection points of D1 ∩D2. This implies
E′ = E.

Lemma 4.20. Let C = C1 ∪ C2 ∪ C3 ∪ C4 ∈ M. If there exists a
conic passing through 8 tacnodes, then there exists a D2m-covering of P2

branched at 2(C1 + C2) +m(C3 + C4) for any m ≥ 3.

Proof. Let Λ := Σ(C1 + C2, C3 + C4) be the pencil of plane curves
spanned by C1 + C2 and C3 + C4. Since the conic Q in the assumption
passes through the eight (double) base points of Λ, we have 2Q ∈ Λ by
Lemma 4.19. Let Ci (resp. Q) be defining homogeneous polynomials
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for Ci (resp. Q). Hence we may assume that C3C4 = C1C2 − Q2. Let
Φ : P2 99K P1 be the rational function given by

[z0 : z1 : z2] 7→ [C3C4 : −(C1C2 +Q2) : C3C4].

Let ϕm : P1 → P1 be the D2m-covering described in Example 4.17. Let

ρ : P̂2 → P2 be the resolution of indeterminacy of Φ and put Φ̂ = ρ ◦ Φ.
Let X ′ be the fibered product P̂2 ×P1 P1 by Φ̂ and ϕm. Also let Xm be
the C(X ′)-normalization of P2. Then Xm is a D2m-covering branched
at 2(C1 + C2) +m(C3 + C4). Q.E.D.

Proof of Proposition 4.18 (⇐). Let πm : Xm → P2 be the D2m-
covering as in Lemma 4.20. Then {πm : Xm → P2}m≥3 is a tower of
dihedral coverings such that Gal(Xm/P2) ∼= D2m. Also πm is branched
at 2(C1 + C2) +m(C3 + C4). In particular, one obtains the desired D2pn

-
coverings for odd primes pn (n = 1, 2, 3, ...). Q.E.D.

Finally, our purpose until the end of this section is to prove the
converse. Let f ′ : Z ′ → P2 be a double covering branched at C1 + D2,
and let µ : Z → Z ′ be the canonical resolution of Z ′. Let

Z ′ µ←−−−− Z

f ′

y
yf

P2 ρ←−−−− P̂2

denote the diagram for the canonical resolution. In our case, the mor-

phism ρ : P̂2 → P2 is a composition of 4 blowing-ups at the 4 nodes of
C1 + C2. Let f : Z → P̂2 be the induced double covering. Note that Z is
simply connected, as it is a rational surface. Suppose that there exists a
D2pn

-covering πn : Xn → P2 branched at 2(C1 +C2)+pn(C3 +C4). Then

D(Xn/P2) = Z ′ and β1(πn) = f ′. Let X̃n be the C(Xn)-normalization

of P̂2. X̃n is a D2pn
-covering of P̂2 such that D(X̃n/P̂2) = Z and

β1(π̃n) = f , π̃n being the covering morphism. Summing up, one ob-
tains the following commutative diagram:

Xn ←−−−− X̃ny
y

Z ′ µ←−−−− Z
y

y

P2 ρ←−−−− P̂2.
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Since the irreducible components of the exceptional divisor µ are invari-
ant under the covering transform of f , they are not contained in ∆β2(π̃n)

(Corollary 3.13). Hence ∆f = ρ−1
q (C1 +C2), and ∆β2(π̃n) = (ρ◦ f)∗(C3 +

C4). Let us denote (ρ ◦ f)∗C3 = C+
3 + C−3 and (ρ ◦ f)∗C4 = C+

4 + C−4 . One
has the following.

Lemma 4.21. There exists an integer k with 0 < k ≤ pn−1
2 such

that either (C+
3 + kC+

4 ) − (C−3 + kC−4 ) or (C+
3 + kC−4 ) − (C+

3 + kC+
4 ) is

pn-divisible in Pic(Z).

Proof. By Proposition 3.12, either (a3C+
3 + a4C+

4 )− (a3C−3 + a4C−4 )
or (a3C+

3 + a4C−4 )− (a3C−3 + a4C+
4 ), where ai (i = 3, 4) are integers with

0 < ai < pn (i = 3, 4), is pn-divisible. The latter case is reduced to the
first case by considering

(
a3C+

3 + (pn − a4)C+
4

)
−
(
a3C−3 + (pn − a4)C−4

)
+ pn(C−4 − C+

4 ).

So one may assume that

(a3C+
3 + a4C+

4 )− (a3C−3 + a4C−4 ) ∼ pnL
for some L ∈ Pic(Z). Choose an integer b (0 < b < pn) so that a3b ≡
1 mod pn. Let us define

D1 := b(a3C+
3 + a4C+

4 )− pn
(⌊

a3b

pn

⌋
C+
3 +

⌊
a4b

pn

⌋
C+
4

)
,

= C+
3 +

(
a4b− pn

⌊
a4b

pn

⌋
C+
4

)
.

If 0 < a4b−
⌊
a4b
pn

⌋
≤ pn−1

2 , then define k = a4b−
⌊
a4b
pn

⌋
so that the

divisor (C+
3 + kC+

4 )− (C−3 + kC−4 ) is pn-divisible.

If a4b−
⌊
a4b
pn

⌋
> pn−1

2 , then define k = pn +
⌊
a4b
pn

⌋
− a4b so that the

divisor (C+
3 + kC−4 )− (C−3 + kC+

4 ) is pn-divisible. Q.E.D.

Lemma 4.22. The self-intersection numbers of (C+
3 +kC+

4 )−(C−3 +
kC−4 ) and (C+

3 + kC−4 ) − (C−3 + kC+
4 ) are either −8(k − 1)2, −8(k + 1)2

or −8(k2 + 1).

Proof. Since

8 = ((ρ ◦ f)∗C3)2 = (C+
3 )2+(C−3 )2+2C+

3 ·C−3 , C+
3 ·C−3 = 4, (C+

3 )2 = (C−3 )2,

one has (C+
3 )2 = (C−3 )2 = 0. Similarly (C+

4 )2 = (C−4 )2 = 0. Hence
(C+
i − C−i )2 = −8 (i = 3, 4). Also, since

8 = ((ρ ◦ f)∗C3) · ((ρ ◦ f)∗C4) = C+
3 · C+

4 + C+
3 · C−4 + C−3 · C+

4 + C−3 · C−4
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and

C+
3 · C+

4 = C−3 · C−4 , C+
3 · C−4 = C−3 · C+

4 ,

one concludes that either

(a) C+
3 C+

4 = C−3 C−4 = 4, C+
3 C−4 = C−3 C+

4 = 0, or
(b) C+

3 C+
4 = C−3 C−4 = 4, C+

3 C−4 = C−3 C+
4 = 0, or

(c) C+
3 C+

4 = C−3 C−4 = 2, C+
3 C−4 = C−3 C+

4 = 2

holds. Thus

{
(C+

3 − C−3 )± k(C+
4 − C−4 )

}2
=





−8(k ∓ 1)2 for the case (a),

−8(k ± 1)2 for the case (b),

−8(k2 + 1) for the case (c).

Q.E.D.

Lemma 4.23. Let k be as above. Then k = 1.

Proof. We will only consider the case when (C+
3 −C−3 )+k(C+

4 −C−4 )
is pn-divisible (the other case is analogous). Suppose that

(C+
3 − C−3 ) + k(C+

4 − C−4 ) ∼ pnL,

for some L ∈ Pic(Z). After computing the self-intersection numbers of
both sides, one deduces that either −8(k− 1)2 = p2

nL
2, or −8(k+ 1)2 =

p2
nL

2, or −8(k2 +1) = p2
nL

2 holds. Since pn is odd, L2 is an integer and

0 < k ≤ pn−1
2 , which leads to k = 1 and L2 = 0. Q.E.D.

Lemma 4.24. Either

(C+
3 + C+

4 )− (C−3 + C−4 ) ∼ 0, or (C+
3 + C−4 )− (C−3 + C+

4 ) ∼ 0

holds.

Proof. By Lemma 4.23, either (C+
3 +C+

4 )−(C−3 +C−4 ), or (C+
3 +C−4 )−

(C−3 +C+
4 ) is pn-divisible. By the assumption in Proposition 4.18, at least

one of them is pn-divisible for infinitely many odd prime numbers pn.
Since Z is simply connected, Pic(Z) is a finitely generated free Z-module.
Therefore, either (C+

3 +C+
4 )−(C−3 +C−4 ) ∼ 0, or (C+

3 +C−4 )−(C−3 +C+
4 ) ∼ 0

holds. Q.E.D.

Proof of Proposition 4.18 (⇒). In what follows, only the case (C+
3 −

C−3 ) + (C+
4 − C−4 ) ∼ 0 will be considered (the other case is analogous).

Let ϕ be a rational function on Z such that

(ϕ) = (C+
3 + C+

4 )− (C−3 + C−4 ).
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Note that one can choose ϕ in such a way that ϕσf = 1/ϕ, where σf
denote the involution of the double covering f : Z → P̂2. Let Kn :=
C(Z)( pn

√
ϕ) and let Sn be the Kn-normalization of P2.

One can easily see that ρn : Sn → P2 is a D2pn
-covering such that

D(Sn/P2) = Z ′ and ρn is branched at 2(C1 + C2) + pn(C3 + C4). In fact,
Sn is isomorphic to Xn, but we do not need it here. Set

u :=

ϕ+
1

ϕ

2
.

Since u is a σf -invariant rational function, u ∈ C(P2). Let Φn : Sn 99K

P1 and Φn : P2 99K P1 be the rational maps given by pn
√
ϕ and u. Note

that Φn is D2pn
-equivariant and the following diagram

(24)

Φn
Sn 99K P1

ρn ↓ ↓ ϕpn

P2 99K P1,
Φn

is commutative, where ϕpn
: P1 → P1 is the D2pn

-covering in Exam-
ple 4.17. Note that Sn is birational to the fibered product P2 ×P1 P1

over P2.
Write u = F0

F∞
, where F0 and F∞ are homogeneous polynomials.

The polar divisor of u is C+
3 +C−3 +C+

4 +C−4 . This implies that the plane
curve given by F∞ = 0 is C3+C4 and degF∞ = 4. Using the commutative
diagram (24) and since ϕpn

is branched at 2[1 : ±1] + pn[0 : 1], the
curves D1 and D2 given by the equations F0−F∞ = 0 and F0 +F∞ = 0,
respectively, satisfy either (i) or (ii) below:

(i) D1 = C1 + C2 and D2 is of the form 2Q for some conic (or vice
versa).

(ii) D1 = C1 + 2L1 for some line L1 and D2 = C2 + 2L2 for some
line L2.

If (ii) occurs, it implies that C3 + C4 ∈ Σ(C1 + 2L1, C2 + 2L2). This
means that C3 + C4 passes through C1 ∩C2, but this is impossible by the
combinatorics of C ∈ M. Hence (i) must occur and Q is the unique
conic passing through all the tacnodes of C. Q.E.D.

Remark 4.25. The proof above shows that there exists a tower of
dihedral coverings {π̃n : X̃n → P2}n≥1 such that Gal(X̃n/P2) ∼= D2pn

(pn odd prime), where π̃n is branched at 2(C1 + C2) + pn(C3 + C4), if
and only if there exists another tower of dihedral coverings {πm : Xm →
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P2}m≥3 such that Gal(Xm/P2) ∼= D2m, where πm is branched at 2(C1 +
C2) +m(C3 + C4).
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perplanes d’une hypersurface projective et du théorème de Van Kampen
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[123] A.M. Uludağ, More Zariski pairs and finite fundamental groups of curve
complements, Manuscripta Math. 106 (2001), no. 3, 271–277.

[124] M. Wada, Twisted Alexander polynomial for finitely presentable groups ,
Topology 33 (1994) no. 2, 241–256.

[125] F. Waldhausen, Eine Klasse von 3-dimensionalen Mannigfaltigkeiten I,
Invent. Math. 3 (1967), 308–333.

[126] , Eine Klasse von 3-dimensionalen Mannigfaltigkeiten II, Invent.
Math. 4 (1967), 87–117.

[127] J.G. Yang, Sextic curves with simple singularities, Tôhoku Math. J. (2) 2
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