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Combinatorics and Topology

Definition

Combinatorics: € := (L, P), L finite set of lines and

P C{P C L | #P = 2} finite set of points mimic arrangement of lines
and multiple points.

Definition (Realization of €)
A line arrangement in P?: (A, {multiple points}) <+ (£, P)

Combinatorial objects
c
> 2° = P Zay, = HY = H\(P?\ A; Z)
LeLl 7 (Z xL)

Lel
> rp = E T
P<L

{xpAxp € HE NHY | P < L}y = HY = Hy(P?\ A;2)

j . @
> HY =7, Hy = H)(P*\ A;Z) dual of HY, j =1,2. ¢
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Theorem (Rybnikov)

bo:m(P2\ ALy) — 1 (P2\ AL ) group automorphism inducing
the identity on homology.

Corollary
Pp: (P2, %) — (P2, 4L ) homeomorphism respecting
orientations and ordering.

Orientation
Jp: (P2, ML) — (P?, 4% ) homeomorphism respecting ordering
and reversing orientation: complex conjugation.

Order
Jp: (P2, 4L ) — (P?, #% ) homeomorphism respecting
orientation: GL(2,F3) \ SL(2,F3).
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Rybnikov

Rybnikov’s combinatorics

KB = ML\ Uy (o—z)—0 AL 5 (gluing in general position)
Theorem

Giy =m(PP\ BB y) Em(PP\RB ) =G

Guidelines of the proof.

Assume they are isomorphic = G4 4+ /74(G44) = G4_/va(G1-)

1. The isomorphism induces the +identity on H{* (purely
combinatorial).

2. It does not happen using truncated Alexander invariant.
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Pentagon and Pentagram

Theorem
There is no homeomorphism between (P%,€,) and (P2,%6_)
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Guerville’s example

Theorem

%o1 admits four (Galois-conjugate) realizations Ac with equations in
the cyclotomic field Ky, for ¢ a primitive fifth root of unity.

There is no oriented homeomorphism (P%, A¢,) — (P?, Ac,) if 1 # Co.

Corollary
There is no homeomorphism (P?, A¢) — (P2, Ac2).
Comments

1. Use special non-resonant characters, with special non-resonant
locus.

2. It does not give so much information about the complement
(need extra info)
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Main result 1

Theorem
The groups w1 (P?\ A¢) and m (P? \ Ac2) are not isomorphic (while
their profinite completions are).

First step
@ :m(P?\ Ae) — m1(P? \ A¢2) isomorphism = ¢, = :I:lngQl.

» Purely combinatorial statement.
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> p: Hf — HY is an admissible isomorphism if p A p(HY) = HY
Ay, As realizations of €, ¢ : (P2 \ A1) — m1(P?\ A2)
isomorphism = ¢, admissible.
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» & homologically rigid if
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{S combinatorial pencil}

> p* sends triangles to triangles

Triangle

S1,S2,.53 combinatorial pencils such that

codimﬁHSi = ZcodimHgi -1
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> p: Hf — HY is an admissible isomorphism if p A p(HY) = HY
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Triangles in %y,

B Sy dim Hg Ag As p
2 3,9, 11 2 22 8
3 4, 10, 11 2 21 7
4 5,8, 10 2 24 7
5 6,9, 7 2 16 6
6 1, 2, 6, 10 3 53 12
7 2,3,5,7 3 49 13
8 2,8, 11, 12 3 57 15
9 4,3,6,8 3 50 12
10 1,4,5,9,12 4 91 91
11 1,2,3,4,5,6 2 24 8
12 1, 2, 4, 6, 8, 12 2 24 8
13 1, 2, 4, 10, 11, 12 2 20 7
14 1,2,5,6,7,9 2 14 7
15 1,2,5,7, 11, 12 2 14 7
16 1, 2, 5, 8, 10, 12 2 20 8
17 1,3,5,7,09, 11 2 14 7
18 1,4,5,6,8, 10 2 19 6
19 2,3,4,5,8, 12 2 20 8
20 2,3,5,6,8, 10 2 14 0
22 2,4, 6, 8, 10, 11 2 15 0
23 3,4,5,6,7,9 2 12 6
24 3,4, 8,09, 11, 12 2 13 7
25 | 4,5,8,10, 11, 12 2 15 7
a




Main result I1I

Theorem
The groups w1 (P?\ A¢) and m (P? \ Ac2) are not isomorphic (while
their profinite completions are).

First step
@ :m(P?\ Ae) — m1(P?\ A¢2) isomorphism = ¢, = :I:lHlygl.

Second step
There is no isomorphism such that ¢ : m (P? \ A¢) — 71 (P2 \ Ag2)
isomorphism = . = 1,9,

1
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% combinatorics, A realization, G4 := 71 (P2 \ A), A := Z[H{]
My = G'y/G’} as A-module is the Alezander invariant.

m C A augmentation ideal of A.

MY = M/mFM = M @ A/m* truncated Alexander invariant.
Or+2(Ga) == ker(¢y : G’y — M) Chen group
A={Lo,L1,...,L¢}, Ga= (x1,...,2¢ | Ri,...,Rs), A= Z [t]
M 4 generated by z; ; = [x;, z;] and relators:

» Rewriting R;
» Jacobi relations:(t; — 1)xjx + (65 — 1)z, + (te — 1)z j

gr’f M4, k=0,1, is combinatorial, gr® M4 = (Hig A H;g) /Hsg
g€ Hyand p € ]\[i‘ = [g,p] € ]\,,]ﬁJrl.
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A¢ .A<z 2 2]
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> Isomorphism ¢ : G4, — GA@, Ti > TG, Gi € G/A<2

v

rk M.}(( =1k M“l“<2 = rk gr° M2%1 = 23, basis {z;; | (¢,7) € B}.
> o, : Mi( — Mi<2’ Need:

— 1
gi= Y Migk wik €My, nijr€Z
(j.k)E€B

> R;,i=1,...,32 relation of G4, rewritten in Mic.
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32 x 91 = 2912 linear equations in 11 x 23 = 253 unknowns.
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Steps of the proof

> Isomorphism ¢ : G4, — GACQ, Ti > TG, Gi € G’A(Q

Gor . .
> rk thc =rk M“l“<2 = rk gr® My = 23, basis {z;; | (i,j) € B}
> o, : Mi( — Mi(Q. Need:

_ 1
9= D>, Migk Tk € My, mijk€Z
(G.k)eB

> R;,i=1,...,32 relation of G4, rewritten in Mic.
> o.(R;) € Mjc2 ® Z[n; j ], more precisely

0. (R;) € g My, ® Zlngjx],  tk grt Myor = 791

> Existence of ¢ implies integer solutions of a system of
32 x 91 = 2912 linear equations in 11 x 23 = 253 unknowns.

» Find solutions with Sagemath: Q-affine space dim = 12, smallest
ring of solutions is Z [%} w—)
» Whole process 662.49s CPU time.



Main result 111

Theorem
The groups w1 (P?\ A¢) and m (P? \ Ac2) are not isomorphic (while
their profinite completions are).

First step
@ :m(P?\ Ae) — m1(P?\ A¢2) isomorphism = ¢, = :I:lnggl.

Second step
There is no isomorphism such that ¢ : m (P? \ A¢) — m1 (P2 \ Ac2)
isomorphism = ¢, = 1, 901

1

Third step
There is no isomorphism such that ¢ : m (P? \ A¢) — 71 (P? \ A¢s)
isomorphism = @, =19,

1



