Galois-conjugate line arrangements with non-isomorphic fundamental group

Enrique ARTAL BARTOLO

Departamento de Matemáticas Facultad de Ciencias Instituto Universitario de Matemáticas y sus Aplicaciones Universidad de Zaragoza

Computational Geometric Topology in Arrangement Theory Providence (RI), July 6th-10th 2015

Joint work with J.I. Cogolludo, B. Guerville-Ballé and M. Marco

Definition

Combinatorics: $\mathscr{C} := (\mathcal{L}, \mathcal{P}), \mathcal{L}$ finite set of lines and

 $\mathcal{P}\subset\{P\subset\mathcal{L}\mid\#P=2\}$ finite set of *points* mimic arrangement of lines and multiple points.

Definition (Realization of \mathscr{C})

 \mathcal{A} line arrangement in \mathbb{P}^2 : $(\mathcal{A}, \{\text{multiple points}\}) \leftrightarrow (\mathcal{L}, \mathcal{P})$

Definition

Combinatorics: $\mathscr{C} := (\mathcal{L}, \mathcal{P}), \mathcal{L}$ finite set of lines and

 $\mathcal{P}\subset \{P\subset\mathcal{L}\mid \#P=2\}$ finite set of points mimic arrangement of lines and multiple points.

Definition (Realization of \mathscr{C})

 \mathcal{A} line arrangement in \mathbb{P}^2 : $(\mathcal{A}, \{\text{multiple points}\}) \leftrightarrow (\mathcal{L}, \mathcal{P})$

Combinatorial objects

$$\mathbb{Z}^{\mathcal{L}} = \bigoplus_{L \in \mathcal{L}} \mathbb{Z} x_L, \frac{\mathbb{Z}^{\mathcal{L}}}{\mathbb{Z} \left(\sum_{L \in \mathcal{L}} x_L \right)} =: \overline{H_1^{\mathscr{C}} \cong H_1(\mathbb{P}^2 \setminus \mathcal{A}; \mathbb{Z})}$$

Definition

Combinatorics: $\mathscr{C} := (\mathcal{L}, \mathcal{P})$, \mathcal{L} finite set of lines and $\mathcal{P} \subset \{P \subset \mathcal{L} \mid \#P = 2\}$ finite set of points mimic arrangement of lines and multiple points.

Definition (Realization of \mathscr{C})

 \mathcal{A} line arrangement in \mathbb{P}^2 : $(\mathcal{A}, \{\text{multiple points}\}) \leftrightarrow (\mathcal{L}, \mathcal{P})$

Combinatorial objects

$$\mathbb{Z}^{\mathcal{L}} = \bigoplus_{L \in \mathcal{L}} \mathbb{Z} x_L, \frac{\mathbb{Z}^{\mathcal{L}}}{\mathbb{Z} \left(\sum_{L \in \mathcal{L}} x_L \right)} =: \overline{H_1^{\mathscr{C}} \cong H_1(\mathbb{P}^2 \setminus \mathcal{A}; \mathbb{Z})}$$

$$\{x_L \wedge x_P \in H_1^{\mathscr{C}} \wedge H_1^{\mathscr{C}} \mid P < L\} = H_2^{\mathscr{C}} \cong H_2(\mathbb{P}^2 \setminus \mathcal{A}; \mathbb{Z})$$

Definition

Combinatorics: $\mathscr{C} := (\mathcal{L}, \mathcal{P})$, \mathcal{L} finite set of lines and $\mathcal{P} \subset \{P \subset \mathcal{L} \mid \#P = 2\}$ finite set of points mimic arrangement of lines and multiple points.

Definition (Realization of \mathscr{C})

 \mathcal{A} line arrangement in \mathbb{P}^2 : $(\mathcal{A}, \{\text{multiple points}\}) \leftrightarrow (\mathcal{L}, \mathcal{P})$

Combinatorial objects

$$\mathbb{Z}^{\mathcal{L}} = \bigoplus_{L \in \mathcal{L}} \mathbb{Z} x_L, \frac{\mathbb{Z}^{\mathcal{L}}}{\mathbb{Z} \left(\sum_{L \in \mathcal{L}} x_L \right)} =: \mathbb{H}_1^{\mathscr{C}} \cong H_1(\mathbb{P}^2 \setminus \mathcal{A}; \mathbb{Z})$$

$$\{x_L \wedge x_P \in H_1^{\mathscr{C}} \wedge H_1^{\mathscr{C}} \mid P < L\} = H_2^{\mathscr{C}} \cong H_2(\mathbb{P}^2 \setminus \mathcal{A}; \mathbb{Z})$$

$$\bullet \qquad \qquad \bullet \qquad \qquad \mathrm{Aut}\,\mathscr{ML} = \\ \mathrm{GL}(2,\mathbb{F}_3)$$

ML

 \mathcal{ML}

 $\bigcirc z$

$$(y\ominus z)$$

 $\operatorname{Aut} \mathscr{ML} = \operatorname{GL}(2, \mathbb{F}_3)$

$$\bigcirc$$

(x)

lacktriangle

$$(x\ominus z)$$

$$y \in \zeta x$$

$$\mathcal{ML}$$

y

$$\left(y\ominus z
ight)$$

$$\operatorname{Aut} \mathscr{ML} = \operatorname{GL}(2, \mathbb{F}_3)$$

 \subset

•

$$(\zeta-1)\widehat{x}-y+z$$

$$(x\ominus z)$$

$$y \in \zeta x$$

$$\zeta^2 + \zeta + 1 = 0$$
$$\mathcal{ML}_{\pm}$$

$$\bigcirc z$$

$$(y\ominus z)$$

Aut
$$\mathcal{ML} = \operatorname{GL}(2, \mathbb{F}_3)$$

$$\bigcirc$$

$$\widehat{(x)}$$

$$x+(1-\overline{\zeta})y-z$$

Theorem (Rybnikov)

 $\sharp \varphi : \pi_1(\mathbb{P}^2 \setminus \mathscr{ML}_+) \to \pi_1(\mathbb{P}^2 \setminus \mathscr{ML}_-) \text{ group automorphism inducing the identity on homology.}$

Theorem (Rybnikov)

 $\exists \varphi : \pi_1(\mathbb{P}^2 \setminus \mathcal{ML}_+) \to \pi_1(\mathbb{P}^2 \setminus \mathcal{ML}_-) \text{ group automorphism inducing the identity on homology.}$

Corollary

Theorem (Rybnikov)

 $\exists \varphi : \pi_1(\mathbb{P}^2 \setminus \mathcal{ML}_+) \to \pi_1(\mathbb{P}^2 \setminus \mathcal{ML}_-) \text{ group automorphism inducing the identity on homology.}$

Corollary

Orientation

 $\exists \rho: (\mathbb{P}^2, \mathscr{ML}_+) \to (\mathbb{P}^2, \mathscr{ML}_-)$ homeomorphism respecting ordering and reversing orientation: *complex conjugation*.

Theorem (Rybnikov)

 $\exists \varphi : \pi_1(\mathbb{P}^2 \setminus \mathcal{ML}_+) \to \pi_1(\mathbb{P}^2 \setminus \mathcal{ML}_-) \text{ group automorphism inducing the identity on homology.}$

Corollary

Orientation

 $\exists \rho: (\mathbb{P}^2, \mathscr{ML}_+) \to (\mathbb{P}^2, \mathscr{ML}_-)$ homeomorphism respecting ordering and reversing orientation: $complex\ conjugation$.

Order

 $\exists \rho: (\mathbb{P}^2, \mathscr{ML}_+) \to (\mathbb{P}^2, \mathscr{ML}_-)$ homeomorphism respecting orientation: $\mathrm{GL}(2, \mathbb{F}_3) \setminus \mathrm{SL}(2, \mathbb{F}_3)$.

Rybnikov's combinatorics

$$\mathscr{R}\mathscr{B} = \mathscr{ML}_1 \cup_{xz(x-z)=0} \mathscr{ML}_2$$
 (gluing in general position)

Rybnikov's combinatorics

$$\mathscr{R}\mathscr{B} = \mathscr{ML}_1 \cup_{xz(x-z)=0} \mathscr{ML}_2$$
 (gluing in general position)

Theorem

$$G_{++} = \pi_1(\mathbb{P}^2 \setminus \mathscr{R}_{++}) \ncong \pi_1(\mathbb{P}^2 \setminus \mathscr{R}_{+-}) = G_{--}$$

Rybnikov's combinatorics

$$\mathscr{R}\mathscr{B} = \mathscr{ML}_1 \cup_{xz(x-z)=0} \mathscr{ML}_2$$
 (gluing in general position)

Theorem

$$G_{++} = \pi_1(\mathbb{P}^2 \setminus \mathscr{R}\mathscr{B}_{++}) \ncong \pi_1(\mathbb{P}^2 \setminus \mathscr{R}\mathscr{B}_{+-}) = G_{--}$$

Guidelines of the proof.

Assume they are isomorphic $\Longrightarrow G_{++}/\gamma_4(G_{++}) \cong G_{+-}/\gamma_4(G_{+-})$

Rybnikov's combinatorics

$$\mathscr{R}\mathscr{B} = \mathscr{M}\mathscr{L}_1 \cup_{xz(x-z)=0} \mathscr{M}\mathscr{L}_2$$
 (gluing in general position)

Theorem

$$G_{++} = \pi_1(\mathbb{P}^2 \setminus \mathscr{R}\mathscr{B}_{++}) \ncong \pi_1(\mathbb{P}^2 \setminus \mathscr{R}\mathscr{B}_{+-}) = G_{--}$$

Guidelines of the proof.

Assume they are isomorphic $\Longrightarrow G_{++}/\gamma_4(G_{++}) \cong G_{+-}/\gamma_4(G_{+-})$

1. The isomorphism induces the $\pm identity$ on $H_1^{\mathscr{R}}$ (purely combinatorial).

Rybnikov's combinatorics

$$\mathscr{R}\mathscr{B} = \mathscr{ML}_1 \cup_{xz(x-z)=0} \mathscr{ML}_2$$
 (gluing in general position)

Theorem

$$G_{++} = \pi_1(\mathbb{P}^2 \setminus \mathscr{R}\mathscr{B}_{++}) \ncong \pi_1(\mathbb{P}^2 \setminus \mathscr{R}\mathscr{B}_{+-}) = G_{--}$$

Guidelines of the proof.

Assume they are isomorphic $\Longrightarrow G_{++}/\gamma_4(G_{++}) \cong G_{+-}/\gamma_4(G_{+-})$

- 1. The isomorphism induces the $\pm identity$ on $H_1^{\mathcal{RB}}$ (purely combinatorial).
- 2. It does not happen using truncated Alexander invariant.

Theorem

There is no homeomorphism between $(\mathbb{P}^2, \mathscr{C}_+)$ and $(\mathbb{P}^2, \mathscr{C}_-)$

Theorem

 \mathscr{G}_{91} admits four (Galois-conjugate) realizations \mathcal{A}_{ζ} with equations in the cyclotomic field \mathbb{K}_{5} , for ζ a primitive fifth root of unity. There is no oriented homeomorphism $(\mathbb{P}^{2}, \mathcal{A}_{\zeta_{1}}) \to (\mathbb{P}^{2}, \mathcal{A}_{\zeta_{2}})$ if $\zeta_{1} \neq \zeta_{2}$.

Theorem

 \mathcal{G}_{91} admits four (Galois-conjugate) realizations \mathcal{A}_{ζ} with equations in the cyclotomic field \mathbb{K}_5 , for ζ a primitive fifth root of unity. There is no oriented homeomorphism $(\mathbb{P}^2, \mathcal{A}_{\zeta_1}) \to (\mathbb{P}^2, \mathcal{A}_{\zeta_2})$ if $\zeta_1 \neq \zeta_2$.

Corollary

There is no homeomorphism $(\mathbb{P}^2, \mathcal{A}_{\zeta}) \to (\mathbb{P}^2, \mathcal{A}_{\zeta^2})$.

Theorem

 \mathscr{G}_{91} admits four (Galois-conjugate) realizations \mathcal{A}_{ζ} with equations in the cyclotomic field \mathbb{K}_{5} , for ζ a primitive fifth root of unity. There is no oriented homeomorphism $(\mathbb{P}^{2}, \mathcal{A}_{\zeta_{1}}) \to (\mathbb{P}^{2}, \mathcal{A}_{\zeta_{2}})$ if $\zeta_{1} \neq \zeta_{2}$.

Corollary

There is no homeomorphism $(\mathbb{P}^2, \mathcal{A}_{\zeta}) \to (\mathbb{P}^2, \mathcal{A}_{\zeta^2})$.

Comments

Theorem

 \mathscr{G}_{91} admits four (Galois-conjugate) realizations \mathcal{A}_{ζ} with equations in the cyclotomic field \mathbb{K}_{5} , for ζ a primitive fifth root of unity. There is no oriented homeomorphism $(\mathbb{P}^{2}, \mathcal{A}_{\zeta_{1}}) \to (\mathbb{P}^{2}, \mathcal{A}_{\zeta_{2}})$ if $\zeta_{1} \neq \zeta_{2}$.

Corollary

There is no homeomorphism $(\mathbb{P}^2, \mathcal{A}_{\zeta}) \to (\mathbb{P}^2, \mathcal{A}_{\zeta^2})$.

Comments

1. Use special non-resonant characters, with special non-resonant locus.

Guerville's example

Theorem

 \mathcal{G}_{91} admits four (Galois-conjugate) realizations \mathcal{A}_{ζ} with equations in the cyclotomic field \mathbb{K}_{5} , for ζ a primitive fifth root of unity. There is no oriented homeomorphism $(\mathbb{P}^{2}, \mathcal{A}_{\zeta_{1}}) \to (\mathbb{P}^{2}, \mathcal{A}_{\zeta_{2}})$ if $\zeta_{1} \neq \zeta_{2}$.

Corollary

There is no homeomorphism $(\mathbb{P}^2, \mathcal{A}_{\zeta}) \to (\mathbb{P}^2, \mathcal{A}_{\zeta^2})$.

Comments

- 1. Use special non-resonant characters, with special non-resonant locus.
- 2. It does not give so much information about the complement (need extra info)

Main result I

Theorem

The groups $\pi_1(\mathbb{P}^2 \setminus \mathcal{A}_{\zeta})$ and $\pi_1(\mathbb{P}^2 \setminus \mathcal{A}_{\zeta^2})$ are not isomorphic (while their profinite completions are).

Main result I

Theorem

The groups $\pi_1(\mathbb{P}^2 \setminus \mathcal{A}_{\zeta})$ and $\pi_1(\mathbb{P}^2 \setminus \mathcal{A}_{\zeta^2})$ are not isomorphic (while their profinite completions are).

First step

$$\varphi:\pi_1(\mathbb{P}^2\setminus\mathcal{A}_\zeta)\to\pi_1(\mathbb{P}^2\setminus\mathcal{A}_{\zeta^2})\text{ isomorphism}\Longrightarrow\varphi_*=\pm 1_{H_1^{\mathscr{G}_{91}}}.$$

Main result I

Theorem

The groups $\pi_1(\mathbb{P}^2 \setminus \mathcal{A}_{\zeta})$ and $\pi_1(\mathbb{P}^2 \setminus \mathcal{A}_{\zeta^2})$ are not isomorphic (while their profinite completions are).

First step

$$\varphi:\pi_1(\mathbb{P}^2\setminus\mathcal{A}_\zeta)\to\pi_1(\mathbb{P}^2\setminus\mathcal{A}_{\zeta^2})\text{ isomorphism}\Longrightarrow\varphi_*=\pm 1_{H_1^{\mathscr{G}_{91}}}.$$

▶ Purely combinatorial statement.

 $\blacktriangleright \ \rho: H_1^\mathscr{C} \to H_1^\mathscr{C} \text{ is an } admissible \ isomorphism if } \rho \wedge \rho(H_2^\mathscr{C}) = H_2^\mathscr{C}$

- ▶ $\rho: H_1^{\mathscr{C}} \to H_1^{\mathscr{C}}$ is an admissible isomorphism if $\rho \wedge \rho(H_2^{\mathscr{C}}) = H_2^{\mathscr{C}}$
- ▶ $\mathcal{A}_1, \mathcal{A}_2$ realizations of $\mathscr{C}, \varphi : \pi_1(\mathbb{P}^2 \setminus \mathcal{A}_1) \to \pi_1(\mathbb{P}^2 \setminus \mathcal{A}_2)$ isomorphism $\Longrightarrow \varphi_*$ admissible.

- ▶ $\rho: H_1^{\mathscr{C}} \to H_1^{\mathscr{C}}$ is an admissible isomorphism if $\rho \wedge \rho(H_2^{\mathscr{C}}) = H_2^{\mathscr{C}}$
- ▶ $\mathcal{A}_1, \mathcal{A}_2$ realizations of $\mathscr{C}, \varphi : \pi_1(\mathbb{P}^2 \setminus \mathcal{A}_1) \to \pi_1(\mathbb{P}^2 \setminus \mathcal{A}_2)$ isomorphism $\Longrightarrow \varphi_*$ admissible.
- ▶ *C* homologically rigid if

```
\pm \operatorname{Aut}(\mathscr{C}) = \{ \operatorname{admissible isomorphisms} \}
```


- ▶ $\rho: H_1^{\mathscr{C}} \to H_1^{\mathscr{C}}$ is an admissible isomorphism if $\rho \wedge \rho(H_2^{\mathscr{C}}) = H_2^{\mathscr{C}}$
- ▶ $\mathcal{A}_1, \mathcal{A}_2$ realizations of $\mathscr{C}, \varphi : \pi_1(\mathbb{P}^2 \setminus \mathcal{A}_1) \to \pi_1(\mathbb{P}^2 \setminus \mathcal{A}_2)$ isomorphism $\Longrightarrow \varphi_*$ admissible.
- ▶ *C* homologically rigid if

$$\pm\operatorname{Aut}(\mathscr{C})=\{\text{admissible isomorphisms}\}$$

ightharpoonup
ho admissible $\Longrightarrow
ho^*: H^1_{\mathscr C} \to H^1_{\mathscr C}$ respects the resonance varieties.

- ▶ $\rho: H_1^{\mathscr{C}} \to H_1^{\mathscr{C}}$ is an admissible isomorphism if $\rho \wedge \rho(H_2^{\mathscr{C}}) = H_2^{\mathscr{C}}$
- ▶ $\mathcal{A}_1, \mathcal{A}_2$ realizations of $\mathscr{C}, \varphi : \pi_1(\mathbb{P}^2 \setminus \mathcal{A}_1) \to \pi_1(\mathbb{P}^2 \setminus \mathcal{A}_2)$ isomorphism $\Longrightarrow \varphi_*$ admissible.
- ▶ *C* homologically rigid if

$$\pm\operatorname{Aut}(\mathscr{C})=\{\text{admissible isomorphisms}\}$$

- ho admissible $\Longrightarrow \rho^*: H^1_{\mathscr{C}} \to H^1_{\mathscr{C}}$ respects the resonance varieties.
- ▶ $\{H_S \text{ irreducible components of resonance varieties in } H^1\} \leftrightarrow \{S \text{ combinatorial pencil}\}$

- ▶ $\rho: H_1^{\mathscr{C}} \to H_1^{\mathscr{C}}$ is an admissible isomorphism if $\rho \wedge \rho(H_2^{\mathscr{C}}) = H_2^{\mathscr{C}}$
- ▶ $\mathcal{A}_1, \mathcal{A}_2$ realizations of $\mathscr{C}, \varphi : \pi_1(\mathbb{P}^2 \setminus \mathcal{A}_1) \to \pi_1(\mathbb{P}^2 \setminus \mathcal{A}_2)$ isomorphism $\Longrightarrow \varphi_*$ admissible.
- ▶ *C* homologically rigid if

$$\pm\operatorname{Aut}(\mathscr{C})=\{\text{admissible isomorphisms}\}$$

- ightharpoonup
 ho admissible $\Longrightarrow
 ho^*: H^1_{\mathscr{C}} \to H^1_{\mathscr{C}}$ respects the resonance varieties.
- ▶ $\{H_S \text{ irreducible components of resonance varieties in } H^1\} \leftrightarrow \{S \text{ combinatorial pencil}\}$
- $\triangleright \rho^*$ sends triangles to triangles

- ▶ $\rho: H_1^{\mathscr{C}} \to H_1^{\mathscr{C}}$ is an admissible isomorphism if $\rho \wedge \rho(H_2^{\mathscr{C}}) = H_2^{\mathscr{C}}$
- ▶ $\mathcal{A}_1, \mathcal{A}_2$ realizations of $\mathscr{C}, \varphi : \pi_1(\mathbb{P}^2 \setminus \mathcal{A}_1) \to \pi_1(\mathbb{P}^2 \setminus \mathcal{A}_2)$ isomorphism $\Longrightarrow \varphi_*$ admissible.
- ▶ *C* homologically rigid if

$$\pm\operatorname{Aut}(\mathscr{C})=\{\text{admissible isomorphisms}\}$$

- ho admissible $\Longrightarrow \rho^*: H^1_{\mathscr{C}} \to H^1_{\mathscr{C}}$ respects the resonance varieties.
- ▶ $\{H_S \text{ irreducible components of resonance varieties in } H^1\} \leftrightarrow \{S \text{ combinatorial pencil}\}$
- $\triangleright \rho^*$ sends triangles to triangles

Triangle

 S_1, S_2, S_3 combinatorial pencils such that

$$\operatorname{codim} \bigcap_{i} H_{S_i} = \sum_{i} \operatorname{codim} H_{S_i} - 1.$$

- ▶ $\rho: H_1^{\mathscr{C}} \to H_1^{\mathscr{C}}$ is an admissible isomorphism if $\rho \wedge \rho(H_2^{\mathscr{C}}) = H_2^{\mathscr{C}}$
- ▶ $\mathcal{A}_1, \mathcal{A}_2$ realizations of $\mathscr{C}, \varphi : \pi_1(\mathbb{P}^2 \setminus \mathcal{A}_1) \to \pi_1(\mathbb{P}^2 \setminus \mathcal{A}_2)$ isomorphism $\Longrightarrow \varphi_*$ admissible.
- ▶ *C* homologically rigid if

$$\pm \operatorname{Aut}(\mathscr{C}) = \{ \operatorname{admissible isomorphisms} \}$$

- ightharpoonup
 ho admissible $\Longrightarrow
 ho^*: H^1_{\mathscr{C}} \to H^1_{\mathscr{C}}$ respects the resonance varieties.
- ▶ $\{H_S \text{ irreducible components of resonance varieties in } H^1\} \leftrightarrow \{S \text{ combinatorial pencil}\}$
- $\triangleright \rho^*$ sends triangles to triangles

Triangles in \mathcal{G}_{91}

i	s_i	$\dim H_S$	Δ_S	Δ_{S,P_1}
1	1, 7, 11	2	18	7
2	3, 9, 11	2	22	8
3	4, 10, 11	2	21	7
4	5, 8, 10	2	24	7
5	6, 9, 7	2	16	6
6	1, 2, 6, 10	3	53	12
7	2, 3, 5, 7	3	49	13
8	2, 8, 11, 12	3	57	15
9	4, 3, 6, 8	3	50	12
10	1, 4, 5, 9, 12	4	91	91
11	1, 2, 3, 4, 5, 6	2	24	8
12	1, 2, 4, 6, 8, 12	2	24	8
13	1, 2, 4, 10, 11, 12	2	20	7
14	1, 2, 5, 6, 7, 9	2	14	7
15	1, 2, 5, 7, 11, 12	2	14	7
16	1, 2, 5, 8, 10, 12	2	20	8
17	1, 3, 5, 7, 9, 11	2	14	7
18	1, 4, 5, 6, 8, 10	2	19	6
19	2, 3, 4, 5, 8, 12	2	20	8
20	2, 3, 5, 6, 8, 10	2	14	0
21	2, 3, 5, 9, 11, 12	2	18	9
22	2, 4, 6, 8, 10, 11	2	15	0
23	3, 4, 5, 6, 7, 9	2	12	6
24	3, 4, 8, 9, 11, 12	2	13	7
25	4, 5, 8, 10, 11, 12	2	15	7

Triangles in \mathcal{G}_{91}

i	S_i	$\dim H_S$	Δ_S	Δ_{S,P_1}
1	1, 7, 11	2	18	7
2	3, 9, 11	2	22	8
3	4, 10, 11	2	21	7
4	5, 8, 10	2	24	7
5	6, 9, 7	2	16	6
6	1, 2, 6, 10	3	53	12
7	2, 3, 5, 7	3	49	13
8	2, 8, 11, 12	3	57	15
9	4, 3, 6, 8	3	50	12
10	1, 4, 5, 9, 12	4	91	91
11	1, 2, 3, 4, 5, 6	2	24	8
12	1, 2, 4, 6, 8, 12	2	24	8
13	1, 2, 4, 10, 11, 12	2	20	7
14	1, 2, 5, 6, 7, 9	2	14	7
15	1, 2, 5, 7, 11, 12	2	14	7
16	1, 2, 5, 8, 10, 12	2	20	8
17	1, 3, 5, 7, 9, 11	2	14	7
18	1, 4, 5, 6, 8, 10	2	19	6
19	2, 3, 4, 5, 8, 12	2	20	8
20	2, 3, 5, 6, 8, 10	2	14	0
21	2, 3, 5, 9, 11, 12	2	18	9
22	2, 4, 6, 8, 10, 11	2	15	0
23	3, 4, 5, 6, 7, 9	2	12	6
24	3, 4, 8, 9, 11, 12	2	13	7
25	4, 5, 8, 10, 11, 12	2	15	7

Main result II

Theorem

The groups $\pi_1(\mathbb{P}^2 \setminus \mathcal{A}_{\zeta})$ and $\pi_1(\mathbb{P}^2 \setminus \mathcal{A}_{\zeta^2})$ are not isomorphic (while their profinite completions are).

First step

$$\varphi:\pi_1(\mathbb{P}^2\setminus\mathcal{A}_\zeta)\to\pi_1(\mathbb{P}^2\setminus\mathcal{A}_{\zeta^2})\text{ isomorphism}\Longrightarrow\varphi_*=\pm 1_{H_1^{\mathscr{G}_{91}}}.$$

Second step

There is no isomorphism such that $\varphi: \pi_1(\mathbb{P}^2 \setminus \mathcal{A}_{\zeta}) \to \pi_1(\mathbb{P}^2 \setminus \mathcal{A}_{\zeta^2})$ isomorphism $\Longrightarrow \varphi_* = 1_{H_*^{\mathscr{G}_{91}}}$

 $ightharpoonup \mathscr{C}$ combinatorics, \mathcal{A} realization, $G_{\mathcal{A}} := \pi_1(\mathbb{P}^2 \setminus \mathcal{A}), \, \Lambda := \mathbb{Z}[H_1^{\mathscr{C}}]$

- \mathscr{C} combinatorics, \mathcal{A} realization, $G_{\mathcal{A}} := \pi_1(\mathbb{P}^2 \setminus \mathcal{A}), \Lambda := \mathbb{Z}[H_1^{\mathscr{C}}]$
- ▶ $M_A := G'_A/G''_A$ as Λ-module is the Alexander invariant.

- $ightharpoonup \mathscr{C}$ combinatorics, \mathcal{A} realization, $G_{\mathcal{A}} := \pi_1(\mathbb{P}^2 \setminus \mathcal{A}), \ \Lambda := \mathbb{Z}[H_1^{\mathscr{C}}]$
- $M_{\mathcal{A}} := G'_{\mathcal{A}}/G''_{\mathcal{A}}$ as Λ -module is the Alexander invariant.
- ▶ $\mathfrak{m} \subset \Lambda$ augmentation ideal of Λ .

- \mathscr{C} combinatorics, \mathcal{A} realization, $G_{\mathcal{A}} := \pi_1(\mathbb{P}^2 \setminus \mathcal{A}), \Lambda := \mathbb{Z}[H_1^{\mathscr{C}}]$
- ▶ $M_A := G'_A/G''_A$ as Λ-module is the Alexander invariant.
- ▶ $\mathfrak{m} \subset \Lambda$ augmentation ideal of Λ .
- $ightharpoonup M_{\mathcal{A}}^k := M/\mathfrak{m}^k M = M \otimes_{\Lambda} \Lambda/\mathfrak{m}^k \ truncated \ Alexander \ invariant.$

- $ightharpoonup \mathscr{C}$ combinatorics, \mathcal{A} realization, $G_{\mathcal{A}} := \pi_1(\mathbb{P}^2 \setminus \mathcal{A}), \ \Lambda := \mathbb{Z}[H_1^{\mathscr{C}}]$
- ▶ $M_A := G'_A/G''_A$ as Λ-module is the Alexander invariant.
- ▶ $\mathfrak{m} \subset \Lambda$ augmentation ideal of Λ .
- $M_A^k := M/\mathfrak{m}^k M = M \otimes_{\Lambda} \Lambda/\mathfrak{m}^k$ truncated Alexander invariant.
- ▶ $\theta_{k+2}(G_A) := \ker(\varphi_k : G'_A \to M^k_A)$ Chen group

- \mathscr{C} combinatorics, \mathcal{A} realization, $G_{\mathcal{A}} := \pi_1(\mathbb{P}^2 \setminus \mathcal{A}), \Lambda := \mathbb{Z}[H_1^{\mathscr{C}}]$
- ▶ $M_A := G'_A/G''_A$ as Λ-module is the Alexander invariant.
- ▶ $\mathfrak{m} \subset \Lambda$ augmentation ideal of Λ .
- $M_A^k := M/\mathfrak{m}^k M = M \otimes_{\Lambda} \Lambda/\mathfrak{m}^k$ truncated Alexander invariant.
- ▶ $\theta_{k+2}(G_A) := \ker(\varphi_k : G'_A \to M_A^k)$ Chen group
- $\blacktriangleright \mathcal{A} = \{L_0, L_1, \dots, L_\ell\}, G_{\mathcal{A}} = \langle x_1, \dots, x_\ell \mid R_1, \dots, R_s \rangle, \Lambda = \mathbb{Z}\left[t_i^{\pm 1}\right]$

- \mathscr{C} combinatorics, \mathcal{A} realization, $G_{\mathcal{A}} := \pi_1(\mathbb{P}^2 \setminus \mathcal{A}), \Lambda := \mathbb{Z}[H_1^{\mathscr{C}}]$
- ▶ $M_A := G'_A/G''_A$ as Λ-module is the Alexander invariant.
- ▶ $\mathfrak{m} \subset \Lambda$ augmentation ideal of Λ .
- $M_A^k := M/\mathfrak{m}^k M = M \otimes_{\Lambda} \Lambda/\mathfrak{m}^k$ truncated Alexander invariant.
- ▶ $\theta_{k+2}(G_A) := \ker(\varphi_k : G'_A \to M_A^k)$ Chen group
- ▶ M_A generated by $x_{i,j} \equiv [x_i, x_j]$ and relators:

- \mathscr{C} combinatorics, \mathcal{A} realization, $G_{\mathcal{A}} := \pi_1(\mathbb{P}^2 \setminus \mathcal{A}), \Lambda := \mathbb{Z}[H_1^{\mathscr{C}}]$
- ▶ $M_A := G'_A/G''_A$ as Λ-module is the Alexander invariant.
- ▶ $\mathfrak{m} \subset \Lambda$ augmentation ideal of Λ .
- $M_A^k := M/\mathfrak{m}^k M = M \otimes_{\Lambda} \Lambda/\mathfrak{m}^k$ truncated Alexander invariant.
- ▶ $\theta_{k+2}(G_A) := \ker(\varphi_k : G'_A \to M_A^k)$ Chen group
- ▶ M_A generated by $x_{i,j} \equiv [x_i, x_j]$ and relators:
 - ightharpoonup Rewriting R_j

- $ightharpoonup \mathscr{C}$ combinatorics, \mathcal{A} realization, $G_{\mathcal{A}} := \pi_1(\mathbb{P}^2 \setminus \mathcal{A}), \ \Lambda := \mathbb{Z}[H_1^{\mathscr{C}}]$
- ▶ $M_A := G'_A/G''_A$ as Λ-module is the Alexander invariant.
- ▶ $\mathfrak{m} \subset \Lambda$ augmentation ideal of Λ .
- $M_A^k := M/\mathfrak{m}^k M = M \otimes_{\Lambda} \Lambda/\mathfrak{m}^k$ truncated Alexander invariant.
- ▶ $\theta_{k+2}(G_A) := \ker(\varphi_k : G'_A \to M^k_A)$ Chen group
- ▶ M_A generated by $x_{i,j} \equiv [x_i, x_j]$ and relators:
 - ightharpoonup Rewriting R_j
 - ▶ Jacobi relations: $(t_i 1)x_{j,k} + (t_j 1)x_{k,i} + (t_k 1)x_{i,j}$

- \mathscr{C} combinatorics, \mathcal{A} realization, $G_{\mathcal{A}} := \pi_1(\mathbb{P}^2 \setminus \mathcal{A}), \Lambda := \mathbb{Z}[H_1^{\mathscr{C}}]$
- ▶ $M_A := G'_A/G''_A$ as Λ-module is the Alexander invariant.
- ▶ $\mathfrak{m} \subset \Lambda$ augmentation ideal of Λ .
- $ightharpoonup M_{\mathcal{A}}^k := M/\mathfrak{m}^k M = M \otimes_{\Lambda} \Lambda/\mathfrak{m}^k \text{ truncated Alexander invariant.}$
- ▶ $\theta_{k+2}(G_A) := \ker(\varphi_k : G'_A \to M^k_A)$ Chen group
- ▶ M_A generated by $x_{i,j} \equiv [x_i, x_j]$ and relators:
 - ightharpoonup Rewriting R_j
 - ▶ Jacobi relations: $(t_i 1)x_{j,k} + (t_j 1)x_{k,i} + (t_k 1)x_{i,j}$
- ▶ gr^k M_A , k = 0, 1, is combinatorial, gr⁰ $M_A = (H_1^{\mathscr{C}} \wedge H_1^{\mathscr{C}}) / H_2^{\mathscr{C}}$

- \mathscr{C} combinatorics, \mathcal{A} realization, $G_{\mathcal{A}} := \pi_1(\mathbb{P}^2 \setminus \mathcal{A}), \Lambda := \mathbb{Z}[H_1^{\mathscr{C}}]$
- ▶ $M_A := G'_A/G''_A$ as Λ-module is the Alexander invariant.
- ▶ $\mathfrak{m} \subset \Lambda$ augmentation ideal of Λ .
- $M_A^k := M/\mathfrak{m}^k M = M \otimes_{\Lambda} \Lambda/\mathfrak{m}^k$ truncated Alexander invariant.
- ▶ $\theta_{k+2}(G_A) := \ker(\varphi_k : G'_A \to M^k_A)$ Chen group
- ▶ M_A generated by $x_{i,j} \equiv [x_i, x_j]$ and relators:
 - ightharpoonup Rewriting R_j
 - ▶ Jacobi relations: $(t_i 1)x_{j,k} + (t_j 1)x_{k,i} + (t_k 1)x_{i,j}$
- ▶ gr^k $M_{\mathcal{A}}$, k = 0, 1, is combinatorial, gr⁰ $M_{\mathcal{A}} = (H_1^{\mathscr{C}} \wedge H_1^{\mathscr{C}}) / H_2^{\mathscr{C}}$
- ▶ $g \in H_1$ and $p \in M_A^k \Longrightarrow [g, p] \in M_A^{k+1}$.

Wiring diagrams

▶ Isomorphism $\varphi: G_{\mathcal{A}_{\zeta}} \to G_{\mathcal{A}_{\zeta^2}}, x_i \mapsto x_i g_i, g_i \in G'_{\mathcal{A}_{\zeta^2}}$

- ▶ Isomorphism $\varphi: G_{\mathcal{A}_{\zeta}} \to G_{\mathcal{A}_{\zeta^2}}, x_i \mapsto x_i g_i, g_i \in G'_{\mathcal{A}_{\zeta^2}}$

- ▶ Isomorphism $\varphi: G_{\mathcal{A}_{\zeta}} \to G_{\mathcal{A}_{\zeta^2}}, x_i \mapsto x_i g_i, g_i \in G'_{\mathcal{A}_{\zeta^2}}$
- $ightharpoonup \varphi_*: M^2_{\mathcal{A}_{\zeta}} \to M^2_{\mathcal{A}_{\zeta^2}}.$ Need:

$$g_i \equiv \sum_{(j,k)\in\mathcal{B}} \boxed{n_{i,j,k}} x_{j,k} \in M^1_{\mathcal{A}_{\zeta^2}}, \quad n_{i,j,k} \in \mathbb{Z}$$

- ► Isomorphism $\varphi: G_{\mathcal{A}_{\zeta}} \to G_{\mathcal{A}_{\zeta^2}}, x_i \mapsto x_i g_i, g_i \in G'_{\mathcal{A}_{\zeta^2}}$
- $ightharpoonup \varphi_*: M^2_{\mathcal{A}_{\zeta}} \to M^2_{\mathcal{A}_{\zeta^2}}.$ Need:

$$g_i \equiv \sum_{(j,k)\in\mathcal{B}} n_{i,j,k} x_{j,k} \in M^1_{\mathcal{A}_{\zeta^2}}, \quad n_{i,j,k} \in \mathbb{Z}$$

▶ R_i , i = 1, ..., 32 relation of $G_{A_{\zeta}}$ rewritten in $M_{A_{\zeta}}^2$.

- ▶ Isomorphism $\varphi: G_{\mathcal{A}_{\zeta}} \to G_{\mathcal{A}_{\zeta^2}}, x_i \mapsto x_i g_i, g_i \in G'_{\mathcal{A}_{\zeta^2}}$
- $ightharpoonup \varphi_*: M^2_{\mathcal{A}_{\zeta}} \to M^2_{\mathcal{A}_{\zeta^2}}.$ Need:

$$g_i \equiv \sum_{(j,k)\in\mathcal{B}} \frac{n_{i,j,k}}{n_{i,j,k}} x_{j,k} \in M^1_{\mathcal{A}_{\zeta^2}}, \quad n_{i,j,k} \in \mathbb{Z}$$

- ▶ R_i , i = 1, ..., 32 relation of $G_{\mathcal{A}_{\zeta}}$ rewritten in $M_{\mathcal{A}_{\zeta}}^2$.
- $ightharpoonup \varphi_*(R_i) \in M^2_{\mathcal{A}_{r^2}} \otimes \mathbb{Z}[n_{i,j,k}],$ more precisely

$$\varphi_*(R_i) \in \operatorname{gr}^1 M_{\mathcal{A}_{\mathbb{C}^2}} \otimes \mathbb{Z}[n_{i,j,k}], \quad \operatorname{rk} \operatorname{gr}^1 M_2^{\mathscr{G}_{91}} \cong \mathbb{Z}^{91}$$

- ▶ Isomorphism $\varphi: G_{\mathcal{A}_{\zeta}} \to G_{\mathcal{A}_{\zeta^2}}, x_i \mapsto x_i g_i, g_i \in G'_{\mathcal{A}_{\zeta^2}}$
- $ightharpoonup \varphi_*: M^2_{\mathcal{A}_{\zeta}} \to M^2_{\mathcal{A}_{\zeta^2}}.$ Need:

$$g_i \equiv \sum_{(j,k)\in\mathcal{B}} \frac{n_{i,j,k}}{n_{i,j,k}} x_{j,k} \in M^1_{\mathcal{A}_{\zeta^2}}, \quad n_{i,j,k} \in \mathbb{Z}$$

- $ightharpoonup R_i, i = 1, ..., 32$ relation of $G_{\mathcal{A}_{\zeta}}$ rewritten in $M_{\mathcal{A}_{\zeta}}^2$.
- $ightharpoonup \varphi_*(R_i) \in M^2_{\mathcal{A}_{\mathcal{L}^2}} \otimes \mathbb{Z}[n_{i,j,k}],$ more precisely

$$\varphi_*(R_i) \in \operatorname{gr}^1 M_{\mathcal{A}_{\mathbb{C}^2}} \otimes \mathbb{Z}[n_{i,j,k}], \quad \operatorname{rk} \operatorname{gr}^1 M_2^{\mathscr{G}_{91}} \cong \mathbb{Z}^{91}$$

Existence of φ implies integer solutions of a system of $32 \times 91 = 2912$ linear equations in $11 \times 23 = 253$ unknowns.

- ▶ Isomorphism $\varphi: G_{\mathcal{A}_{\zeta}} \to G_{\mathcal{A}_{\zeta^2}}, x_i \mapsto x_i g_i, g_i \in G'_{\mathcal{A}_{\zeta^2}}$
- $ightharpoonup \varphi_*: M^2_{\mathcal{A}_{\zeta}} \to M^2_{\mathcal{A}_{\zeta^2}}.$ Need:

$$g_i \equiv \sum_{(j,k)\in\mathcal{B}} \frac{n_{i,j,k}}{n_{i,j,k}} x_{j,k} \in M^1_{\mathcal{A}_{\zeta^2}}, \quad n_{i,j,k} \in \mathbb{Z}$$

- $ightharpoonup R_i, i = 1, ..., 32$ relation of $G_{\mathcal{A}_{\zeta}}$ rewritten in $M_{\mathcal{A}_{\zeta}}^2$.
- $ightharpoonup \varphi_*(R_i) \in M^2_{\mathcal{A}_{\mathcal{L}^2}} \otimes \mathbb{Z}[n_{i,j,k}],$ more precisely

$$\varphi_*(R_i) \in \operatorname{gr}^1 M_{\mathcal{A}_{\zeta^2}} \otimes \mathbb{Z}[n_{i,j,k}], \quad \operatorname{rk} \operatorname{gr}^1 M_2^{\mathscr{G}_{91}} \cong \mathbb{Z}^{91}$$

- Existence of φ implies integer solutions of a system of $32 \times 91 = 2912$ linear equations in $11 \times 23 = 253$ unknowns.
- ▶ Find solutions with Sagemath: Q-affine space dim = 12, smallest ring of solutions is $\mathbb{Z}\left[\frac{1}{5}\right]$.

- ► Isomorphism $\varphi: G_{\mathcal{A}_{\zeta}} \to G_{\mathcal{A}_{\zeta^2}}, x_i \mapsto x_i g_i, g_i \in G'_{\mathcal{A}_{\zeta^2}}$
- $ightharpoonup \varphi_*: M^2_{\mathcal{A}_{\zeta}} \to M^2_{\mathcal{A}_{\zeta^2}}.$ Need:

$$g_i \equiv \sum_{(j,k)\in\mathcal{B}} \frac{n_{i,j,k}}{n_{i,j,k}} x_{j,k} \in M^1_{\mathcal{A}_{\zeta^2}}, \quad n_{i,j,k} \in \mathbb{Z}$$

- $ightharpoonup R_i, i = 1, ..., 32$ relation of $G_{\mathcal{A}_{\zeta}}$ rewritten in $M_{\mathcal{A}_{\zeta}}^2$.
- $ightharpoonup \varphi_*(R_i) \in M^2_{\mathcal{A}_{c^2}} \otimes \mathbb{Z}[n_{i,j,k}],$ more precisely

$$\varphi_*(R_i) \in \operatorname{gr}^1 M_{\mathcal{A}_{\zeta^2}} \otimes \mathbb{Z}[n_{i,j,k}], \quad \operatorname{rk} \operatorname{gr}^1 M_2^{\mathscr{G}_{91}} \cong \mathbb{Z}^{91}$$

- Existence of φ implies integer solutions of a system of $32 \times 91 = 2912$ linear equations in $11 \times 23 = 253$ unknowns.
- ▶ Find solutions with Sagemath: \mathbb{Q} -affine space dim = 12, smallest ring of solutions is $\mathbb{Z}\left[\frac{1}{5}\right]$.
- ▶ Whole process 662.49s CPU time.

Main result III

Theorem

The groups $\pi_1(\mathbb{P}^2 \setminus \mathcal{A}_{\zeta})$ and $\pi_1(\mathbb{P}^2 \setminus \mathcal{A}_{\zeta^2})$ are not isomorphic (while their profinite completions are).

First step

$$\varphi:\pi_1(\mathbb{P}^2\setminus\mathcal{A}_\zeta)\to\pi_1(\mathbb{P}^2\setminus\mathcal{A}_{\zeta^2})\text{ isomorphism}\Longrightarrow\varphi_*=\pm 1_{H_1^{\mathscr{G}_{91}}}.$$

Second step

There is no isomorphism such that $\varphi: \pi_1(\mathbb{P}^2 \setminus \mathcal{A}_{\zeta}) \to \pi_1(\mathbb{P}^2 \setminus \mathcal{A}_{\zeta^2})$ isomorphism $\Longrightarrow \varphi_* = 1_{H_1^{\mathscr{G}_{91}}}$

Third step

There is no isomorphism such that $\varphi: \pi_1(\mathbb{P}^2 \setminus \mathcal{A}_{\zeta}) \to \pi_1(\mathbb{P}^2 \setminus \mathcal{A}_{\zeta^3})$ isomorphism $\Longrightarrow \varphi_* = 1_{H_*^{\mathscr{G}_{91}}}$

