Intersections of ellipsoids and singularities II

E. ARTAL BARTOLO¹ and S. LÓPEZ DE MEDRANO²

¹ Instituto Universitario de Matemáticas y sus Aplicaciones Universidad de Zaragoza
² Instituto de Matemáticas
Universidad Nacional Autónoma de México

International Congress on Complex Geometry, Singularities and Dynamics: In honor of José Seade Cuernavaca, June 4th 2024

Joint work with M.T. Lozano Imízcoz

Intersections:
$$Z$$

$$\alpha_1^0 x_1^2 + \dots + \alpha_n^0 x_n^2 = 1$$

$$\alpha_1^1 x_1^2 + \dots + \alpha_n^1 x_n^2 = 1$$

$$\dots$$

$$\alpha_1^m x_1^2 + \dots + \alpha_n^m x_n^2 = 1$$

 ${\bf Intersections}: Z$

$$x_1^2 + \dots + x_n^2 = 1$$

$$a_1^1 x_1^2 + \dots + a_n^1 x_n^2 = 0$$

. . .

$$a_1^m x_1^2 + \dots + a_n^m x_n^2 = 0$$

$$\begin{aligned} \text{Intersections} : Z \\ x_1^2 + \dots + x_n^2 &= 1 \\ A_1 x_1^2 + \dots + A_n x_n^2 &= 0 \\ \mathcal{A} \coloneqq (A_1, \dots, A_n) \in (\mathbb{R}^m)^n \end{aligned}$$

Intersections:
$$Z$$

$$x_1^2 + \dots + x_n^2 = 1$$

$$A_1 x_1^2 + \dots + A_n x_n^2 = 0$$

$$\mathcal{A} := (A_1, \dots, A_n) \subset (\mathbb{R}^m)^n$$

$$\begin{aligned} \text{Polytope} : P \\ r_1 + \dots + r_n &= 1 \\ r_1 A_1 + \dots + r_n A_n &= 0 \\ r_1, \dots, r_n &\geq 0 \end{aligned}$$

$$\begin{array}{ll} \operatorname{Intersections}: Z & \operatorname{Polytope}: P \\ x_1^2 + \dots + x_n^2 = 1 & r_1 + \dots + r_n = 1 \\ A_1 x_1^2 + \dots + A_n x_n^2 = 0 & r_1 A_1 + \dots + r_n A_n = 0 \\ \mathcal{A} \coloneqq (A_1, \dots, A_n) \subset (\mathbb{R}^m)^n & r_1, \dots, r_n \geq 0 \end{array}$$

Z and P

• P: the coefficients of the convex linear combination of \mathcal{A} whose result is $\mathbf{0}$.

$$\begin{array}{ll} \operatorname{Intersections}: Z & \operatorname{Polytope}: P \\ x_1^2 + \dots + x_n^2 = 1 & r_1 + \dots + r_n = 1 \\ A_1 x_1^2 + \dots + A_n x_n^2 = 0 & r_1 A_1 + \dots + r_n A_n = 0 \\ \mathcal{A} \coloneqq (A_1, \dots, A_n) \subset (\mathbb{R}^m)^n & r_1, \dots, r_n \geq 0 \end{array}$$

Z and P

- P: the coefficients of the convex linear combination of A whose result is 0.
- ▶ The faces are in the coordinate hyperplanes.

$$\begin{array}{ll} \operatorname{Intersections}: Z & \operatorname{Polytope}: P \\ x_1^2 + \dots + x_n^2 = 1 & r_1 + \dots + r_n = 1 \\ A_1 x_1^2 + \dots + A_n x_n^2 = 0 & r_1 A_1 + \dots + r_n A_n = 0 \\ \mathcal{A} \coloneqq (A_1, \dots, A_n) \subset (\mathbb{R}^m)^n & r_1, \dots, r_n \geq 0 \end{array}$$

Z and P

- P: the coefficients of the convex linear combination of A whose result is 0.
- ▶ The faces are in the coordinate hyperplanes.
- $ightharpoonup Z \cong$ union of reflections of P.

$$\begin{array}{ll} \operatorname{Intersections}: Z & \operatorname{Polytope}: P \\ x_1^2 + \dots + x_n^2 = 1 & r_1 + \dots + r_n = 1 \\ A_1 x_1^2 + \dots + A_n x_n^2 = 0 & r_1 A_1 + \dots + r_n A_n = 0 \\ \mathcal{A} \coloneqq (A_1, \dots, A_n) \subset (\mathbb{R}^m)^n & r_1, \dots, r_n \geq 0 \end{array}$$

Z and P

- ▶ P: the coefficients of the convex linear combination of \mathcal{A} whose result is $\mathbf{0}$.
- ▶ The faces are in the coordinate hyperplanes.
- $ightharpoonup Z \cong$ union of reflections of P.

Non-degenerate (from Pepe's question):

- $ightharpoonup \mathcal{A} \subset (\mathbb{R}^m)^n$ generator system of \mathbb{R}^m
- $\mathcal{A} \notin \text{half closed subspace } \mathbb{R}^m$

$$\begin{array}{ll} \operatorname{Intersections}: Z & \operatorname{Polytope}: P \\ x_1^2 + \dots + x_n^2 = 1 & r_1 + \dots + r_n = 1 \\ A_1 x_1^2 + \dots + A_n x_n^2 = 0 & r_1 A_1 + \dots + r_n A_n = 0 \\ \mathcal{A} \coloneqq (A_1, \dots, A_n) \subset (\mathbb{R}^m)^n & r_1, \dots, r_n \geq 0 \end{array}$$

Z and P

- P: the coefficients of the convex linear combination of \mathcal{A} whose result is $\mathbf{0}$.
- ▶ The faces are in the coordinate hyperplanes.
- $ightharpoonup Z \cong$ union of reflections of P.

Smooth Z:

• (WH): 0 is not a convex linear combination of m elements in A

$$\begin{array}{ll} \operatorname{Intersections}: Z & \operatorname{Polytope}: P \\ x_1^2 + \dots + x_n^2 = 1 & r_1 + \dots + r_n = 1 \\ A_1 x_1^2 + \dots + A_n x_n^2 = 0 & r_1 A_1 + \dots + r_n A_n = 0 \\ \mathcal{A} \coloneqq (A_1, \dots, A_n) \subset (\mathbb{R}^m)^n & r_1, \dots, r_n \geq 0 \end{array}$$

Z and P

- P: the coefficients of the convex linear combination of \mathcal{A} whose result is $\mathbf{0}$.
- ▶ The faces are in the coordinate hyperplanes.
- $ightharpoonup Z \cong$ union of reflections of P.

Smooth Z:

- (WH): **0** is not a convex linear combination of m elements in \mathcal{A}
- ▶ Under non-degenerate: Z smooth \iff (WH)
- ▶ Vertices of P are simple and belong to exactly $d = \dim Z = \dim P$ coordinate hyperplanes.

$$\begin{array}{ll} \operatorname{Intersections}: Z & \operatorname{Polytope}: P \\ x_1^2 + \dots + x_n^2 = 1 & r_1 + \dots + r_n = 1 \\ A_1 x_1^2 + \dots + A_n x_n^2 = 0 & r_1 A_1 + \dots + r_n A_n = 0 \\ \mathcal{A} \coloneqq (A_1, \dots, A_n) \subset (\mathbb{R}^m)^n & r_1, \dots, r_n \geq 0 \end{array}$$

Z and P

- P: the coefficients of the convex linear combination of A whose result is 0.
- ▶ The faces are in the coordinate hyperplanes.
- $ightharpoonup Z \cong$ union of reflections of P.

Generic singularities

▶ **0** is not a convex linear combination of m-1 elements in A.

$$\begin{array}{ll} \operatorname{Intersections}: Z & \operatorname{Polytope}: P \\ x_1^2 + \dots + x_n^2 = 1 & r_1 + \dots + r_n = 1 \\ A_1 x_1^2 + \dots + A_n x_n^2 = 0 & r_1 A_1 + \dots + r_n A_n = 0 \\ \mathcal{A} \coloneqq (A_1, \dots, A_n) \subset (\mathbb{R}^m)^n & r_1, \dots, r_n \geq 0 \end{array}$$

Z and P

- P: the coefficients of the convex linear combination of A whose result is 0.
- ▶ The faces are in the coordinate hyperplanes.
- $ightharpoonup Z \cong$ union of reflections of P.

Generic singularities

- ▶ **0** is not a convex linear combination of m-1 elements in A.
- Vertices of P belong to either d or d+1 coordinate hyperplanes.

$$\begin{array}{ll} \operatorname{Intersections}: Z & \operatorname{Polytope}: P \\ x_1^2 + \dots + x_n^2 = 1 & r_1 + \dots + r_n = 1 \\ A_1 x_1^2 + \dots + A_n x_n^2 = 0 & r_1 A_1 + \dots + r_n A_n = 0 \\ \mathcal{A} \coloneqq (A_1, \dots, A_n) \subset (\mathbb{R}^m)^n & r_1, \dots, r_n \geq 0 \end{array}$$

Z and P

- P: the coefficients of the convex linear combination of A whose result is 0.
- ▶ The faces are in the coordinate hyperplanes.
- $ightharpoonup Z \cong$ union of reflections of P.

Generic singularities

- ▶ 0 is not a convex linear combination of m-1 elements in A.
- Vertices of P belong to either d or d+1 coordinate hyperplanes.

Goal

Understand intersections with generic singularities.

$$m = 1, n = 2$$

•
$$A = (-1,1)$$
:

$$x_1^2 + x_2^2 = 1$$
$$-x_1^2 + x_2^2 = 0$$

- $P = \{(\frac{1}{2}, \frac{1}{2})\}$
- $ightharpoonup Z = \mathbb{S}^0 \times \mathbb{S}^0 \text{ (smooth)}$

$$A_1 = A \cup \{0\} \Longrightarrow Z_1 = \Sigma(Z)$$
, suspension.

$$A_1 = A \cup \{0\} \Longrightarrow Z_1 = \Sigma(Z)$$
, suspension.

$$m = 0$$

$$\mathcal{A} = (\mathbf{0}^1)$$
: $Z = \mathbb{S}^0$

$$A_1 = A \cup \{0\} \Longrightarrow Z_1 = \Sigma(Z)$$
, suspension.

$$m = 0$$

$$\mathcal{A} = (\mathbf{0}^2)$$
: $Z = \mathbb{S}^1$

$$A_1 = A \cup \{0\} \Longrightarrow Z_1 = \Sigma(Z)$$
, suspension.

$$m = 0$$

$$\mathcal{A} = (\mathbf{0}^n)$$
: $Z = \mathbb{S}^{n-1}$

$$A_1 = A \cup \{0\} \Longrightarrow Z_1 = \Sigma(Z)$$
, suspension.

$$A = \{-1, 1, 0\}$$

1-dimensional intersections with two generic singularities

1-dimensional intersections with two generic singularities

2-dimensional intersections with one generic singularity

1-dimensional intersections with two generic singularities

2-dimensional intersections with two generic singularities

Smooth deformations

- $ightharpoonup A = (A_1, \dots, A_n) (Z \text{ smooth})$
- $ightharpoonup \mathcal{A}^t = (A_1^t, \dots, A_n^t)$ in a small neighbourhood
- $ightharpoonup Z^t$ and Z are diffeomorphic.

Smooth deformations

- $ightharpoonup A = (A_1, \ldots, A_n) \ (Z \text{ smooth})$
- $ightharpoonup A^t = (A_1^t, \dots, A_n^t)$ in a small neighbourhood
- $ightharpoonup Z^t$ and Z are diffeomorphic.

Singular deformations

- $ightharpoonup A = (A_1, \dots, A_n) (Z \text{ singular})$
- $ightharpoonup A^t = (A_1^t, \dots, A_n^t)$ in a small neighbourhood and equisingular
- Equisingular:
 - ▶ Same structure for convex linear combinations of **0**

Smooth deformations

- $ightharpoonup A = (A_1, \ldots, A_n) \ (Z \text{ smooth})$
- $ightharpoonup A^t = (A_1^t, \dots, A_n^t)$ in a small neighbourhood
- $ightharpoonup Z^t$ and Z are diffeomorphic.

Singular deformations

- $ightharpoonup A = (A_1, \dots, A_n) (Z \text{ singular})$
- $ightharpoonup A^t = (A_1^t, \dots, A_n^t)$ in a small neighbourhood and equisingular
- ► Equisingular:
 - ► Same structure for convex linear combinations of **0**
 - Same combinatorics of the polytope and the coordinate hyperplanes

Smooth deformations

- $ightharpoonup A = (A_1, \ldots, A_n) \ (Z \text{ smooth})$
- $ightharpoonup \mathcal{A}^t = (A_1^t, \dots, A_n^t)$ in a small neighbourhood
- $ightharpoonup Z^t$ and Z are diffeomorphic.

Singular deformations

- $ightharpoonup A = (A_1, \dots, A_n) (Z \text{ singular})$
- $ightharpoonup A^t = (A_1^t, \dots, A_n^t)$ in a small neighbourhood and equisingular
- ► Equisingular:
 - ► Same structure for convex linear combinations of **0**
 - Same combinatorics of the polytope and the coordinate hyperplanes
- $ightharpoonup Z^t$ and Z are homeomorphic.

- From $\mathcal{A} = (A_1, \dots, A_n) \subset (\mathbb{R}^m)^n$, d = n m 1:
 - $ightharpoonup A^t = (A_1^t, \dots, A_n^t)$ in a small neighbourhood and smooth.
 - Which are the possible topological types of Z^t ?

- From $\mathcal{A} = (A_1, \dots, A_n) \subset (\mathbb{R}^m)^n, d = n m 1$:
 - $ightharpoonup A^t = (A_1^t, \dots, A_n^t)$ in a small neighbourhood and smooth.
 - Which are the possible topological types of Z^t ?
- ▶ From $P, \mathcal{V} := \{V_1, \dots, V_r\}$, singular vertices.
 - $v_i: \mathbf{0} = \sum_{j=1}^m t_{k_j} A_{k_j}, \ t_{k_j} > 0$, convex linear combination
 - ▶ H hyperplane affinely generated by A_{k_1}, \ldots, A_{k_m}
 - p_i points in H_+ , q_i points in H_- , $p_i + q : i = d + 1$,

- From $\mathcal{A} = (A_1, \dots, A_n) \subset (\mathbb{R}^m)^n, d = n m 1$:
 - $ightharpoonup A^t = (A_1^t, \dots, A_n^t)$ in a small neighbourhood and smooth.
 - Which are the possible topological types of Z^t ?
- ▶ From P, $\mathcal{V} := \{V_1, \dots, V_r\}$, singular vertices.
 - $v_i: \mathbf{0} = \sum_{j=1}^m t_{k_j} A_{k_j}, t_{k_j} > 0$, convex linear combination
 - ▶ *H* hyperplane affinely generated by A_{k_1}, \ldots, A_{k_m}
 - ▶ p_i points in H_+ , q_i points in H_- , $p_i + q : i = d + 1$,
 - 2^m copies of Cone($\mathbb{S}^{p_i-1} \times \mathbb{S}^{q_i-1}$)
 - \triangleright For each i, two possible smoothings:
 - $\quad \text{Cone}(\mathbb{S}^{p_i-1}) \times \mathbb{S}^{q_i-1} = \overline{\mathbb{B}}^{p_i} \times \mathbb{S}^{q_i-1}$

- From $\mathcal{A} = (A_1, \dots, A_n) \subset (\mathbb{R}^m)^n$, d = n m 1:
 - \rightarrow $A^t = (A_1^t, \dots, A_n^t)$ in a small neighbourhood and smooth.
 - Which are the possible topological types of Z^t ?
- ▶ From P, $\mathcal{V} := \{V_1, \dots, V_r\}$, singular vertices.
 - $v_i: \mathbf{0} = \sum_{j=1}^m t_{k_j} A_{k_j}, \ t_{k_j} > 0$, convex linear combination
 - ▶ *H* hyperplane affinely generated by A_{k_1}, \ldots, A_{k_m}
 - ▶ p_i points in H_+ , q_i points in H_- , $p_i + q : i = d + 1$,
 - 2^m copies of Cone($\mathbb{S}^{p_i-1} \times \mathbb{S}^{q_i-1}$)
 - ightharpoonup For each i, two possible smoothings:
 - $ightharpoonup \operatorname{Cone}(\mathbb{S}^{p_i-1}) \times \mathbb{S}^{q_i-1} = \overline{\mathbb{B}}^{p_i} \times \mathbb{S}^{q_i-1}$
 - \triangleright 2^r topological types of smoothings.

One generic singularity in dimension 2

One generic singularity in dimension 2

One generic singularity in dimension 2

One generic singularity in dimension 2

Two generic singularities in dimension 2

One generic singularity in dimension 2

Two generic singularities in dimension 2

Examples of smoothings

One generic singularity in dimension 2

Two generic singularities in dimension 2

Examples of smoothings

One generic singularity in dimension 2

Two generic singularities in dimension 2

▶ Two types: Cone($\mathbb{S}^0 \times \mathbb{S}^2$), Cone($\mathbb{S}^1 \times \mathbb{S}^1$)

- ▶ Two types: $Cone(\mathbb{S}^0 \times \mathbb{S}^2)$, $Cone(\mathbb{S}^1 \times \mathbb{S}^1)$
- ▶ Smoothings Cone($\mathbb{S}^0 \times \mathbb{S}^2$): $\overline{\mathbb{B}}^1 \times \mathbb{S}^2$, $\mathbb{S}^0 \times \overline{\mathbb{B}}^3$

- ▶ Two types: Cone($\mathbb{S}^0 \times \mathbb{S}^2$), Cone($\mathbb{S}^1 \times \mathbb{S}^1$)
- ▶ Smoothings Cone($\mathbb{S}^0 \times \mathbb{S}^2$): $\overline{\mathbb{B}}^1 \times \mathbb{S}^2$, $\mathbb{S}^0 \times \overline{\mathbb{B}}^3$
- ► Smoothings Cone($\mathbb{S}^1 \times \mathbb{S}^1$): $\overline{\mathbb{B}}^2 \times \mathbb{S}^1$, $\mathbb{S}^1 \times \overline{\mathbb{B}}^2$

- ▶ Two types: Cone($\mathbb{S}^0 \times \mathbb{S}^2$), Cone($\mathbb{S}^1 \times \mathbb{S}^1$)
- ▶ Smoothings Cone($\mathbb{S}^0 \times \mathbb{S}^2$): $\overline{\mathbb{B}}^1 \times \mathbb{S}^2$, $\mathbb{S}^0 \times \overline{\mathbb{B}}^3$
- ▶ Smoothings Cone($\mathbb{S}^1 \times \mathbb{S}^1$): $\overline{\mathbb{B}}^2 \times \mathbb{S}^1$, $\mathbb{S}^1 \times \overline{\mathbb{B}}^2$

- ▶ Two types: Cone($\mathbb{S}^0 \times \mathbb{S}^2$), Cone($\mathbb{S}^1 \times \mathbb{S}^1$)
- ► Smoothings Cone($\mathbb{S}^0 \times \mathbb{S}^2$): $\overline{\mathbb{B}}^1 \times \mathbb{S}^2$, $\mathbb{S}^0 \times \overline{\mathbb{B}}^3$
- ▶ Smoothings Cone($\mathbb{S}^1 \times \mathbb{S}^1$): $\overline{\mathbb{B}}^2 \times \mathbb{S}^1$, $\mathbb{S}^1 \times \overline{\mathbb{B}}^2$

(1,1)-generic singularities

▶ Polytope $P \subset \mathbb{R}^n_{\geq 0}$ geometrically embedded.

- ▶ Two types: Cone($\mathbb{S}^0 \times \mathbb{S}^2$), Cone($\mathbb{S}^1 \times \mathbb{S}^1$)
- ▶ Smoothings Cone($\mathbb{S}^0 \times \mathbb{S}^2$): $\overline{\mathbb{B}}^1 \times \mathbb{S}^2$, $\mathbb{S}^0 \times \overline{\mathbb{B}}^3$
- ► Smoothings Cone($\mathbb{S}^1 \times \mathbb{S}^1$): $\overline{\mathbb{B}}^2 \times \mathbb{S}^1$, $\mathbb{S}^1 \times \overline{\mathbb{B}}^2$

- ▶ Polytope $P \subset \mathbb{R}^n_{>0}$ geometrically embedded.
 - \triangleright n faces: intersections with the coordinate hyperplanes.

- ▶ Two types: Cone($\mathbb{S}^0 \times \mathbb{S}^2$), Cone($\mathbb{S}^1 \times \mathbb{S}^1$)
- ▶ Smoothings Cone($\mathbb{S}^0 \times \mathbb{S}^2$): $\overline{\mathbb{B}}^1 \times \mathbb{S}^2$, $\mathbb{S}^0 \times \overline{\mathbb{B}}^3$
- ▶ Smoothings Cone($\mathbb{S}^1 \times \mathbb{S}^1$): $\overline{\mathbb{B}}^2 \times \mathbb{S}^1$, $\mathbb{S}^1 \times \overline{\mathbb{B}}^2$

- ▶ Polytope $P \subset \mathbb{R}^n_{\geq 0}$ geometrically embedded.
 - ightharpoonup n faces: intersections with the coordinate hyperplanes.
 - ightharpoonup Simple vertices: the link is a triangle.

- ▶ Two types: Cone($\mathbb{S}^0 \times \mathbb{S}^2$), Cone($\mathbb{S}^1 \times \mathbb{S}^1$)
- ▶ Smoothings Cone($\mathbb{S}^0 \times \mathbb{S}^2$): $\overline{\mathbb{B}}^1 \times \mathbb{S}^2$, $\mathbb{S}^0 \times \overline{\mathbb{B}}^3$
- ▶ Smoothings Cone($\mathbb{S}^1 \times \mathbb{S}^1$): $\overline{\mathbb{B}}^2 \times \mathbb{S}^1$, $\mathbb{S}^1 \times \overline{\mathbb{B}}^2$

- ▶ Polytope $P \subset \mathbb{R}^n_{\geq 0}$ geometrically embedded.
 - \triangleright n faces: intersections with the coordinate hyperplanes.
 - ightharpoonup Simple vertices: the link is a triangle.
 - ▶ 4-vertices: vertices whose *link* is a quadrangle.

- ▶ Two types: Cone($\mathbb{S}^0 \times \mathbb{S}^2$), Cone($\mathbb{S}^1 \times \mathbb{S}^1$)
- ▶ Smoothings Cone($\mathbb{S}^0 \times \mathbb{S}^2$): $\overline{\mathbb{B}}^1 \times \mathbb{S}^2$, $\mathbb{S}^0 \times \overline{\mathbb{B}}^3$
- ▶ Smoothings Cone($\mathbb{S}^1 \times \mathbb{S}^1$): $\overline{\mathbb{B}}^2 \times \mathbb{S}^1$, $\mathbb{S}^1 \times \overline{\mathbb{B}}^2$

- ▶ Polytope $P \subset \mathbb{R}^n_{\geq 0}$ geometrically embedded.
 - ightharpoonup n faces: intersections with the coordinate hyperplanes.
 - ightharpoonup Simple vertices: the link is a triangle.
 - ▶ 4-vertices: vertices whose *link* is a quadrangle.
- ▶ P: mirror orbifold, $\rho: Z \to P$ orbifold $(\mathbb{Z}/2)^n$ -cover.

- ▶ Two types: Cone($\mathbb{S}^0 \times \mathbb{S}^2$), Cone($\mathbb{S}^1 \times \mathbb{S}^1$)
- ▶ Smoothings Cone($\mathbb{S}^0 \times \mathbb{S}^2$): $\overline{\mathbb{B}}^1 \times \mathbb{S}^2$, $\mathbb{S}^0 \times \overline{\mathbb{B}}^3$
- ► Smoothings Cone($\mathbb{S}^1 \times \mathbb{S}^1$): $\overline{\mathbb{B}}^2 \times \mathbb{S}^1$, $\mathbb{S}^1 \times \overline{\mathbb{B}}^2$

- ▶ Polytope $P \subset \mathbb{R}^n_{\geq 0}$ geometrically embedded.
 - ightharpoonup n faces: intersections with the coordinate hyperplanes.
 - ightharpoonup Simple vertices: the link is a triangle.
 - ▶ 4-vertices: vertices whose *link* is a quadrangle.
- ▶ P: mirror orbifold, $\rho: Z \to P$ orbifold $(\mathbb{Z}/2)^n$ -cover.
- $\check{P} \coloneqq P \setminus \{4\text{-vertices}\}, \ \check{Z} \coloneqq \rho^{-1}(\check{P}) \text{ smooth manifold with torus ends.}$

4-Pyramid

$$ightharpoonup Z = \Sigma(\mathbb{S}^1 \times \mathbb{S}^1)$$

4-Pyramid

- $Z = \Sigma(\mathbb{S}^1 \times \mathbb{S}^1)$
- $\check{Z} = (-1,1) \times \mathbb{S}^1 \times \mathbb{S}^1 \cong \mathbb{R} \times \mathbb{S}^1 \times \mathbb{S}^1$ complete flat manifold

4-Pyramid

- $ightharpoonup Z = \Sigma(\mathbb{S}^1 \times \mathbb{S}^1)$
- \blacktriangleright $\check{Z}=(-1,1)\times\mathbb{S}^1\times\mathbb{S}^1\cong\mathbb{R}\times\mathbb{S}^1\times\mathbb{S}^1$ complete flat manifold
- ▶ Two smoothings: $\mathbb{S}^2 \times \mathbb{S}^1$ $\frac{0\text{-surgery on a fiber}}{\mathbb{S}^1 \times \mathbb{S}^2}$

Smoothings from \mathcal{A}

Smoothings from B_3

▶ 8 = 2^3 smoothings, action of \mathfrak{S}_3 = Aut B_3

Smoothings from B_3

▶ 8 = 2^3 smoothings, action of \mathfrak{S}_3 = Aut B_3

Smoothings from B_3

- ▶ $8 = 2^3$ smoothings, action of $\mathfrak{S}_3 = \operatorname{Aut} B_3$
- C cube: $Z = (\mathbb{S}^1)^3$

Smoothings from B_3

- ▶ 8 = 2^3 smoothings, action of \mathfrak{S}_3 = Aut B_3
- ightharpoonup C cube: $Z = (\mathbb{S}^1)^3$

Smoothings from B_3

- ▶ $8 = 2^3$ smoothings, action of $\mathfrak{S}_3 = \operatorname{Aut} B_3$
- C cube: $Z = (\mathbb{S}^1)^3$
- ▶ T_2 pentagonal book or bi-truncated tetrahedron: $Z = 5\#\mathbb{S}^1 \times \mathbb{S}^2$

Smoothings from B_3

- ▶ $8 = 2^3$ smoothings, action of $\mathfrak{S}_3 = \operatorname{Aut} B_3$
- C cube: $Z = (\mathbb{S}^1)^3$
- ${}^{\blacktriangleright}$ T_2 pentagonal book or bi-truncated tetrahedron: $Z=5\#\mathbb{S}^1\times\mathbb{S}^2$

Proposition (López de Medrano, Bosio-Meersseman)

P simple 3-polytope with m faces, $P_{\rm sf}(v)$ truncation at v:

$$Z(P_{\rm sf}(v)) \cong Z(P) \# Z(P) \# (2^{m-3} - 1)(\mathbb{S}^2 \times \mathbb{S}^1).$$

Smoothings from B_3

- ▶ $8 = 2^3$ smoothings, action of $\mathfrak{S}_3 = \operatorname{Aut} B_3$
- C cube: $Z = (\mathbb{S}^1)^3$
- ▶ T_2 pentagonal book or bi-truncated tetrahedron: $Z = 5\#\mathbb{S}^1 \times \mathbb{S}^2$

Proposition (López de Medrano, Bosio-Meersseman)

P simple 3-polytope with m faces, $P_{\rm sf}(v)$ truncation at v:

$$Z(P_{\rm sf}(v)) \cong Z(P) \# Z(P) \# (2^{m-3} - 1) (\mathbb{S}^2 \times \mathbb{S}^1).$$

Proof.

▶ Truncation: take out 2^{m-3} balls of Z(P)

Smoothings from B_3

- ▶ $8 = 2^3$ smoothings, action of $\mathfrak{S}_3 = \operatorname{Aut} B_3$
- ightharpoonup C cube: $Z = (\mathbb{S}^1)^3$
- ▶ T_2 pentagonal book or bi-truncated tetrahedron: $Z = 5\#\mathbb{S}^1 \times \mathbb{S}^2$

Proposition (López de Medrano, Bosio-Meersseman)

P simple 3-polytope with m faces, $P_{sf}(v)$ truncation at v:

$$Z(P_{\rm sf}(v)) \cong Z(P) \# Z(P) \# (2^{m-3} - 1) (\mathbb{S}^2 \times \mathbb{S}^1).$$

Proof.

- ▶ Truncation: take out 2^{m-3} balls of Z(P)
- Reflection on the new face: duplicate and connect 2^{m-3} times.

Smoothings from B_3

- ▶ $8 = 2^3$ smoothings, action of $\mathfrak{S}_3 = \operatorname{Aut} B_3$
- C cube: $Z = (\mathbb{S}^1)^3$
- ▶ T_2 pentagonal book or bi-truncated tetrahedron: $Z = 5\#\mathbb{S}^1 \times \mathbb{S}^2$

Proposition (López de Medrano, Bosio-Meersseman)

P simple 3-polytope with m faces, $P_{sf}(v)$ truncation at v:

$$Z(P_{\rm sf}(v)) \cong Z(P) \# Z(P) \# (2^{m-3} - 1) (\mathbb{S}^2 \times \mathbb{S}^1).$$

Proof.

- ▶ Truncation: take out 2^{m-3} balls of Z(P)
- ▶ Reflection on the new face: duplicate and connect 2^{m-3} times.
- ▶ First connection: Z(P)#Z(P)

Smoothings from B_3

- ▶ $8 = 2^3$ smoothings, action of $\mathfrak{S}_3 = \operatorname{Aut} B_3$
- ightharpoonup C cube: $Z = (\mathbb{S}^1)^3$
- ▶ T_2 pentagonal book or bi-truncated tetrahedron: $Z = 5\#\mathbb{S}^1 \times \mathbb{S}^2$

Proposition (López de Medrano, Bosio-Meersseman)

P simple 3-polytope with m faces, $P_{\rm sf}(v)$ truncation at v:

$$Z(P_{\rm sf}(v)) \cong Z(P) \# Z(P) \# (2^{m-3} - 1) (\mathbb{S}^2 \times \mathbb{S}^1).$$

Proof.

- ▶ Truncation: take out 2^{m-3} balls of Z(P)
- ▶ Reflection on the new face: duplicate and $connect\ 2^{m-3}$ times.
- First connection: Z(P)#Z(P)
- ▶ Next ones: $\#\mathbb{S}^2 \times \mathbb{S}^1$

$$\qquad \qquad \pi_1^{\text{orb}}(P) = (\mathbb{Z}/2)^6 \Longrightarrow \pi_1(Z) = 1$$

- $\qquad \qquad \quad \boldsymbol{\pi}_{1}^{\mathrm{orb}}(\check{P}) = \langle x_{i}, y_{i} \mid [x_{i}, x_{j}] = [y_{i}, y_{j}] = [x_{i}, y_{i}] = 1 \rangle$

- $\pi_1^{\text{orb}}(P) = (\mathbb{Z}/2)^6 \Longrightarrow \pi_1(Z) = 1$
- $\bullet \ \pi_1^{\text{orb}}(\check{P}) = \langle x_i, y_i \mid [x_i, x_j] = [y_i, y_j] = [x_i, y_i] = 1 \rangle$
- Orbifold covers M_j associated to ρ_j .

$$\pi_1^{\text{orb}}(P) \xrightarrow{\rho_6} (\mathbb{Z}/2)^6 \qquad \qquad \pi_1^{\text{orb}}(P) \xrightarrow{\rho_3} (\mathbb{Z}/2)^3$$

$$x_i, y_i \longmapsto e_{2i-1}, e_{2i} \qquad \qquad x_i, y_i \longmapsto e_i, e_{i+1}$$

satisfy $\check{Z} = M_6 \to M_3 \to P$, \check{Z} complete hyperbolic manifold with 12 torus ends.

- $\qquad \qquad \pi_1^{\mathrm{orb}}(\check{P}) = \langle x_i, y_i \mid [x_i, x_j] = [y_i, y_j] = [x_i, y_i] = 1 \rangle$
- Orbifold covers M_j associated to ρ_j .

$$\pi_1^{\text{orb}}(P) \xrightarrow{\rho_6} (\mathbb{Z}/2)^6 \qquad \qquad \pi_1^{\text{orb}}(P) \xrightarrow{\rho_3} (\mathbb{Z}/2)^3$$
$$x_i, y_i \longmapsto e_{2i-1}, e_{2i} \qquad \qquad x_i, y_i \longmapsto e_i, e_{i+1}$$

satisfy $\check{Z} = M_6 \to M_3 \to P$, \check{Z} complete hyperbolic manifold with 12 torus ends.

Face 1: ABC

Face 2: ABD

Face 3: ADE

Face 4: ACE

Face 5: BDF

Face 6: BCF

Face 7: CEF

Face 8: DEF

• $64 = 2^6$ smoothings

- $64 = 2^6$ smoothings, 7 smoothing orbits
- ▶ Octahedron group (order 48) acts.

- $64 = 2^6$ smoothings, 7 smoothing orbits
- ▶ Base-bitruncated cube: $Z = 4(\mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1) \#29(\mathbb{S}^2 \times \mathbb{S}^1)$

- ▶ $64 = 2^6$ smoothings , 7 smoothing orbits
- ▶ Base-bitruncated cube: $Z = 4(\mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1) \#29(\mathbb{S}^2 \times \mathbb{S}^1)$
- Scutoid: $Z = 2(S_5 \times \mathbb{S}^1) \# 15(\mathbb{S}^2 \times \mathbb{S}^1)$

▶ $64 = 2^6$ smoothings , 7 smoothing orbits

▶ Base-bitruncated cube: $Z = 4(\mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1) \#29(\mathbb{S}^2 \times \mathbb{S}^1)$

• Scutoid: $Z = 2(S_5 \times \mathbb{S}^1) \# 15(\mathbb{S}^2 \times \mathbb{S}^1)$

▶ Truncated tetrahedron: $Z = 49\#(\mathbb{S}^2 \times \mathbb{S}^1)$

- ▶ $64 = 2^6$ smoothings, 7 smoothing orbits
- ▶ Base-bitruncated cube: $Z = 4(\mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1) \#29(\mathbb{S}^2 \times \mathbb{S}^1)$
- Scutoid: $Z = 2(S_5 \times \mathbb{S}^1) \# 15(\mathbb{S}^2 \times \mathbb{S}^1)$
- ▶ Truncated tetrahedron: $Z = 49\#(\mathbb{S}^2 \times \mathbb{S}^1)$
- ▶ Dürer's solid: $Z = 4(\mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1) #29(\mathbb{S}^2 \times \mathbb{S}^1)$

- ▶ $64 = 2^6$ smoothings, 7 smoothing orbits
- ▶ Base-bitruncated cube: $Z = 4(\mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1) \#29(\mathbb{S}^2 \times \mathbb{S}^1)$
- Scutoid: $Z = 2(S_5 \times \mathbb{S}^1) \# 15(\mathbb{S}^2 \times \mathbb{S}^1)$
- ▶ Truncated tetrahedron: $Z = 49\#(\mathbb{S}^2 \times \mathbb{S}^1)$
- ▶ Dürer's solid: $Z = 4(\mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1) \#29(\mathbb{S}^2 \times \mathbb{S}^1)$
- Hexagonal prism: $Z = S_{17} \times \mathbb{S}^1$

- ▶ $64 = 2^6$ smoothings, 7 smoothing orbits
- ▶ Base-bitruncated cube: $Z = 4(\mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1) \#29(\mathbb{S}^2 \times \mathbb{S}^1)$
- Scutoid: $Z = 2(S_5 \times \mathbb{S}^1) \# 15(\mathbb{S}^2 \times \mathbb{S}^1)$
- ▶ Truncated tetrahedron: $Z = 49\#(\mathbb{S}^2 \times \mathbb{S}^1)$
- ▶ Dürer's solid: $Z = 4(\mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1) #29(\mathbb{S}^2 \times \mathbb{S}^1)$
- Hexagonal prism: $Z = S_{17} \times \mathbb{S}^1$
- Gyrobipentaprism:

- ▶ $64 = 2^6$ smoothings , 7 smoothing orbits
- ▶ Base-bitruncated cube: $Z = 4(\mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1) \#29(\mathbb{S}^2 \times \mathbb{S}^1)$
- Scutoid: $Z = 2(S_5 \times \mathbb{S}^1) \# 15(\mathbb{S}^2 \times \mathbb{S}^1)$
- ▶ Truncated tetrahedron: $Z = 49\#(\mathbb{S}^2 \times \mathbb{S}^1)$
- ▶ Dürer's solid: $Z = 4(\mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1) \#29(\mathbb{S}^2 \times \mathbb{S}^1)$
- Hexagonal prism: $Z = S_{17} \times \mathbb{S}^1$
- Gyrobipentaprism:

▶ $64 = 2^6$ smoothings, 7 smoothing orbits

▶ Base-bitruncated cube: $Z = 4(\mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1) \#29(\mathbb{S}^2 \times \mathbb{S}^1)$

• Scutoid: $Z = 2(S_5 \times \mathbb{S}^1) \# 15(\mathbb{S}^2 \times \mathbb{S}^1)$

▶ Truncated tetrahedron: $Z = 49\#(\mathbb{S}^2 \times \mathbb{S}^1)$

▶ Dürer's solid: $Z = 4(\mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1) \#29(\mathbb{S}^2 \times \mathbb{S}^1)$

• Hexagonal prism: $Z = S_{17} \times \mathbb{S}^1$

ightharpoonup Gyrobipentaprism: Z graph manifold

- ▶ $64 = 2^6$ smoothings, 7 smoothing orbits
- ▶ Base-bitruncated cube: $Z = 4(\mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1) \#29(\mathbb{S}^2 \times \mathbb{S}^1)$
- Scutoid: $Z = 2(S_5 \times \mathbb{S}^1) \# 15(\mathbb{S}^2 \times \mathbb{S}^1)$
- ▶ Truncated tetrahedron: $Z = 49\#(\mathbb{S}^2 \times \mathbb{S}^1)$
- ▶ Dürer's solid: $Z = 4(\mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1) #29(\mathbb{S}^2 \times \mathbb{S}^1)$
- Hexagonal prism: $Z = S_{17} \times \mathbb{S}^1$
- ▶ Gyrobipentaprism: Z boundary of a regular neighbourhood of four fibers and four sections of $E_1 \times E_2$, E_i elliptic curves.

- ▶ $64 = 2^6$ smoothings, 7 smoothing orbits
- ▶ Base-bitruncated cube: $Z = 4(\mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1) \#29(\mathbb{S}^2 \times \mathbb{S}^1)$
- Scutoid: $Z = 2(S_5 \times \mathbb{S}^1) \# 15(\mathbb{S}^2 \times \mathbb{S}^1)$
- ▶ Truncated tetrahedron: $Z = 49\#(\mathbb{S}^2 \times \mathbb{S}^1)$
- ▶ Dürer's solid: $Z = 4(\mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1) \# 29(\mathbb{S}^2 \times \mathbb{S}^1)$
- Hexagonal prism: $Z = S_{17} \times \mathbb{S}^1$
- Gyrobipentaprism: Z boundary of a regular neighbourhood of four fibers and four sections of $E_1 \times E_2$, E_i elliptic curves.
- $\pi_1(Z) = \mathbb{Z}^4$

- ▶ $64 = 2^6$ smoothings, 7 smoothing orbits
- ▶ Base-bitruncated cube: $Z = 4(\mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1) \#29(\mathbb{S}^2 \times \mathbb{S}^1)$
- Scutoid: $Z = 2(S_5 \times \mathbb{S}^1) \# 15(\mathbb{S}^2 \times \mathbb{S}^1)$
- ▶ Truncated tetrahedron: $Z = 49\#(\mathbb{S}^2 \times \mathbb{S}^1)$
- ▶ Dürer's solid: $Z = 4(\mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1) \#29(\mathbb{S}^2 \times \mathbb{S}^1)$
- Hexagonal prism: $Z = S_{17} \times \mathbb{S}^1$
- Gyrobipentaprism: Z boundary of a regular neighbourhood of four fibers and four sections of $E_1 \times E_2$, E_i elliptic curves.
- $\pi_1(Z) = \mathbb{Z}^4$
- \check{P} : complete hyperbolic orbifold, \check{Z} complete hyperbolic manifold with 96 cusps (torus ends).

¡¡¡¡Felicidades, Pepe!!!!

