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Z and P

▸ P : the coefficients of the convex linear combination of A whose
result is 0.▸ The faces are in the coordinate hyperplanes.▸ Z ≅ union of reflections of P .

Generic singularities

▸ 0 is not a convex linear combination of m − 1 elements in A.▸ Vertices of P belong to either d or d + 1 coordinate hyperplanes.

Goal
Understand intersections with generic singularities.
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Deformations

Smooth deformations▸ A = (A1, . . . , An) (Z smooth)▸ At = (At
1, . . . , At

n) in a small neighbourhood▸ Zt and Z are diffeomorphic.

Singular deformations
▸ A = (A1, . . . , An) (Z singular)▸ At = (At

1, . . . , At
n) in a small neighbourhood and equisingular▸ Equisingular:

▸ Same structure for convex linear combinations of 0

▸ Same combinatorics of the polytope and the coordinate
hyperplanes▸ Zt and Z are homeomorphic.
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Smoothings of Z with generic singularities
▸ From A = (A1, . . . , An) ⊂ (Rm)n, d = n −m − 1:
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▸ Which are the possible topological types of Zt?

▸ From P , V ∶= {V1, . . . , Vr}, singular vertices.

▸ vi ∶ 0 =
m

∑
j=1

tkj Akj , tkj > 0, convex linear combination

▸ H hyperplane affinely generated by Ak1 , . . . , Akm

▸ pi points in H+, qi points in H−, pi + q ∶ i = d + 1,

▸ 2m copies of Cone(Spi−1 × Sqi−1)

▸ For each i, two possible smoothings:
▸ Cone(Spi−1

) × Sqi−1
= Bpi

× Sqi−1

▸ Spi−1
×Cone(Sqi−1

) = Spi−1
× Bqi

▸ 2r topological types of smoothings.
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Generic singularities in dimension 3
▸ Two types: Cone(S0 × S2), Cone(S1 × S1)

▸ Smoothings Cone(S0 × S2): B
1 × S2, S0 ×B3

▸ Smoothings Cone(S1 × S1): B
2 × S1, S1 ×B2

(1, 1)-generic singularities

▸ Polytope P ⊂ Rn
≥0 geometrically embedded.

▸ n faces: intersections with the coordinate hyperplanes.
▸ Simple vertices: the link is a triangle.
▸ 4-vertices: vertices whose link is a quadrangle.

▸ P : mirror orbifold, ρ ∶ Z → P orbifold (Z/2)n-cover.

▸ P̌ ∶= P ∖ {4-vertices}, Ž ∶= ρ−1(P̌ ) smooth manifold with torus
ends.
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0-surgery on a fiber
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Triangular bipyramid B3

Smoothings from A

A1 A2

A3

A4A5

A6

A1
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A6

A1

A3

A5

A2

A4
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Smoothings from B3▸ 8 = 23 smoothings, action of S3 = Aut B3

▸ C cube: Z = (S1)3▸ T2 pentagonal book or bi-truncated tetrahedron: Z = 5#S1 × S2

Proposition (López de Medrano, Bosio-Meersseman)
P simple 3-polytope with m faces, Psf(v) truncation at v:

Z(Psf(v)) ≅ Z(P )#Z(P )#(2m−3 − 1)(S2 × S1).

Proof.

▸ Truncation: take out 2m−3 balls of Z(P )▸ Reflection on the new face: duplicate and connect 2m−3 times.▸ First connection: Z(P )#Z(P )▸ Next ones: #S2 × S1



Triangular bipyramid B3

Smoothings from B3▸ 8 = 23 smoothings, action of S3 = Aut B3

▸ C cube: Z = (S1)3▸ T2 pentagonal book or bi-truncated tetrahedron: Z = 5#S1 × S2

Proposition (López de Medrano, Bosio-Meersseman)
P simple 3-polytope with m faces, Psf(v) truncation at v:

Z(Psf(v)) ≅ Z(P )#Z(P )#(2m−3 − 1)(S2 × S1).

Proof.

▸ Truncation: take out 2m−3 balls of Z(P )▸ Reflection on the new face: duplicate and connect 2m−3 times.▸ First connection: Z(P )#Z(P )▸ Next ones: #S2 × S1



Triangular bipyramid B3

Smoothings from B3▸ 8 = 23 smoothings, action of S3 = Aut B3

1
2

3

4

5

6

7

8

1 2

3

45

6

8

7

▸ C cube: Z = (S1)3▸ T2 pentagonal book or bi-truncated tetrahedron: Z = 5#S1 × S2

Proposition (López de Medrano, Bosio-Meersseman)
P simple 3-polytope with m faces, Psf(v) truncation at v:

Z(Psf(v)) ≅ Z(P )#Z(P )#(2m−3 − 1)(S2 × S1).

Proof.

▸ Truncation: take out 2m−3 balls of Z(P )▸ Reflection on the new face: duplicate and connect 2m−3 times.▸ First connection: Z(P )#Z(P )▸ Next ones: #S2 × S1



Triangular bipyramid B3

Smoothings from B3▸ 8 = 23 smoothings, action of S3 = Aut B3▸ C cube: Z = (S1)3

▸ T2 pentagonal book or bi-truncated tetrahedron: Z = 5#S1 × S2

Proposition (López de Medrano, Bosio-Meersseman)
P simple 3-polytope with m faces, Psf(v) truncation at v:

Z(Psf(v)) ≅ Z(P )#Z(P )#(2m−3 − 1)(S2 × S1).

Proof.

▸ Truncation: take out 2m−3 balls of Z(P )▸ Reflection on the new face: duplicate and connect 2m−3 times.▸ First connection: Z(P )#Z(P )▸ Next ones: #S2 × S1



Triangular bipyramid B3

Smoothings from B3▸ 8 = 23 smoothings, action of S3 = Aut B3▸ C cube: Z = (S1)3

1 2
3

4
5

6

8

7

6

7

3 4

5

2
1

8

▸ T2 pentagonal book or bi-truncated tetrahedron: Z = 5#S1 × S2

Proposition (López de Medrano, Bosio-Meersseman)
P simple 3-polytope with m faces, Psf(v) truncation at v:

Z(Psf(v)) ≅ Z(P )#Z(P )#(2m−3 − 1)(S2 × S1).

Proof.

▸ Truncation: take out 2m−3 balls of Z(P )▸ Reflection on the new face: duplicate and connect 2m−3 times.▸ First connection: Z(P )#Z(P )▸ Next ones: #S2 × S1



Triangular bipyramid B3

Smoothings from B3▸ 8 = 23 smoothings, action of S3 = Aut B3▸ C cube: Z = (S1)3▸ T2 pentagonal book or bi-truncated tetrahedron: Z = 5#S1 × S2

Proposition (López de Medrano, Bosio-Meersseman)
P simple 3-polytope with m faces, Psf(v) truncation at v:

Z(Psf(v)) ≅ Z(P )#Z(P )#(2m−3 − 1)(S2 × S1).

Proof.

▸ Truncation: take out 2m−3 balls of Z(P )▸ Reflection on the new face: duplicate and connect 2m−3 times.▸ First connection: Z(P )#Z(P )▸ Next ones: #S2 × S1



Triangular bipyramid B3

Smoothings from B3▸ 8 = 23 smoothings, action of S3 = Aut B3▸ C cube: Z = (S1)3▸ T2 pentagonal book or bi-truncated tetrahedron: Z = 5#S1 × S2

Proposition (López de Medrano, Bosio-Meersseman)
P simple 3-polytope with m faces, Psf(v) truncation at v:

Z(Psf(v)) ≅ Z(P )#Z(P )#(2m−3 − 1)(S2 × S1).

Proof.

▸ Truncation: take out 2m−3 balls of Z(P )▸ Reflection on the new face: duplicate and connect 2m−3 times.▸ First connection: Z(P )#Z(P )▸ Next ones: #S2 × S1



Triangular bipyramid B3

Smoothings from B3▸ 8 = 23 smoothings, action of S3 = Aut B3▸ C cube: Z = (S1)3▸ T2 pentagonal book or bi-truncated tetrahedron: Z = 5#S1 × S2

Proposition (López de Medrano, Bosio-Meersseman)
P simple 3-polytope with m faces, Psf(v) truncation at v:

Z(Psf(v)) ≅ Z(P )#Z(P )#(2m−3 − 1)(S2 × S1).
Proof.▸ Truncation: take out 2m−3 balls of Z(P )

▸ Reflection on the new face: duplicate and connect 2m−3 times.▸ First connection: Z(P )#Z(P )▸ Next ones: #S2 × S1



Triangular bipyramid B3

Smoothings from B3▸ 8 = 23 smoothings, action of S3 = Aut B3▸ C cube: Z = (S1)3▸ T2 pentagonal book or bi-truncated tetrahedron: Z = 5#S1 × S2

Proposition (López de Medrano, Bosio-Meersseman)
P simple 3-polytope with m faces, Psf(v) truncation at v:

Z(Psf(v)) ≅ Z(P )#Z(P )#(2m−3 − 1)(S2 × S1).
Proof.▸ Truncation: take out 2m−3 balls of Z(P )▸ Reflection on the new face: duplicate and connect 2m−3 times.

▸ First connection: Z(P )#Z(P )▸ Next ones: #S2 × S1



Triangular bipyramid B3

Smoothings from B3▸ 8 = 23 smoothings, action of S3 = Aut B3▸ C cube: Z = (S1)3▸ T2 pentagonal book or bi-truncated tetrahedron: Z = 5#S1 × S2

Proposition (López de Medrano, Bosio-Meersseman)
P simple 3-polytope with m faces, Psf(v) truncation at v:

Z(Psf(v)) ≅ Z(P )#Z(P )#(2m−3 − 1)(S2 × S1).
Proof.▸ Truncation: take out 2m−3 balls of Z(P )▸ Reflection on the new face: duplicate and connect 2m−3 times.▸ First connection: Z(P )#Z(P )

▸ Next ones: #S2 × S1



Triangular bipyramid B3

Smoothings from B3▸ 8 = 23 smoothings, action of S3 = Aut B3▸ C cube: Z = (S1)3▸ T2 pentagonal book or bi-truncated tetrahedron: Z = 5#S1 × S2

Proposition (López de Medrano, Bosio-Meersseman)
P simple 3-polytope with m faces, Psf(v) truncation at v:

Z(Psf(v)) ≅ Z(P )#Z(P )#(2m−3 − 1)(S2 × S1).
Proof.▸ Truncation: take out 2m−3 balls of Z(P )▸ Reflection on the new face: duplicate and connect 2m−3 times.▸ First connection: Z(P )#Z(P )▸ Next ones: #S2 × S1



Triangular bipyramid : π1, πorb
1

▸ πorb
1 (P ) = (Z/2)6 Ô⇒ π1(Z) = 1

▸ πorb
1 (P̌ ) = ⟨xi, yi ∣ [xi, xj] = [yi, yj] = [xi, yi] = 1⟩▸ Orbifold covers Mj associated to ρj .

πorb
1 (P ) (Z/2)6 πorb

1 (P ) (Z/2)3
xi, yi e2i−1, e2i xi, yi ei, ei+1

ρ6 ρ3

satisfy Ž =M6 →M3 → P , Ž complete hyperbolic manifold
with 12 torus ends.

(S1)3
(S1)3 ∖K =M3
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Octahedron
▸ 64 = 26 smoothings

, 7 smoothing orbits▸ Base-bitruncated cube: Z = 4(S1 × S1 × S1)#29(S2 × S1)▸ Scutoid: Z = 2(S5 × S1)#15(S2 × S1)▸ Truncated tetrahedron: Z = 49#(S2 × S1)▸ Dürer’s solid: Z = 4(S1 × S1 × S1)#29(S2 × S1)▸ Hexagonal prism: Z = S17 × S1

▸ Gyrobipentaprism:▸ π1(Z) = Z4

▸ P̌ : complete hyperbolic orbifold, Ž complete hyperbolic manifold
with 96 cusps (torus ends).
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with 96 cusps (torus ends).



Octahedron
▸ 64 = 26 smoothings , 7 smoothing orbits▸ Base-bitruncated cube: Z = 4(S1 × S1 × S1)#29(S2 × S1)▸ Scutoid: Z = 2(S5 × S1)#15(S2 × S1)▸ Truncated tetrahedron: Z = 49#(S2 × S1)▸ Dürer’s solid: Z = 4(S1 × S1 × S1)#29(S2 × S1)▸ Hexagonal prism: Z = S17 × S1

▸ Gyrobipentaprism: Z boundary of a regular neighbourhood of
four fibers and four sections of E1 ×E2, Ei elliptic curves.▸ π1(Z) = Z4

▸ P̌ : complete hyperbolic orbifold, Ž complete hyperbolic manifold
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¡¡¡¡Felicidades, Pepe!!!!


