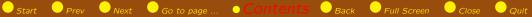
Braid monodromy and conjugate curves

Enrique Artal (Universidad de Zaragoza)

Oberwolfach, September 2002

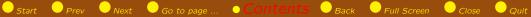


Braid monodromy and conjugate curves

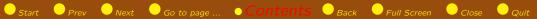
Enrique Artal (Universidad de Zaragoza)

Oberwolfach, September 2002

Joint work [ACC02, ACC02a] with: Jorge Carmona (Universidad Complutense) José I. Cogolludo (Universidad de Zaragoza)



	Startup problem	3
2	Previous results	6
3	Sextics with simple points	8
4	Open problems about sextics with simple points	9
5	Braid monodromy for affine curves	14
6	An example	21
7	Braid monodromy of projective curves	25

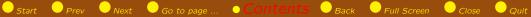


 $hd T_1, \ldots, T_r$ topological types of *singularities* of plane curves

- $\triangleright T_1, \ldots, T_r$ topological types of singularities of plane curves
- $hd \Sigma \coloneqq \Sigma(m{k}_1 T_1, \ldots, m{k}_r T_r; m{d})$ space of plane projective curves of degree d with k_i singular points of topological type T_i

- $\triangleright T_1, \ldots, T_r$ topological types of singularities of plane curves
- $hd \Sigma := \Sigma(m{k}_1 m{T}_1, \ldots, m{k}_r m{T}_r; m{d})$ space of plane projection tive curves of degree d with k_i singular points of topological type T_i

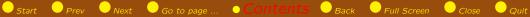
$$hd \mathcal{M} \coloneqq \mathcal{M}(k_1T_1, \ldots, k_rT_r; d) \coloneqq \ \Sigma(k_1T_1, \ldots, k_rT_r; d) / PGL(3; \mathbb{C})$$



- $\triangleright T_1, \ldots, T_r$ topological types of singularities of plane curves
- $\triangleright \Sigma := \Sigma(k_1T_1, \ldots, k_rT_r; d)$ space of plane projective curves of degree d with k_i singular points of topological type T_i

$$hd \mathcal{M} \coloneqq \mathcal{M}(k_1T_1, \ldots, k_rT_r; d) \coloneqq \ \Sigma(k_1T_1, \ldots, k_rT_r; d) / PGL(3; \mathbb{C})$$

 $\triangleright \Sigma^{irr}$: irreducible curves

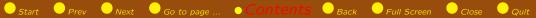


Page 4

Start Prev Next Go to page ... Contents Back Full Screen Close Quit

Smoothness of Σ

Page 4



Irreducibility of $\boldsymbol{\Sigma}$

Irreducibility of Σ

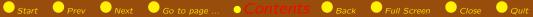
Connectivity of *M*

Irreducibility of Σ

Connectivity of M

Adjacency: $\Sigma \subset \overline{\Sigma'}$?

$$\Sigma' := \Sigma(k_1'T_1', \ldots, k_r'T_r'; d)$$



$$\mathcal{M} \neq \emptyset$$
?

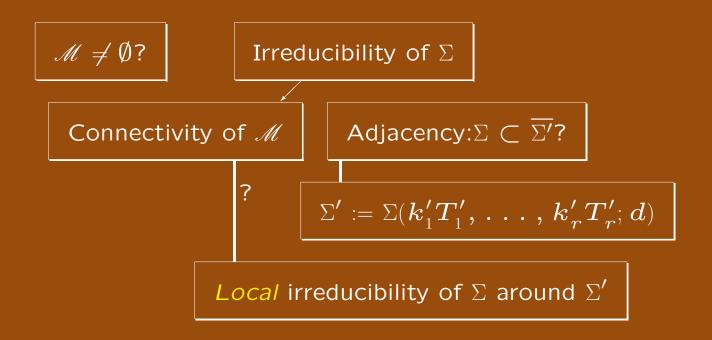
Irreducibility of Σ

Connectivity of *M*

Adjacency: $\Sigma \subset \overline{\Sigma'}$?

$$\Sigma' := \Sigma(k_1'T_1', \ldots, k_r'T_r'; d)$$

Local irreducibility of Σ around Σ'



 $\tilde{\Sigma}\subset \Sigma$ connected component $\mathcal{C}_1,\,\mathcal{C}_2\in \tilde{\Sigma}\Rightarrow\exists$ oriented isotopy h_t such that $h_0=1_{\mathbb{P}^2}$, $h_1(\mathcal{C}_1)=\mathcal{C}_2$.

 $\tilde{\Sigma}\subset \Sigma$ connected component $\mathcal{C}_1,\,\mathcal{C}_2\in \tilde{\Sigma}\Rightarrow\exists$ oriented isotopy h_t such that $h_0=1_{\mathbb{P}^2}$, $\overline{h_1(\mathcal{C}_1)}=\mathcal{C}_2$.

What about the converse?

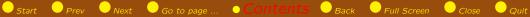
 $\tilde{\Sigma}\subset\Sigma$ connected component $\mathcal{C}_1,\,\mathcal{C}_2\in\tilde{\Sigma}\Rightarrow\exists$ oriented isotopy h_t such that $h_0 = 1_{\mathbb{P}^2}$, $h_1(\mathcal{C}_1) = \mathcal{C}_2$.

What about the converse?

If there exists an *oriented* isotopy (homeomorphism)

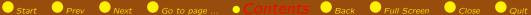
$$\Phi: \mathbb{P}^2 \longrightarrow \mathbb{P}^2$$

such that $\Phi(\mathcal{C}_1) = \mathcal{C}_2$, do they belong to the same connected component of Σ ?



[HAR87], Greuel [GLS98, GLS98a, GL99, GLS99, GLS02], Shustin [SHU97, SHU97a], Lossen about irreducibility, smoothness, existence, . . .

- [HAR87], Greuel [GLS98, GLS98a, GL99, GLS99, GLS02], Shustin [SHU97, SHU97a], Lossen about irreducibility, smoothness, existence,...
- ▷ Existence and connectedness have been solved for a connectedness have been solved. $d \leq 5$ by Namba [NMB86] and Degtyarev [DEG90], see here.



 $ightharpoonup \Sigma(6\mathbb{A}_2;6) = \overline{\Sigma^{\mathsf{irr}}(6\mathbb{A}_2;6)}$ is reducible and not connected [ZAR29], [ZAR31], [ZAR37]

- $\triangleright \Sigma(6\mathbb{A}_2;6) = \overline{\Sigma^{\mathsf{irr}}(6\mathbb{A}_2;6)}$ is reducible and not connected [ZAR29], [ZAR31], [ZAR37]
 - $\Sigma^{tor}(6\mathbb{A}_2;6)$: cusps on a conic

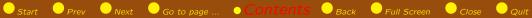
- $\triangleright \Sigma(6\mathbb{A}_2;6) = \Sigma^{\mathsf{irr}}(6\mathbb{A}_2;6)$ is reducible and not connected [ZAR29], [ZAR31], [ZAR37]
 - $\Sigma^{\text{tor}}(6\mathbb{A}_2;6)$: cusps on a conic
 - $\Sigma'(6\mathbb{A}_2;6)$, $\Sigma''(6\mathbb{A}_2;6)$, ... other ones (at least one)

- $\triangleright \Sigma(6\mathbb{A}_2;6) = \overline{\Sigma}^{\mathsf{irr}}(6\mathbb{A}_2;6)$ is reducible and not connected [ZAR29], [ZAR31], [ZAR37]
 - $\Sigma^{\mathsf{tor}}(6\mathbb{A}_2;6)$: cusps on a conic
 - $\Sigma'(6\mathbb{A}_2;6), \Sigma''(6\mathbb{A}_2;6), \ldots$ other ones (at least one)
- hickspace > Study the case d=6, $T_i=\mathbb{A}_k,\,\mathbb{D}_l,\,\mathbb{E}_r$

 $lackbox{m{ ilde{\Gamma}}} \; \mathcal{C} \; \in \; \Sigma$, $\; \pi \; : \; \widehat{Y} \; o \; \mathbb{P}^2 \;$ double covering ramified along $\overline{\mathcal{C}}$, $\overline{ au}: \overline{Y}
ightarrow \widehat{Y}$ minimal resolution, \overline{Y} K3 surface (see Barth-Peters-Van de Ven [BPV84])

- $m{\mathcal{C}} \in \Sigma$, $m{\pi} : \widehat{Y}
 ightarrow \mathbb{P}^2$ double covering ramified along \mathcal{C} , $au:Y o \widehat{Y}$ minimal resolution, Y K3 surface (see Barth-Peters-Van de Ven [BPV84])
- lacksquare $\mu(\mathcal{C})$ sum of Milnor numbers of $\mathrm{Sing}(\mathcal{C})$, Y K3 \Rightarrow $\mu(\mathcal{C}) \leq 19$

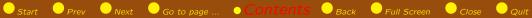
- $m{\mathcal{C}} \in \Sigma$, $\pi: \widehat{Y} o \mathbb{P}^2$ double covering ramified along $\overline{\mathcal{C}}$, $\overline{ au}:Y
 ightarrow\widehat{Y}$ minimal resolution, \overline{Y} K3 surface (see Barth-Peters-Van de Ven [BPV84])
- $ightharpoonup \mu(\mathcal{C})$ sum of Milnor numbers of $\mathrm{Sing}(\mathcal{C})$, $Y^{-}K3 \Rightarrow 0$ $\mu(\mathcal{C}) \leq \overline{19}$
- ightharpoonup Characterization of $\Sigma \neq \emptyset$ by Urabe, Yang [YA96] using Nikulin's results (intersection form lattice of a K3 surface)



- $m arphi \; \mathcal{C} \; \in \; \Sigma$, $m \pi \; : \; \widehat{Y} \; o \; \mathbb{P}^2$ double covering ramified along ${\mathcal C}$, $au:Y o \widehat{Y}$ minimal resolution, Y K3 surface (see Barth-Peters-Van de Ven [BPV84])
- $ightharpoonup \mu(\mathcal{C})$ sum of Milnor numbers of $\mathrm{Sing}(\mathcal{C})$, Y K3 \Rightarrow $\mu(\mathcal{C}) < 19$
- ightharpoonup Characterization of $\Sigma
 eq \emptyset$ by Urabe, Yang [YA96] using Nikulin's results (intersection form lattice of a K3 surface)
 - $\mu(\mathcal{C}) = 19$ complete list $\mu(\mathcal{C}) = 18$ supplementary list

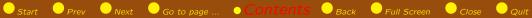
- $m \mathcal{C} \in \Sigma$, $m \pi : \widehat{Y} o \mathbb{P}^2$ double covering ramified along ${\mathcal C}$, $au:Y o \widehat{Y}$ minimal resolution, Y K3 surface (see Barth-Peters-Van de Ven [BPV84])
- $ightharpoonup \mu(\mathcal{C})$ sum of Milnor numbers of $\mathrm{Sing}(\mathcal{C})$, Y K3 \Rightarrow $\mu(\mathcal{C}) < 19$
- ▶ Characterization of $\Sigma \neq \emptyset$ by Urabe, Yang [YA96] using Nikulin's results (intersection form lattice of a K3 surface)
 - $\mu(\mathcal{C}) = 19$ complete list $+ \mu(\mathcal{C}) = 18$ supplementary list
 - $\blacktriangleleft \Sigma
 eq \emptyset$ if and only if the graph of singular points is a subgraph of a graph in one on the lists

- $m{ ilde{\mathcal{C}}} \in \Sigma$, π : \widehat{Y} o \mathbb{P}^2 double covering ramified along $\overline{\mathcal{C}}$, $\overline{ au}:Y
 ightarrow\widehat{Y}$ minimal resolution, \overline{Y} K 3surface (see Barth-Peters-Van de Ven [BPV84])
- $ightharpoonup \mu(\mathcal{C})$ sum of Milnor numbers of $\mathrm{Sing}(\mathcal{C})$, $Y^-K3 \Rightarrow 0$ $\mu(\mathcal{C}) < 19$
- ▶ Characterization of $\Sigma \neq \emptyset$ by Urabe, Yang [YA96] using Nikulin's results (intersection form lattice of a K3 surface)
 - $\mu(\mathcal{C}) = 19$ complete list $+ \mu(\mathcal{C}) = 18$ supplementary list
 - $\blacktriangleleft \Sigma
 eq \emptyset$ if and only if the graph of singular points is a subgraph of a graph in one on the lists
 - \blacktriangleleft Yang also studies $\Sigma(\Gamma)$: global irreducible components



▶ If $\Sigma(\Gamma) \neq \emptyset$, how many connected components?

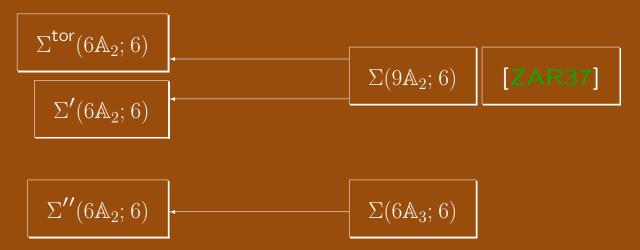
- ▶ If $\Sigma(\Gamma) \neq \emptyset$, how many connected components?
- Understand adjacencies



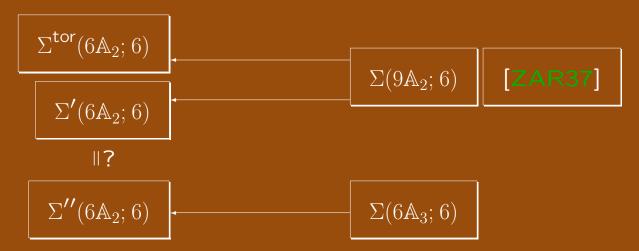
- ▶ If $\Sigma(\Gamma) \neq \emptyset$, how many connected components?
- Understand adjacencies



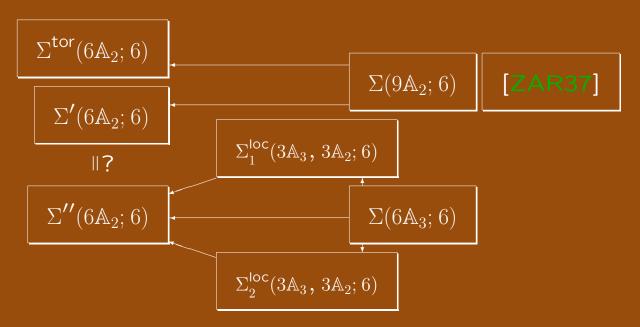
- ▶ If $\Sigma(\Gamma) \neq \emptyset$, how many connected components?
- Understand adjacencies

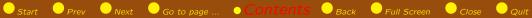


- ▶ If $\Sigma(\Gamma) \neq \emptyset$, how many connected components?
- Understand adjacencies

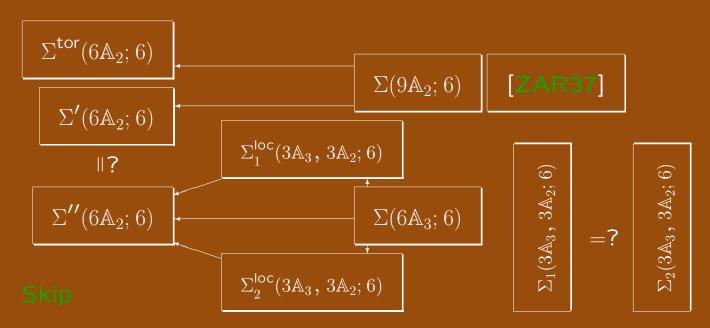


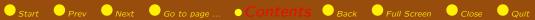
- ▶ If $\Sigma(\Gamma) \neq \emptyset$, how many connected components?
- Understand adjacencies





- ▶ If $\Sigma(\Gamma) \neq \emptyset$, how many connected components?
- Understand adjacencies



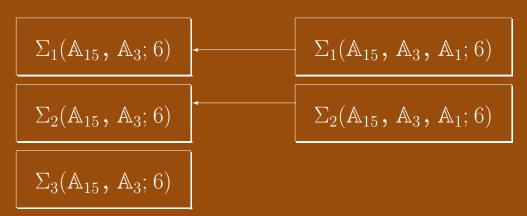


$$\Sigma_1(\mathbb{A}_{15}, \mathbb{A}_3; 6)$$

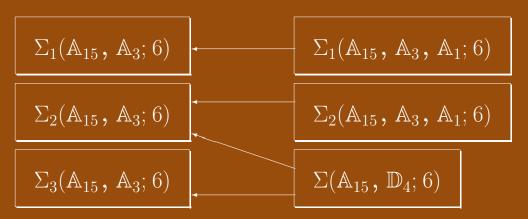
$$\Sigma_2(\mathbb{A}_{15}, \mathbb{A}_3; 6)$$

$$\Sigma_3(\mathbb{A}_{15}, \mathbb{A}_3; 6)$$

- $ightharpoonup \Sigma_1$: tangent line at \mathbb{A}_{15} pass through \mathbb{A}_3
- $\triangleright \Sigma_2$: generic
- $ightharpoonup \Sigma_3$: 4-fold tangent conic to \mathbb{A}_{15} is tangent at \mathbb{A}_3



- $ightharpoonup \Sigma_1$: tangent line at \mathbb{A}_{15} pass through \mathbb{A}_3
- $\triangleright \Sigma_2$: generic
- $ightharpoonup \Sigma_3$: 4-fold tangent conic to \mathbb{A}_{15} is tangent at \mathbb{A}_3



- $ightharpoonup \Sigma_1$: tangent line at \mathbb{A}_{15} pass through \mathbb{A}_3
- $\triangleright \Sigma_2$: generic
- $ightharpoonup \Sigma_3$: 4-fold tangent conic to \mathbb{A}_{15} is tangent at \mathbb{A}_3

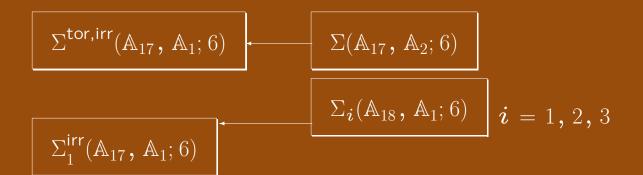
Page 11

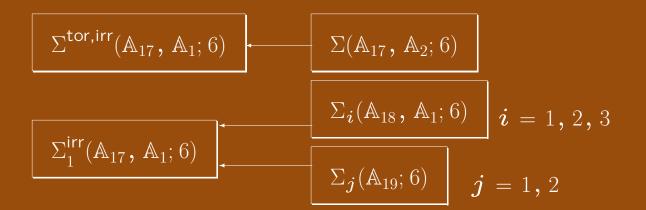
Start Prev Next Go to page ... Contents Back Full Screen Close Quit

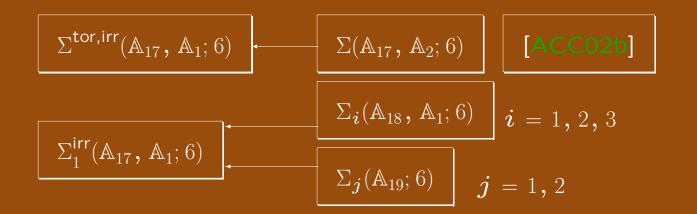
 $\Sigma^{\mathsf{tor},\mathsf{irr}}(\mathbb{A}_{17},\,\mathbb{A}_1;\,6)$

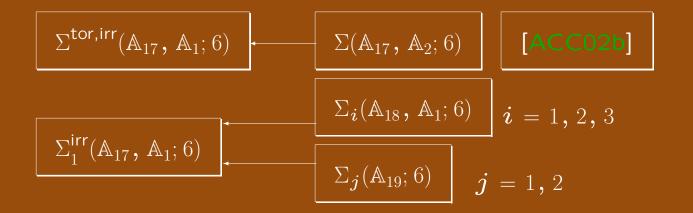
 $\Sigma_1^{\mathsf{irr}}(\mathbb{A}_{17},\,\mathbb{A}_1;\,6)$

$$\Sigma_1^{\mathsf{irr}}(\mathbb{A}_{17},\,\mathbb{A}_1;\,6)$$

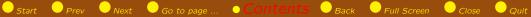








- $\triangleright \Sigma_i(\mathbb{A}_{18}, \mathbb{A}_1; 6)$: \exists conjugate representatives with coefficents in $\mathbb{Q}(19s^3 + 50s^2 + 36s + 8)$
- $ightharpoonup \Sigma_j(\mathbb{A}_{19};6)$: \exists conjugate representatives in $\mathbb{Q}(\sqrt{5})$ (see [YOS79] for a more complicated extension)



ullet In Yang's list for $\mu(\mathcal{C})=19$, a lot of such examples appear

- ullet In Yang's list for $\mu(\mathcal{C})=19$, a lot of such examples appear
- Many topological invariants come from algebraic properties

- ullet In Yang's list for $\mu(\mathcal{C})=19$, a lot of such examples appear
- Many topological invariants come from algebraic properties
- Look for other invariants

 $\mathcal{C}^{\mathsf{aff}} := \{f(x,y) = 0\} \subset \mathbb{C}^2 \text{ horizontal of degree } d$:

$$\mathcal{C}^{\mathsf{aff}} \coloneqq \{f(x,\,y) = 0\} \subset \mathbb{C}^2 \; \mathsf{horizontal} \; \mathsf{of} \; \mathsf{degree} \; d$$
:

$$f(x,\,y) = y^d + f_1(x)y^{d-1} + \cdots + f_{d-1}(x)y + f_d(x), \ f_j(x) \in \mathbb{C}[x], \ j=1,\ldots,d.$$

$$\mathcal{C}^{\mathsf{aff}} := \{f(x, y) = 0\} \subset \mathbb{C}^2 \text{ horizontal of degree } d$$
:

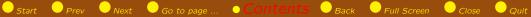
$$f(x\,,\,y) = y^d + f_1(x)y^{d-1} + \dots + f_{d-1}(x)y + f_d(x), \ f_j(x) \in \mathbb{C}[x], \;\; j=1,\dots,d.$$

- $lacksquare D(x) := \mathrm{Disc}_{oldsymbol{y}}(f(x, \, y))$
- $ilde{m{artheta}} = \{x \in \mathbb{C} \mid D(x) = 0\} = \{x_1, \ldots, x_r\}$

$$\mathcal{C}^{\mathsf{aff}} \coloneqq \{f(x,\,y) = 0\} \subset \mathbb{C}^2 \; \mathsf{horizontal} \; \mathsf{of} \; \mathsf{degree} \; d$$
:

$$f(x,\,y) = y^d + f_1(x)y^{d-1} + \cdots + f_{d-1}(x)y + f_d(x), \ f_j(x) \in \mathbb{C}[x], \ j=1,\ldots,d.$$

- $lacksquare D(x) := \mathrm{Disc}_{oldsymbol{y}}(f(x,\,y))$
- $\blacktriangleright \mathscr{D} := \{x \in \mathbb{C} \mid D(x) = 0\} = \{x_1, \dots, x_r\}$
- $lackbox{lackbox{$\triangleright$}} V := \{p(t) \in \mathbb{C}[t] \mid p ext{ monic of degree d}\}, \ D$ discriminant hypersurface
- $ightharpoonup V \setminus D \equiv \{A \subset \mathbb{C} \mid \#A = d\}$



$$f:\mathbb{C}\setminus\mathscr{D} o V\setminus D$$
 $x\mapsto f(x,t)$ $*:=R$ s. t. $\mathscr{D}\subset\{z\in\mathbb{C}\mid |z|< R\}$, $y^*:= ilde{f}(*)$

$$\begin{array}{c} \tilde{f}:\mathbb{C}\setminus \mathscr{D}\to V\setminus D\\ x\mapsto f(x,t)\\ *:=R \text{ s. t. } \mathscr{D}\subset \{z\in\mathbb{C}\mid |z|< R\}\text{, } \mathbf{y}^*\coloneqq \tilde{f}(*) \end{array}$$

Braid monodromy of \mathcal{C}^{aff} :

$$egin{aligned} oldsymbol{
abla} &:= ilde{f}_*: \pi_1(\mathbb{C}\setminus\mathscr{D};*)
ightarrow &:= \pi_1(V\setminus D;\mathbf{y}^*) \ &:= B_{\mathbf{v}^*} \end{aligned}$$

Geometric bases of the free group $\pi_1(\mathbb{C} \setminus \mathscr{D}; *)$

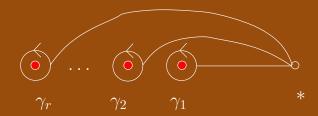
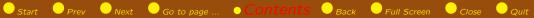


Figure 1: Geometric basis



Geometric bases of the free group $\pi_1(\mathbb{C} \setminus \mathscr{D}; *)$

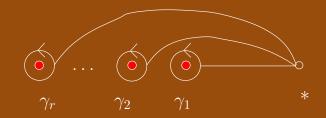
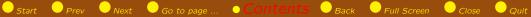


Figure 1: Geometric basis

- \spadesuit Each loop is meridian of a point of \mathscr{D}
- $\spadesuit |c_{\gamma}| := \gamma_r \cdot \ldots \cdot \gamma_1$ is the boundary of a big geometric disk; c_{γ}^{-1} is $\overline{\mathrm{meridian}}$ of ∞
- $(\overline{m{\nabla}}(m{\gamma}_1), \ldots, \overline{m{\nabla}}(m{\gamma}_r)) \in (\overline{B}_{m{v}^*})^r$



$$\mathbf{y}^0 \coloneqq \{-1, \ldots, -d\}$$

$$egin{align} B_{\mathbf{y}^0} &\equiv B_d \coloneqq \langle \sigma_1, \ldots, \sigma_{d-1} : \ & [\sigma_i, \sigma_j] = 1, \ |i-j| \geq 2, \ & \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \ i = 1, \ldots, d-2
angle \end{aligned}$$

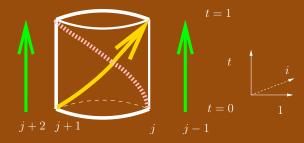


Figure 2: σ_i

- $oldsymbol{\bullet}$ au \in $B(\mathbf{y}^*,\mathbf{y}^0)$ braid starting at \mathbf{y}^* and ending at
- $\Phi_{ au}: \overline{B_{ ext{y}^*}} o \overline{B_d}, \Phi_{ au}(\sigma) \coloneqq \overline{ au} \cdot \overline{\sigma} \cdot \overline{ au}^{-1}$

- ullet au \in $B(\mathbf{y}^*,\mathbf{y}^0)$ braid starting at \mathbf{y}^* and ending at
- $ullet \Phi_{ au}: B_{\mathbf{v}^*} o B_d$, $\Phi_{ au}(\sigma) := au \cdot \sigma \cdot au^{-1}$
- ullet abla , $(\gamma_1,\ldots,\gamma_r)$, au , $abla_ au:=\Phi_ au{\circ}
 abla$ determine

$$(
abla_{ au}(\gamma_1),\ldots,
abla_{ au}(\gamma_r))\in \left(B_d
ight)^r$$

- ullet $au\in B(\mathbf{y}^*,\mathbf{y}^0)$ braid starting at \mathbf{y}^* and ending at
- $ullet \Phi_{ au}: B_{\mathbf{v}^*} o B_d$, $\Phi_{ au}(\sigma) \coloneqq au \cdot \sigma \cdot au^{-1}$
- ullet abla , $(\gamma_1,\ldots,\gamma_r)$, au , $abla_ au:=\Phi_ au{\circ}
 abla$ determine $(
 abla_{ au}(\gamma_1), \ldots,
 abla_{ au}(\gamma_r)) \in (B_d)^r$

Braid monodromy + · · ·

An element of $(B_d)^r$

Choice of geometric basis

Start Prev Next Go to page ... • Contents Back Full Screen Close Quit

- Choice of geometric basis
 - $\mathscr{G}:=\left\{\mathsf{Geometric}\ \mathsf{bases}\ \mathsf{of}\ \pi_1(\mathbb{C}\setminus\mathscr{D};*)\right\}$

- Choice of geometric basis
 - $\mathscr{G} := \{ \text{Geometric bases of } \pi_1(\mathbb{C} \setminus \mathscr{D}; *) \}$
 - Right action of B_r on \mathscr{G} :

$$egin{aligned} \left(\gamma_1,\,\ldots,\,\gamma_r
ight)^{\sigma_i} &\coloneqq \ \left(\gamma_1,\,\ldots,\,\gamma_{i-1},\,\gamma_{i+1},\,\gamma_{i+1}\gamma_i\gamma_{i+1}^{-1},\,\gamma_{i+2},\,\ldots,\,\gamma_r
ight) \end{aligned}$$

- Choice of geometric basis
 - $\mathscr{G}:=\overline{\{\text{Geometric bases of }\pi_1(\mathbb{C}\setminus\mathscr{D};*)\}}$
 - Right action of B_r on \mathscr{G} :

$$egin{aligned} \left(\gamma_1, \, \ldots, \, \gamma_r
ight)^{\sigma_i} &\coloneqq \ \left(\gamma_1, \, \ldots, \, \gamma_{i-1}, \, \gamma_{i+1}, \, \gamma_{i+1} \gamma_i \gamma_{i+1}^{-1}, \, \gamma_{i+2}, \, \ldots, \, \gamma_r
ight) \end{aligned}$$

It is a free and transitive action, [ARTIN47]

- Choice of geometric basis
 - $\mathscr{G} := \{ \text{Geometric bases of } \pi_1(\mathbb{C} \setminus \mathscr{D}; *) \}$
 - Right action of B_r on \mathscr{G} :

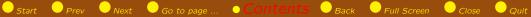
$$egin{aligned} \left(\gamma_1, \, \ldots, \, \gamma_r
ight)^{\sigma_i} &\coloneqq \ \left(\gamma_1, \, \ldots, \, \gamma_{i-1}, \, \gamma_{i+1}, \, \gamma_{i+1} \gamma_i \gamma_{i+1}^{-1}, \, \gamma_{i+2}, \, \ldots, \, \gamma_r
ight) \end{aligned}$$

- It is a free and transitive action, [ARTIN47]
- ullet Choice of $au \in B(\mathbf{y}^*,\mathbf{y}^0)$ and base point *

- Choice of geometric basis
 - $\mathscr{G} := \{ \text{Geometric bases of } \pi_1(\mathbb{C} \setminus \mathscr{D}; *) \}$
 - Right action of B_r on \mathscr{G} :

$$egin{aligned} \left(\gamma_1, \, \ldots, \, \gamma_r
ight)^{\sigma_i} &\coloneqq \ \left(\gamma_1, \, \ldots, \, \gamma_{i-1}, \, \gamma_{i+1}, \, \gamma_{i+1} \gamma_i \gamma_{i+1}^{-1}, \, \gamma_{i+2}, \, \ldots, \, \gamma_r
ight) \end{aligned}$$

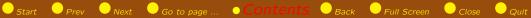
- It is a free and transitive action, [ARTIN47]
- ullet Choice of $au \in B(\mathbf{y}^*,\mathbf{y}^0)$ and base point *
 - Right action of B_d on $B_d^{\,r}$ by simultaneous conjugation.



- Choice of geometric basis
 - $\mathscr{G}:=\overline{\{\text{Geometric bases of }\pi_1(\mathbb{C}\setminus\mathscr{D};*)\}}$
 - Right action of B_r on \mathscr{G} :

$$egin{aligned} \left(\gamma_1, \, \ldots, \, \gamma_r
ight)^{\sigma_i} &\coloneqq \ \left(\gamma_1, \, \ldots, \, \gamma_{i-1}, \, \gamma_{i+1}, \, \gamma_{i+1} \gamma_i \gamma_{i+1}^{-1}, \, \gamma_{i+2}, \, \ldots, \, \gamma_r
ight) \end{aligned}$$

- It is a free and transitive action, [ARTIN47]
- ullet Choice of $au \in B(\mathbf{y}^*,\mathbf{y}^0)$ and base point *
 - Right action of B_d on $B_d^{\,r}$ by simultaneous conjugation.
 - Pseudogeometric basis of $\pi_1(\mathbb{C}\setminus \mathscr{D};*)$: c_{γ}^{-1} is a meridian of the line at infinity



Right action of $B_r \times B_d$ on $(B_d)^r$:

Right action of $B_r \times B_d$ on $(B_d)^r$:

ullet B_r acts by Hurwitz moves.

Right action of $B_r \times B_d$ on $(B_d)^r$:

- ullet B_r acts by Hurwitz moves.
- Both actions commute

Right action of $B_r \times B_d$ on $(B_d)^r$:

- ullet B_r acts by Hurwitz moves.
- Both actions commute

Braid monodromy

An element of $B_d^r/(B_r \times B_d)$

Right action of $B_r \times B_d$ on $(B_d)^r$:

- ullet B_r acts by Hurwitz moves.
- Both actions commute

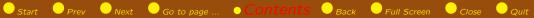
An element of $B_d^r/(B_r \times B_d)$

Braid monodromy does not depend on Jung automorphisms as:

$$(x, y) \mapsto (ax + b, cy + p(x))$$

$$a\,,\,c\in\mathbb{C}^*$$
, $b\in\mathbb{C}$, $p(x)\in\mathbb{C}[x]$

 $\# \mathcal{M}(\mathbb{E}_6, \mathbb{A}_7, \mathbb{A}_3, \mathbb{A}_2, \mathbb{A}_1; 6) = 2$



 $\#\mathcal{M}(\mathbb{E}_6, \mathbb{A}_7, \mathbb{A}_3, \mathbb{A}_2, \mathbb{A}_1; 6) = 2$ Representantatives C_{β} , $\beta^2 = 2$, with equations

$$f_{\beta}(x, y, z)g_{\beta}(x, y, z) = 0$$

having coefficients in $\mathbb{Q}(\sqrt{2})$

 $\# \mathcal{M}(\mathbb{E}_6, \mathbb{A}_7, \mathbb{A}_3, \mathbb{A}_2, \mathbb{A}_1; 6) = 2$

Representantatives C_{β} , $\beta^2=2$, with equations

$$f_{\beta}(x, y, z)g_{\beta}(x, y, z) = 0$$

having coefficients in $\mathbb{Q}(\sqrt{2})$

$$f_{\beta}(x, y, z) := y^{2}z^{3} + (303 - 216 \beta) yz^{2}x^{2} + + (-636 + 450 \beta) yzx^{3} + + (-234 \beta + 331) yx^{4} + (-18 \beta + 27) zx^{4} + + (18 \beta - 26) x^{5},$$

$$g_{\beta}(x, y, z) := y + \left(\frac{10449}{196} - \frac{3645}{98} \beta\right) z + + \left(-\frac{432}{7} + \frac{297}{7} \beta\right) x.$$

$$(1)$$

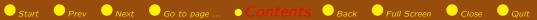
Take affine curves for z=1

- ▶ Take affine curves for z = 1
- lacksquare Line at infinity: tangent line at \mathbb{E}_6

- ▶ Take affine curves for z = 1
- **Line** at infinity: tangent line at \mathbb{E}_6
- $ightharpoonup \mathbb{E}_6$, point at infinity of vertical lines

- lue Take affine curves for z=1
- **Line** at infinity: tangent line at \mathbb{E}_6
- $ightharpoonup \mathbb{E}_6$, point at infinity of vertical lines
- Corresponding affine curves of horizontal degree 3

- lue Take affine curves for z=1
- **Line** at infinity: tangent line at \mathbb{E}_6
- $ightharpoonup \mathbb{E}_6$, point at infinity of vertical lines
- Corresponding affine curves of horizontal degree 3
- $lue{}$ Corresponding ${\mathscr D}$ are subsets of ${\mathbb R}$



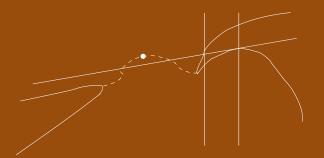
$$egin{array}{l} oldsymbol{\gamma}_1^{\sqrt{2}} & \mapsto \ oldsymbol{\gamma}_2^{\sqrt{2}} & \mapsto \ oldsymbol{\gamma}_3^{\sqrt{2}} & \mapsto \ oldsymbol{\gamma}_4^{\sqrt{2}} & \mapsto \ oldsymbol{\gamma}_5^{\sqrt{2}} & \mapsto \end{array}$$

 $oldsymbol{\sigma}_2^8$

$$egin{array}{l} oldsymbol{\gamma}_1^{\sqrt{2}} & \mapsto \ oldsymbol{\gamma}_2^{\sqrt{2}} & \mapsto \ oldsymbol{\gamma}_3^{\sqrt{2}} & \mapsto \ oldsymbol{\gamma}_4^{\sqrt{2}} & \mapsto \ oldsymbol{\gamma}_5^{\sqrt{2}} & \mapsto \end{array}$$

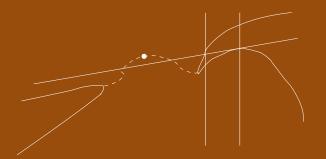
Page 23

Start Prev Next Oo to page ... • Contents O Back Full Screen O Close Quit

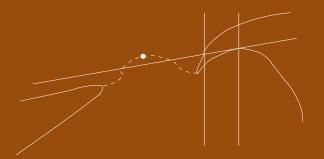


$$egin{array}{l} \gamma_1^{\sqrt{2}} & \mapsto \ \gamma_2^{\sqrt{2}} & \mapsto \ \gamma_3^{\sqrt{2}} & \mapsto \ \gamma_4^{\sqrt{2}} & \mapsto \ \gamma_5^{\sqrt{2}} & \mapsto \end{array}$$

$$oldsymbol{\sigma}_2^8 \ oldsymbol{\sigma}_2^4 * oldsymbol{\sigma}_1^2$$



$$oldsymbol{\sigma}_2^8 \ oldsymbol{\sigma}_2^4 * oldsymbol{\sigma}_1^2 \ oldsymbol{\sigma}_2^4$$



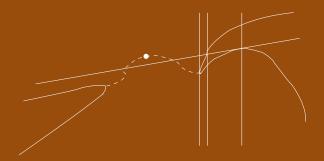
$$egin{array}{l} oldsymbol{\gamma}_1^{\sqrt{2}} & \mapsto \ oldsymbol{\gamma}_2^{\sqrt{2}} & \mapsto \ oldsymbol{\gamma}_3^{\sqrt{2}} & \mapsto \ oldsymbol{\gamma}_4^{\sqrt{2}} & \mapsto \ oldsymbol{\gamma}_5^{\sqrt{2}} & \mapsto \end{array}$$

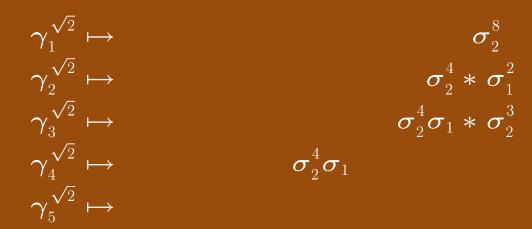
$$egin{aligned} oldsymbol{\sigma}_2^8 \ oldsymbol{\sigma}_2^4 * oldsymbol{\sigma}_1^2 \ oldsymbol{\sigma}_2^4 oldsymbol{\sigma}_1 \end{aligned}$$

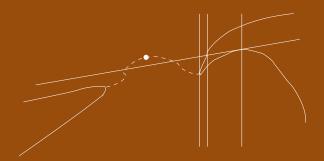


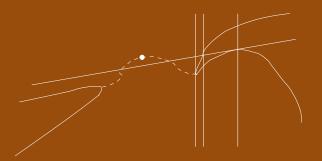
$$egin{array}{ccccc} oldsymbol{\gamma}_1^{\sqrt{2}} & \mapsto & & & & & & \\ oldsymbol{\gamma}_2^{\sqrt{2}} & \mapsto & & & & & & & & \\ oldsymbol{\gamma}_3^{\sqrt{2}} & \mapsto & & & & & & & & & \\ oldsymbol{\gamma}_4^{\sqrt{2}} & \mapsto & & & & & & & & & & \\ oldsymbol{\gamma}_5^{\sqrt{2}} & \mapsto & & & & & & & & & & & \\ \end{array}$$

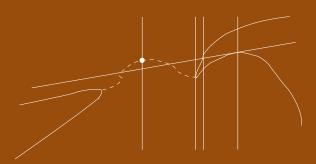
$$egin{aligned} oldsymbol{\sigma}_2^8 \ oldsymbol{\sigma}_2^4 * oldsymbol{\sigma}_1^2 \ oldsymbol{\sigma}_2^4 oldsymbol{\sigma}_1 * oldsymbol{\sigma}_2^3 \end{aligned}$$

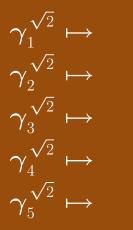






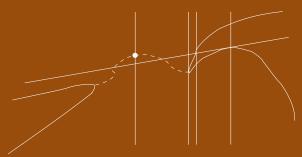




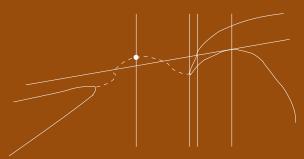


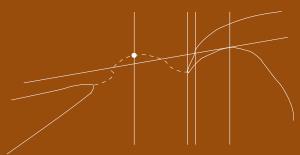
$$oldsymbol{\sigma}_{2}^{8} \ oldsymbol{\sigma}_{2}^{4} st oldsymbol{\sigma}_{1}^{2} \ oldsymbol{\sigma}_{2}^{4} oldsymbol{\sigma}_{1} st oldsymbol{\sigma}_{2}^{3} \ oldsymbol{\sigma}_{2}^{4} oldsymbol{\sigma}_{1} oldsymbol{\sigma}_{2} oldsymbol{\sigma}_{1}^{-1} oldsymbol{\sigma}_{2} st oldsymbol{\sigma}_{1}^{4} \ oldsymbol{\sigma}_{2}^{4} oldsymbol{\sigma}_{1} oldsymbol{\sigma}_{2}^{4} oldsymbol{\sigma}_{1}^{-1} oldsymbol{\sigma}_{2} st oldsymbol{\sigma}_{1}^{4} \ oldsymbol{\sigma}_{2}^{4} oldsymbol{\sigma}_{1} oldsymbol{\sigma}_{2}^{4} oldsymbol{\sigma}_{1}^{4} oldsymbol{\sigma}_{2}^{4} oldsymbol{\sigma}_{2}^{4$$

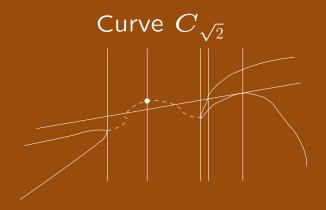
Curve $\overline{C_{\sqrt{2}}}$

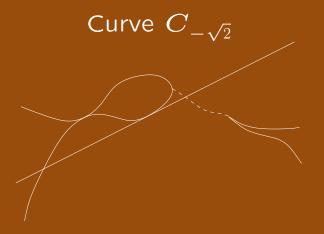


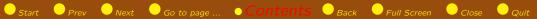


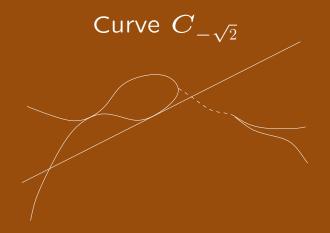












$$egin{aligned} m{\gamma}_1^{-\sqrt{2}} & \mapsto m{\sigma}_2^3 \ m{\gamma}_2^{-\sqrt{2}} & \mapsto \left(m{\sigma}_2m{\sigma}_1^{-1}m{\sigma}_2
ight) * m{\sigma}_1 \ m{\gamma}_3^{-\sqrt{2}} & \mapsto m{\sigma}_2 * m{\sigma}_1^8 \ m{\gamma}_4^{-\sqrt{2}} & \mapsto m{\sigma}_1^{-2} * m{\sigma}_2^4 \ m{\gamma}_5^{-\sqrt{2}} & \mapsto m{\sigma}_1^{-3} * m{\sigma}_2^2. \end{aligned}$$

 $igstar{L}(\mathcal{C},L,P)$ triple: $\mathcal{C}\subset\mathbb{P}^2$ projective curve, $L\not\subset\mathcal{C}$ line , $P \in L$

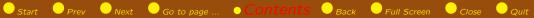
- igstar $(\mathcal{C}\,,\,L\,,\,P)$ triple: $\mathcal{C}\,\subset\,\mathbb{P}^2$ projective curve, $L\not\subset\mathcal{C}$ line , $P \in L$
- lacktriangle Homogeneous coordinates [x:y:z]: $L=\{z=$ 0, P = [0:1:0]
- $ilde{f L} \subset \mathbb{C}^2 := \mathbb{P}^2 \setminus L$, affine coordinates $(x\,,\,y)$, $\mathcal{C}^{\mathsf{aff}} := \mathbb{P}^2$ $C \cap \mathbb{C}^2$

- $igstar{L}(\mathcal{C},L,P)$ triple: $\mathcal{C}\subset\mathbb{P}^2$ projective curve, $L\not\subset\mathcal{C}$ line , $P \in L$
- lacktriangle Homogeneous coordinates [x:y:z]: $L=\{z=$ 0, P = [0:1:0]
- $alla^2 := \mathbb{P}^2 \setminus L$, affine coordinates (x,y), $\mathcal{C}^{\mathsf{aff}} :=$ $\mathcal{C} \cap \mathbb{C}^2$
- (\mathcal{C},L,P) is horizontal of degree d if $\mathcal{C}^{\mathsf{aff}}$ is
- $ilde{t A}$ Braid monodromy of $({\mathcal C}\,,\,L\,,\,P)$: the one of ${\mathcal C}^{\mathsf{aff}}$

- (\mathcal{C},L,P) triple: $\mathcal{C}\subset\mathbb{P}^2$ projective curve, $L\not\subset\mathcal{C}$ line , $P \in L$
- lacktriangle Homogeneous coordinates [x:y:z]: $L=\{z=$ 0, P = [0:1:0]
- $all^2 := \mathbb{P}^2 \setminus L$, affine coordinates (x,y), $\mathcal{C}^{\mathsf{aff}} := \mathbb{P}^2$ $C \cap \mathbb{C}^2$
- (\mathcal{C},L,P) is horizontal of degree d if $\mathcal{C}^{\mathsf{aff}}$ is
- lacksquare Braid monodromy of $(\mathcal{C}\,,\,L\,,\,P)$: the one of $\mathcal{C}^{\mathsf{aff}}$
- lacktriangle Classic case: generic choice of L and P
- Generalization because of computing reasons: use real curves, or programs (Carmona, Bessis)

In the example,

- ullet P singular point \mathbb{E}_6
- ullet L tangent line at P



In the example,

- ullet P singular point \mathbb{E}_6
- ullet L tangent line at P

Theorem 1 ([ACC 02a]). Braid monodromies of the triples $\overline{(\mathcal{C}_{\sqrt{2}},\,L\,,\,P)}$ and $(\mathcal{C}_{-\sqrt{2}},\,L\,,\,P)$ are not equivalent

In the example,

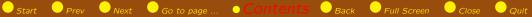
- ullet P singular point \mathbb{E}_6
- ullet L tangent line at P

Theorem 1 ([ACC02a]). Braid monodromies of the triples $(\mathcal{C}_{\sqrt{2}},\,L\,,\,P)$ and $(\mathcal{C}_{-\sqrt{2}},\,L\,,\,P)$ are not equivalent

Look for topological consequences

Zariski-Van Kampen theorem [ZAR29] [VK33]: fundamental group of the complement of the curve (braid monodromy appears implicitely)

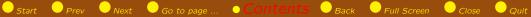
- Zariski-Van Kampen theorem [ZAR29] [VK33]: fundamental group of the complement of the curve (braid monodromy appears implicitely)
- **Explicited** by O. Chisini (1937) [CHI37]: fascio charatteristico



- Zariski-Van Kampen theorem [ZAR29] [VK33]: fundamental group of the complement of the curve (braid monodromy appears implicitely)
- Explicited by O. Chisini (1937) [CHI37]: fascio charatteristico
- Developed by B. Moishezon (1981) [MOI81] and in a series of papers with M. Teicher, [MoTel] a [MoTeV]

A. Libgober (1986) [LIB86]: homotopy type of the complement of the curve

- A. Libgober (1986) [LIB86]: homotopy type of the complement of the curve
- V. Kulikov, M. Teicher (2000) [KT00]: embedding of the curve in the projective plane (generic case and the curve only has ordinary nodes y cusps)



- A. Libgober (1986) [LIB86]: homotopy type of the complement of the curve
- V. Kulikov, M. Teicher (2000) [KT00]: embedding of the curve in the projective plane (generic case and the curve only has ordinary nodes y cusps)
- J. Carmona (2002) [CAR02]: Same result without

$$\mathcal{C}^{arphi} \coloneqq \mathcal{C} \cup igcup_{i=1}^r L_i$$
, $L_i \coloneqq \{x = x_i z\}$, fibered curve

$$\mathcal{C}^{arphi} \coloneqq \mathcal{C} \cup igcup_{j=1}^r L_i$$
, $L_i \coloneqq \{x = x_i z\}$, fibered curve

ullet $\mathcal{C}_1,\,\mathcal{C}_2 \subset \mathbb{P}^2$ curves, $L \not\subset \mathcal{C}_1 \cup \mathcal{C}_2$

$$\mathcal{C}^{arphi}\coloneqq\mathcal{C}\cupigcup_{j=1}^{'}L_{i}$$
, $L_{i}\coloneqq\{x=x_{i}z\}$, fibered curve

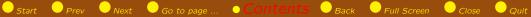
- ullet $\mathcal{C}_1,\,\mathcal{C}_2\subset\mathbb{P}^2$ curves, $L
 ot\subset\mathcal{C}_1\cup\mathcal{C}_2$
- ullet $P\in L$ such that $(\mathcal{C}_1,\,L\,,\,P)$ and $(\mathcal{C}_2,\,L\,,\,P)$ are horizontal triples of the same degree



$$\mathcal{C}^{arphi}\coloneqq\mathcal{C}\cupigcup_{j=1}^{'}L_{i}$$
, $L_{i}\coloneqq\{x=x_{i}z\}$, fibered curve

- ullet $\mathcal{C}_1,\,\mathcal{C}_2\subset\mathbb{P}^2$ curves, $L
 ot\subset\mathcal{C}_1\cup\mathcal{C}_2$
- ullet $P\in L$ such that $(\mathcal{C}_1,\,L\,,\,P)$ and $(\mathcal{C}_2,\,L\,,\,P)$ are horizontal triples of the same degree

 $F:\mathbb{P}^2 o\mathbb{P}^2$ orientation-preserving homeomorphism

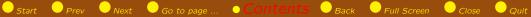


$$\mathcal{C}^{arphi} \coloneqq \mathcal{C} \cup igcup_{j=1}^{'} L_i$$
, $L_i \coloneqq \{x = x_i z\}$, fibered curve

- ullet $\mathcal{C}_1,\,\mathcal{C}_2\subset\mathbb{P}^2$ curves, $L
 ot\subset\mathcal{C}_1\cup\mathcal{C}_2$
- ullet $P\in L$ such that $(\mathcal{C}_1,\,L\,,\,P)$ and $(\mathcal{C}_2,\,L\,,\,P)$ are horizontal triples of the same degree

 $F:\mathbb{P}^2 o\mathbb{P}^2$ orientation-preserving homeomorphism

(i) F(P)=P , F(L)=L preserving orientations



$$\mathcal{C}^{arphi} \coloneqq \mathcal{C} \cup igcup_{j=1}^{'} L_i$$
, $L_i \coloneqq \{x = x_i z\}$, fibered curve

- ullet $\mathcal{C}_1,\,\mathcal{C}_2\subset\mathbb{P}^2$ curves, $L
 ot\subset\mathcal{C}_1\cup\mathcal{C}_2$
- ullet $P\in L$ such that $(\mathcal{C}_1,\,L\,,\,P)$ and $(\mathcal{C}_2,\,L\,,\,P)$ are horizontal triples of the same degree

 $F: \overline{\mathbb{P}^2} o \overline{\mathbb{P}^2}$ orientation-preserving homeomorphism

- (i) F(P)=P , F(L)=L preserving orientations
- $\overline{\mathrm{(ii)}} \ \overline{F}(\mathcal{C}_1^{arphi}) = \mathcal{C}_2^{arphi} \ ext{preserving orientations.}$

$$\mathcal{C}^{arphi} \coloneqq \mathcal{C} \cup igcup_{j=1}^{'} L_i$$
, $L_i \coloneqq \{x = x_i z\}$, fibered curve

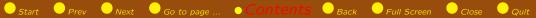
- ullet $\mathcal{C}_1,\,\mathcal{C}_2\subset\mathbb{P}^2$ curves, $L
 ot\subset\mathcal{C}_1\cup\mathcal{C}_2$
- ullet $P\in L$ such that $(\mathcal{C}_1,\,L\,,\,P)$ and $(\mathcal{C}_2,\,L\,,\,P)$ are horizontal triples of the same degree

 $F:\mathbb{P}^2 o\mathbb{P}^2$ orientation-preserving homeomorphism

- (i) F(P)=P , F(L)=L preserving orientations
- $\overline{\mathrm{(ii)}} \ \overline{F}(\mathcal{C}_1^{arphi}) = \mathcal{C}_2^{arphi} \ ext{preserving orientations.}$

Then, braid monodromies of the triples are equal.

Corollary 3. $\mathcal{C}_{\sqrt{2}}^{\varphi}\cup L$ and $\mathcal{C}_{-\sqrt{2}}^{\varphi}\cup L$ are non-homeomorphic curves, conjugated in $\mathbb{Q}(\sqrt{2})$



 $\pi:\mathbb{C}^2\setminus\mathcal{C}^arphi\, o\mathbb{C}\setminus\mathscr{D}$, $\pi(x,\,y):=x$ locally trivial fiber bundle with fiber $\mathbb{C} \setminus \{d \text{ points}\}$

 $\pi:\mathbb{C}^2ackslash\mathcal{C}^arphi o\mathbb{C}ackslash\mathcal{D}$, $\pi(x,y):=\overline{x}$ locally trivial fiber bundle with fiber $\mathbb{C} \setminus \{d \text{ points}\}$

Long exact sequence of homotopy

$$\boxed{1 \to \pi_1(\mathbb{C} \setminus \mathbf{y}^*; M) \to \pi_1(\mathbb{C}^2 \setminus \mathcal{C}^{\varphi}; (*, M)) \xrightarrow{\pi_*} \pi_1(\mathbb{C}_{\mathcal{C}}; *) \to 1}$$
(2)

 $\pi:\mathbb{C}^2\setminus\mathcal{C}^arphi\, o\mathbb{C}\setminus\mathscr{D}$, $\pi(x,y):=x$ locally trivial fiber bundle with fiber $\mathbb{C} \setminus \{d \text{ points}\}$

Long exact sequence of homotopy

$$\frac{1 \to \pi_1(\mathbb{C} \setminus \mathbf{y}^*; M) \to \pi_1(\mathbb{C}^2 \setminus \mathcal{C}^{\varphi}; (*, M)) \xrightarrow{\pi_*} \pi_1(\mathbb{C}_{\mathcal{C}}; *) \to 1}{(2)}$$

Look for a presentation

 $lacksquare M \gg 0$ such that $f(x\,,\,y) = 0$ and $|x| \leq R$ $\Rightarrow |y| < M$

- lacksquare $M\gg 0$ such that $f(x\,,\,y)\,=\,0$ and $|x|\,\leq\,R$ $\Rightarrow |y| < M$
- lacksquare Given $au\in\,B(\mathbf{y}^*,\,\mathbf{y}^0)$ we have an automorphism $\Psi_{ au}:\pi_1(\mathbb{C}\setminus\mathbf{y}^*;M) o\pi_1(\mathbb{C}\setminus\mathbf{y}^0;M)$; the standard basis μ_1^0,\ldots,μ_d^0 of $\pi_1(\mathbb{C}\setminus \mathbf{y}^0;M)$, see Figure 6, determines a geometric basis μ_1, \ldots, μ_d of $\pi_1(\mathbb{C}\setminus \mathbf{y}^*;M)$, $\Psi_{oldsymbol{ au}}(\mu_j)=\mu_{j}^{0}$.

- lacksquare $M\gg 0$ such that $f(x\,,\,y)\,=\,0$ and $|x|\,\leq\,R$ $\Rightarrow |y| < M$
- lacktriangle Given $au\in B(\mathbf{y}^*,\mathbf{y}^0)$ we have an automorphism $\Psi_{ au}:\pi_1(\mathbb{C}\setminus\mathbf{y}^*;M) o\pi_1(\mathbb{C}\setminus\mathbf{y}^0;M)$; the standard basis μ_1^0,\ldots,μ_d^0 of $\pi_1(\mathbb{C}\setminus\mathbf{y}^0;M)$, see Figure 6, determines a geometric basis $\mu_1, \ldots, \overline{\mu_d}$ of $[\pi_1(\mathbb{C}\setminus\overline{\mathbf{y}^*;M})$, $\Psi_{oldsymbol{ au}}(\mu_j)=\mu_j^0$.
- lacksquare Natural right actions of B_d on $\pi_1(\mathbb{C}\setminus \mathbf{y}^0;M)$ and of $\overline{B_{\mathbf{v}^*}}$ on $\pi_1(\mathbb{C}\setminus\mathbf{v}^*;M)$, see Figure 7

$$\mu_i^{\sigma_i} = \mu_{i+1} \qquad \mu_{i+1}^{\sigma_i} = \mu_{i+1} * \mu_i \qquad a * b := a b a^{-1}$$

 $lue{}$ Actions of $\sigma \in B_{\mathbf{v}^*}$ and $\Phi_{ au}(\sigma) \in B_d$

$$egin{aligned} \pi_1(\mathbb{C}\setminus\mathbf{y}^*;M)&\stackrel{\sigma}{\longrightarrow}&\pi_1(\mathbb{C}\setminus\mathbf{y}^*;M)\ \Psi_{ au}&\downarrow\Psi_{ au}\ \\ \pi_1(\mathbb{C}\setminus\mathbf{y}^0;M)&\stackrel{\Phi_{ au}(\sigma)}{\longrightarrow}&\pi_1(\mathbb{C}\setminus\mathbf{y}^0;M) \end{aligned}$$

 $lue{}$ Actions of $\sigma \in B_{\mathbf{v}^*}$ and $\Phi_{ au}(\sigma) \in B_d$

$$egin{aligned} \pi_1(\mathbb{C} ackslash \mathbf{y}^*; oldsymbol{M}) & \stackrel{\sigma}{\longrightarrow} & \pi_1(\mathbb{C} ackslash \mathbf{y}^*; oldsymbol{M}) \ & \Psi_{oldsymbol{ au}} & & \downarrow \Psi_{oldsymbol{ au}} \ & \pi_1(\mathbb{C} ackslash \mathbf{y}^0; oldsymbol{M}) & \stackrel{\Phi_{oldsymbol{ au}}(\sigma)}{\longrightarrow} & \pi_1(\mathbb{C} ackslash \mathbf{y}^0; oldsymbol{M}) \end{aligned}$$

- lacksquare Recall (2). Lift a pseudo-geometric basis γ_1,\ldots,γ_r of $\pi_1(\mathbb{C}\setminus\mathscr{D};*)$ to $\tilde{\gamma}_1,\ldots,\tilde{\gamma}_r$ in $\mathbb{C}\times\{M\}$, see Figure 8
- $\parallel \mu_i^{ ilde{\gamma}_j} = ?$

$$\pi_{1}(\mathbb{C}^{2} \setminus \mathcal{C}^{\varphi}; (*, M)) = \left\langle \mu_{1}, \dots, \mu_{d}, \tilde{\gamma}_{1}, \dots, \tilde{\gamma}_{r} : \right.$$

$$\mu_{i}^{\tilde{\gamma}_{j}} = \mu_{i}^{\nabla(\gamma_{j})}, i = 1, \dots, d, j = 1, \dots, r \right\rangle \cong$$

$$\left\langle \mu_{1}^{0}, \dots, \mu_{d}^{0}, \tilde{\gamma}_{1}, \dots, \tilde{\gamma}_{r} : \right.$$

$$(\mu_{i}^{0})^{\tilde{\gamma}_{j}} = (\mu_{i}^{0})^{\nabla_{\tau}(\gamma_{j})}, i = 1, \dots, d, j = 1, \dots, r \right\rangle$$

$$(3)$$

 $lacksquare
abla_{ au}(\gamma_j) \in B_d$ is determined by the presentation

Page 34

$$\pi_{1}(\mathbb{C}^{2} \setminus \mathcal{C}^{\varphi}; (*, M)) = \left\langle \mu_{1}, \dots, \mu_{d}, \tilde{\gamma}_{1}, \dots, \tilde{\gamma}_{r} : \right.$$

$$\mu_{i}^{\tilde{\gamma}_{j}} = \mu_{i}^{\nabla(\gamma_{j})}, i = 1, \dots, d, j = 1, \dots, r \right\rangle \cong$$

$$\left\langle \mu_{1}^{0}, \dots, \mu_{d}^{0}, \tilde{\gamma}_{1}, \dots, \tilde{\gamma}_{r} : \right.$$

$$(\mu_{i}^{0})^{\tilde{\gamma}_{j}} = (\mu_{i}^{0})^{\nabla_{\tau}(\gamma_{j})}, i = 1, \dots, d, j = 1, \dots, r \right\rangle$$

$$(3)$$

- lacksquare $abla_{ au}(\gamma_j) \in B_d$ is determined by the presentation
- A priori these data are not topological invariants
- The goal is to prove that the oriented topology of $(\mathcal{C}^{\varphi}, L, P)$ does determine these data.

Page 34

Page 35

Step 1. Meridians of C are determined by the oriented topology of $(\mathcal{C}^{\varphi},\,L\,,\,P)$

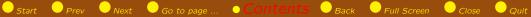
Step 1. Meridians of \mathcal{C} are determined by the oriented topology of $(\mathcal{C}^{\varphi}, L, P)$

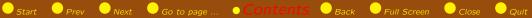
Step 2. $K:=\pi_1(\mathbb{C}\backslash \mathbf{y}^*;M)$ is the subgroup generated by the meridians of C. In particular, the short exact

Step 1. Meridians of \mathcal{C} are determined by the oriented topology of $(\mathcal{C}^{\varphi}, L, P)$

Step 2. $K:=\pi_1(\mathbb{C}\backslash \mathbf{y}^*;M)$ is the subgroup generated by the meridians of C. In particular, the short exact

Step 3. Let us choose * near one x_i ; the element $c := \mu_d \cdot \ldots \cdot \mu_1$ is well-defined by the oriented topology of $(\mathcal{C}^{\varphi}, L, P)$





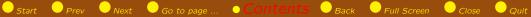
Step 5. The element $\tilde{\gamma}_j$ is the unique lift of $\gamma_j \in H$ such that:

Step 5. The element $\tilde{\gamma}_i$ is the unique lift of $\gamma_i \in H$ such that:

 $\blacktriangleleft \tilde{\gamma}_i$ is a meridian of the line $x=x_iz$

Step 5. The element $\tilde{\gamma}_i$ is the unique lift of $\gamma_i \in H$ such that:

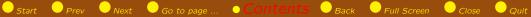
- $\blacktriangleleft \tilde{\gamma}_i$ is a meridian of the line $x=x_iz$
- \blacktriangleleft Conjugation by $ilde{\gamma}_{i}$ induces on K a braid-like automorphism with respect to the family of geometric bases of K



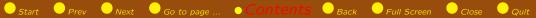
Step 5. The element $\tilde{\gamma}_i$ is the unique lift of $\gamma_i \in H$ such that:

- $lacktriangleq ilde{\gamma}_i$ is a meridian of the line $x=x_iz_i$
- lacktriangle Conjugation by $ilde{\gamma}_i$ induces on K a braid-like automorphism with respect to the family of geometric bases of K

Step 6. The product $(\tilde{\gamma}_r \cdot \ldots \cdot \tilde{\gamma}_1)^{-1}$ is a meridian of the line L in $\pi_1(\mathbb{P}^2\setminus (L_1\cup\cdots\cup L_r\cup L);(*,M))$

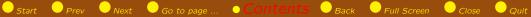


Sketch of the proof of Corollary 3



Sketch of the proof of Corollary 3

lacktriangle Let us suppose there exists a homeomorphism Φ : $\mathbb{P}^2 o \mathbb{P}^2$ such that $\Phi(\mathcal{C}^{arphi}_{\sqrt{2}} \cup L) = \overline{\mathcal{C}^{arphi}_{-\sqrt{2}} \cup L}$

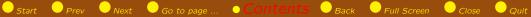


Sketch of the proof of Corollary 3

- lacktriangle Let us suppose there exists a homeomorphism Φ : $\mathbb{P}^2 o \mathbb{P}^2$ such that $\Phi(\mathcal{C}^{\varphi}_{\sqrt{2}} \cup L) = \overline{\mathcal{C}^{\varphi}_{-\sqrt{2}} \cup L}$
- lacktriangle It is easily seen that $\Phi(oldsymbol{P}) = oldsymbol{P}$, $\Phi(oldsymbol{L}) = oldsymbol{L}$ and $\Phi(\mathcal{C}_{\sqrt{2}}^{\varphi}) = \mathcal{C}_{-\sqrt{2}}^{\varphi}$

Sketch of the proof of Corollary 3

- lacktriangle Let us suppose there exists a homeomorphism Φ : $\mathbb{P}^2 o \mathbb{P}^2$ such that $\Phi(\mathcal{C}^{arphi}_{\sqrt{2}} \cup L) = \mathcal{C}^{arphi}_{-\sqrt{2}} \cup L$
- lacktriangle It is easily seen that $\Phi(P) = P$, $\Phi(L) = L$ and $\Phi(\mathcal{C}_{\sqrt{2}}^{\varphi}) = \overline{\mathcal{C}_{-\sqrt{2}}^{\varphi}}$
- By orientation properties of algebraic knots, the homeomorphism Φ preserves the orientation of \mathbb{P}^2



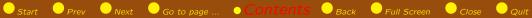
Sketch of the proof of Corollary 3

- lacktriangle Let us suppose there exists a homeomorphism Φ : $\mathbb{P}^2 o \mathbb{P}^2$ such that $\Phi(\mathcal{C}^{arphi}_{\sqrt{2}} \cup L) = \mathcal{C}^{arphi}_{-\sqrt{2}} \cup L$
- lacktriangle It is easily seen that $\Phi(P) = P$, $\Phi(L) = L$ and $\Phi(\overline{\mathcal{C}_{\sqrt{2}}^{oldsymbol{arphi}}}) = \overline{\mathcal{C}_{-\sqrt{2}}^{oldsymbol{arphi}}}$
- By orientation properties of algebraic knots, the homeomorphism Φ preserves the orientation of \mathbb{P}^2
- Since curves have real equations, eventually applying complex conjugation, we may suppose that Φ preserves the orientations of the quintics in $\mathcal{C}_{\sqrt{2}}$ and $\mathcal{C}_{-\sqrt{2}}$

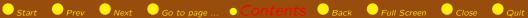
 From the relationship of intersection and linking numbers, we deduce that Φ preserves the orientations of L , $\mathcal{C}^{arphi}_{\sqrt{2}}$ and $\mathcal{C}^{arphi}_{-\sqrt{2}}$

- From the relationship of intersection and linking numbers, we deduce that Φ preserves the orientations of L , $\mathcal{C}^{arphi}_{\sqrt{2}}$ and $\mathcal{C}^{arphi}_{-\sqrt{2}}$
- ullet Φ verifies the conditions stated in Theorem 2

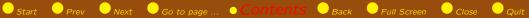
- From the relationship of intersection and linking numbers, we deduce that Φ preserves the orientations of L , $\mathcal{C}^{arphi}_{\sqrt{2}}$ and $\mathcal{C}^{arphi}_{-\sqrt{2}}$
- ullet Φ verifies the conditions stated in Theorem 2
- Contradiction with Theorem 1



- [ACC02] E. Artal, J. Carmona and J.I. Cogolludo, Braid monodromy and topology of plane curves, accepted in Duke Math. J., 2002.
- [ACC02a] E. Artal, J. Carmona and J.I. Cogolludo, Effective invariants of braid monodromy, Preprint, 2002.

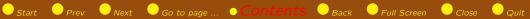


[ACC02b] E. Artal, J. Carmona, and J. I. Cogolludo, On sextic curves with big Milnor number, Trends in Singularities (A. Libgober and M. Tibār, eds.), Trends in Mathematics, Birkhäuser Verlag Basel/Switzerland, 2002, pp. 1–29.



[ARTIN47] _____, Theory of braids, Ann. of Math. (2) **48** (1947), 101–126.

[BPV84] W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Erg. der Math. und ihrer Grenz., A Series of Modern Surveys in Math., 3, vol. 4, Springer-Verlag, Berlin, 1984.

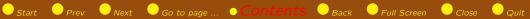


[CAR02] J. Carmona, Ph.D. thesis.

Page 45

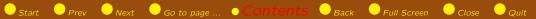
Start Prev Next Go to page ... Contents Back Full Screen Close Quit

[CHI37] O. Chisini, Una suggestiva rappresentazione reale per le curve algebriche piane, Ist. Lombardo, Rend., II. Ser. **66** (1933), 1141-1155.



[DEG90] A. I. Degtyarëv, Isotopic classification of complex plane projective curves of degree 5, Leningrad Math. J. 1 (1990), no. 4, 881-904.

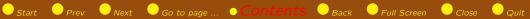
[GLS98]	Gert-Martin Greuel, Christoph Lossen and Eugenii Shustin, <i>New asymptotics in the geometry of equisingular families of curves</i> , Internat. Math. Res. Notices (1997), no. 13, 595–611. MR 98g:14039
[GLS98a]	, Geometry of families of nodal curves on the blown-up projective plane, Trans. Amer. Math. Soc. 350 (1998), no. 1, 251–274. MR 98j:14034
[GLS99]	, Plane curves of minimal degree with prescribed singularities, Invent. Math. 133 (1998), no. 3, 539–580. MR 99g:14035
[GLS02]	, The variety of plane curves with ordinary singularities is not irreducible, Internat. Math. Res. Notices (2001), no. 11, 543–550. MR 2002e:14042
[GL99]	Gert-Martin Greuel and Eugenii Shustin, Geometry of equisingular
	families of curves, Singularity theory (Liverpool, 1996), Cambridge
	Univ. Press, Cambridge, 1999, pp. xvi, 79–108. MR 2000e:14036



[HAR87] J. Harris, On the Severi problem, Invent. Math. 84 (1986), no. 3, 445-461. MR 87f:14012

[VK33] E.R. van Kampen, On the fundamental group of an algebraic curve, Amer. J. Math. **55** (1933), 255–260.

[KT00] Vik. S. Kulikov and M. Teicher, *Braid mon*odromy factorizations and diffeomorphism types, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), no. 2, 89–120.



[LIB86] A. Libgober, On the homotopy type of the complement to plane algebraic curves, J. Reine Angew. Math. **367** (1986), 103–114.

[MOI81] B. G. Moishezon, Stable branch curves and braid monodromies, L.N.M. 862, Algebraic geometry (Chicago, Ill., 1980), Springer, Berlin, 1981, pp. 107-192. [MoTeI] B. Moishezon and M. Teicher, Braid group technique in complex geometry. I. Line arrangements in cp^2 , Braids (Santa Cruz, CA, 1986), Amer. Math. Soc., Providence, RI, 1988, pp. 425-555. MR 90f:32014 [MoTeII] oxdot , Braid group technique in complex geometry. II. From arrangements of lines and conics to cuspidal curves, Algebraic geometry (Chicago, IL, 1989), Springer, Berlin, 1991, pp. 131-180. MR 93j:32045 [MoTeIII] _____, Braid group techniques in complex geometry. III. Projective degeneration of V_3 , Classification of algebraic varieties (L'Aquila, 1992), Amer. Math. Soc., Providence, RI, 1994, pp. 313-332. MR 95k:14050 [MoTeIV] _____, Braid group techniques in complex geometry. IV. Braid monodromy of the branch curve S_3 of $V_3
ightarrow {f Cp}^2$ and application to $\pi_1(\mathbb{C}p^2 - S_3, *)$, Classification of algebraic varieties (L'Aquila, 1992), Amer. Math. Soc., Providence, RI, 1994, pp. 333-358. MR 95k:14051

[MoTeV] ____, Braid group technique in complex geometry. V. The fundamental group of a complement of a branch curve of a Veronese

MR 97j:14041

generic projection, Comm. Anal. Geom. 4 (1996), no. 1-2, 1-120.

[NMB86] M. Namba, Geometry of projective algebraic curves, Marcel Dekker Inc., New York, 1984. MR 86d:14021

[SEV21] F. Severi, Vorlesungen uber algebraische geometrie, Teubner, Leipzig, 1921.

[SHU97] Eugenii Shustin, Geometry of equisingular families of plane algebraic curves, J. Algebraic Geom. **5** (1996), no. 2, 209–234. MR 97q:14025

[SHU97a] _____, Smoothness of equisingular families of plane algebraic curves, Internat. Math. Res. Notices (1997), no. 2, 67–82. MR 97i:14031

[YA96] J.-G. Yang, Sextic curves with simple singularities, Tohoku Math. J. (2) 48 (1996), no. 2, 203–227.

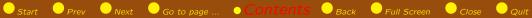
[YOS79] H. Yoshihara, On plane rational curves, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979), no. 4, 152–155.

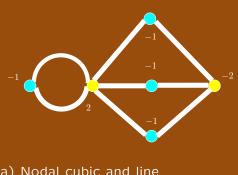
- [ZAR29] O. Zariski, On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math. **51** (1929), 305–328.
- [ZAR31] _____, On the irregularity of cyclic multiple planes, Ann. Math. 32 (1931), 445-489.
- [ZAR37] _____, The topological discriminant group of a riemann surface of genus p, Amer. J. Math. **59** (1937), 335–358.

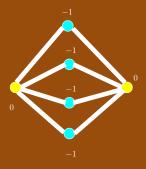
Figure 3: $\Sigma(4\mathbb{A}_1;4)$

Define $\Sigma(\Gamma)$ and $\mathcal{M}(\Gamma)$ where Γ is:

- A weighted bi-coloured graph, which is dual to $\sigma^{-1}(\mathcal{C})$, $\sigma:Y \to \mathbb{P}^2$, minimal embedded resolution of $\operatorname{Sing}(\mathcal{C})$.
- Weight ≡ self-intersection number
- Vertices $\alpha \equiv$ exceptional divisor of σ
- lacksquare Vertices $eta \equiv$ strict transform of ${\cal C}$







(a) Nodal cubic and line

(b) Two conics

Figure 4: Graphs

If
$$d \leq 5$$
 and $\Sigma(\Gamma) \neq \emptyset$, $\Sigma(\Gamma)$ is irreducible

Page 63

Start Prev Next Go to page ... • Contents Back Full Screen Close Quit

Definition of meridian

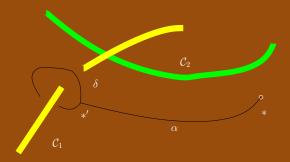


Figure 5: Meridian

 $lue{X}$ surface, $\mathcal{C} \subset X$ curve, $\mathcal{C}_1 \subset \mathcal{C}$ irreducible component, $st \in X \setminus \mathcal{C}$, $G \coloneqq \pi_1(X \setminus \mathcal{C}; st)$

Definition of meridian

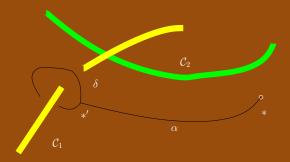


Figure 5: Meridian

- lacksquare X surface, $\mathcal{C}\subset X$ curve, $\mathcal{C}_1\subset \mathcal{C}$ irreducible component, $\overline{* \in X \setminus \mathcal{C}}, \ G := \overline{\pi_1(X \setminus \mathcal{C}; *)}$
- lacksquare Δ small analytic disk \pitchfork \mathcal{C}_1 , $st' \in \partial \Delta$, lpha path from st to st', δ loop en *' running once and counterclockwise $\partial \Delta$

Definition of meridian

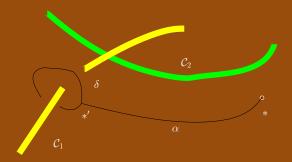
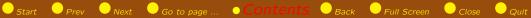


Figure 5: Meridian

- $lue{}$ X surface, $\mathcal{C}\subset X$ curve, $\mathcal{C}_1\subset \mathcal{C}$ irreducible component, $* \in X \setminus \mathcal{C}, \ G := \pi_1(X \setminus \mathcal{C}; *)$
- lacksquare Δ small analytic disk \pitchfork \mathcal{C}_1 , $st' \in \partial \Delta$, lpha path from st to st', $\overline{\delta}$ loop en st' running once and counterclockwise $\partial \Delta$
- $lpha\cdot \delta\cdot lpha^{-1}$ is a *meridian* of \mathcal{C}_1 in G. The set of meridians of \mathcal{C}_1 is a conjugation class. Go back



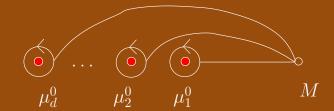


Figure 6: Geometric basis in the fiber

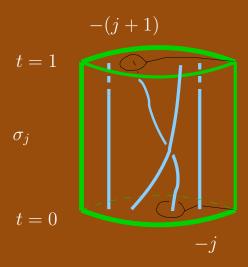


Figure 7: Action of σ_j

Start Prev Next Oo to page ... OCONTENTS Back Full Screen Close Quit

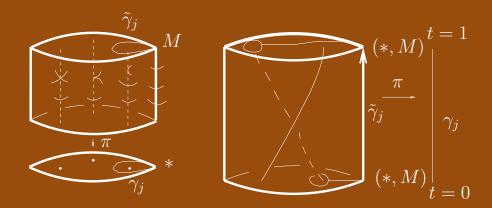


Figure 8: Adapted polydisks and conjugation