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1. Startup problem

. T1, . . . , Tr topological types of singularities of
plane curves
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1. Startup problem

. T1, . . . , Tr topological types of singularities of
plane curves

. Σ := Σ(k1T1, . . . , krTr; d) space of plane projec-
tive curves of degree d with ki singular points of
topological type Ti

. M := M (k1T1, . . . , krTr; d) :=

Σ(k1T1, . . . , krTr; d)/P GL(3; C)

. Σirr: irreducible curves
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Adjacency:Σ ⊂ Σ′?
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Adjacency:Σ ⊂ Σ′?

Σ′ := Σ(k′
1
T ′

1
, . . . , k′rT ′

r; d)

Local irreducibility of Σ around Σ′
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Σ̃ ⊂ Σ connected component C1, C2 ∈ Σ̃ ⇒ ∃ ori-
ented isotopy ht such that h0 = 1P2, h1(C1) = C2.



Page 5 •Start •Prev •Next •Go to page ... •Contents •Back •Full Screen •Close •Quit

Σ̃ ⊂ Σ connected component C1, C2 ∈ Σ̃ ⇒ ∃ ori-
ented isotopy ht such that h0 = 1P2, h1(C1) = C2.

What about the converse?



Page 5 •Start •Prev •Next •Go to page ... •Contents •Back •Full Screen •Close •Quit

Σ̃ ⊂ Σ connected component C1, C2 ∈ Σ̃ ⇒ ∃ ori-
ented isotopy ht such that h0 = 1P2, h1(C1) = C2.

What about the converse?

If there exists an oriented isotopy (homeomorphism)

Φ : P2 → P2

such that Φ(C1) = C2, do they belong to the same
connected component of Σ?
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2. Previous results

. Works of Severi [SEV21],Zariski [ZAR29], Harris
[HAR87], Greuel [GLS98, GLS98a, GL99, GLS99,
GLS02], Shustin [SHU97, SHU97a], Lossen about
irreducibility, smoothness, existence,. . .
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2. Previous results

. Works of Severi [SEV21],Zariski [ZAR29], Harris
[HAR87], Greuel [GLS98, GLS98a, GL99, GLS99,
GLS02], Shustin [SHU97, SHU97a], Lossen about
irreducibility, smoothness, existence,. . .

. Existence and connectedness have been solved for
d ≤ 5 by Namba [NMB86] and Degtyarev [DEG90],
see here.
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. Σ(6A2; 6) = Σirr(6A2; 6) is reducible and not connected
[ZAR29], [ZAR31], [ZAR37]
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. Σ(6A2; 6) = Σirr(6A2; 6) is reducible and not connected
[ZAR29], [ZAR31], [ZAR37]

• Σtor(6A2; 6): cusps on a conic

• Σ′(6A2; 6), Σ′′(6A2; 6),. . . other ones (at least one)

. Study the case d = 6, Ti = Ak, Dl, Er
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3. Sextics with simple points

I C ∈ Σ, π : Ŷ → P2 double covering ramified
along C, τ : Y → Ŷ minimal resolution, Y K3

surface (see Barth-Peters-Van de Ven [BPV84])
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along C, τ : Y → Ŷ minimal resolution, Y K3

surface (see Barth-Peters-Van de Ven [BPV84])

I µ(C) sum of Milnor numbers of Sing(C), Y K3 ⇒
µ(C) ≤ 19



Page 8 •Start •Prev •Next •Go to page ... •Contents •Back •Full Screen •Close •Quit

3. Sextics with simple points
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3. Sextics with simple points

I C ∈ Σ, π : Ŷ → P2 double covering ramified
along C, τ : Y → Ŷ minimal resolution, Y K3

surface (see Barth-Peters-Van de Ven [BPV84])

I µ(C) sum of Milnor numbers of Sing(C), Y K3 ⇒
µ(C) ≤ 19

I Characterization of Σ 6= ∅ by Urabe, Yang [YA96]
using Nikulin’s results (intersection form lattice of
a K3 surface)

J µ(C) = 19 complete list + µ(C) = 18 supplementary list

J Σ 6= ∅ if and only if the graph of singular points is a
subgraph of a graph in one on the lists

J Yang also studies Σ(Γ): global irreducible components
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4. Open problems about sextics with simple points

I If Σ(Γ) 6= ∅, how many connected components?
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4. Open problems about sextics with simple points

I If Σ(Γ) 6= ∅, how many connected components?

I Understand adjacencies

Σtor(6A2; 6)

[ZAR37]

Σ′(6A2; 6)

Σ(9A2; 6)
�

�
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4. Open problems about sextics with simple points

I If Σ(Γ) 6= ∅, how many connected components?

I Understand adjacencies

Σtor(6A2; 6)

[ZAR37]

Σ′(6A2; 6)

Σ(9A2; 6)
�

�

Σ(6A3; 6)Σ′′(6A2; 6) �
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4. Open problems about sextics with simple points

I If Σ(Γ) 6= ∅, how many connected components?

I Understand adjacencies

Σtor(6A2; 6)

[ZAR37]

Σ′(6A2; 6)

Σ(9A2; 6)
�

�

Σ(6A3; 6)Σ′′(6A2; 6) �

=?
Σloc

1 (3A3, 3A2; 6)

6
����)

?PPPPi

Σloc
2 (3A3, 3A2; 6) Σ

1(
3A

3,
3A

2;
6)

Σ
2(

3A
3,

3A
2;

6)

=?

Skip
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Consider Σ(A15, A3; 6) \ Σirr(A15, A3; 6)
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Consider Σ(A15, A3; 6) \ Σirr(A15, A3; 6)

Σ1(A15, A3; 6)

Σ2(A15, A3; 6)

Σ3(A15, A3; 6)

I Σ1: tangent line at A15 pass through A3

I Σ2: generic

I Σ3: 4-fold tangent conic to A15 is tangent at A3
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Consider Σ(A15, A3; 6) \ Σirr(A15, A3; 6)

Σ1(A15, A3; 6)

Σ2(A15, A3; 6)

Σ3(A15, A3; 6)

Σ1(A15, A3, A1; 6)�

Σ2(A15, A3, A1; 6)
�

I Σ1: tangent line at A15 pass through A3

I Σ2: generic

I Σ3: 4-fold tangent conic to A15 is tangent at A3
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Consider Σ(A15, A3; 6) \ Σirr(A15, A3; 6)

Σ1(A15, A3; 6)

Σ2(A15, A3; 6)

Σ3(A15, A3; 6)

Σ1(A15, A3, A1; 6)�

Σ2(A15, A3, A1; 6)
�

PPPPPPPPi

Σ(A15, D4; 6)
�

I Σ1: tangent line at A15 pass through A3

I Σ2: generic

I Σ3: 4-fold tangent conic to A15 is tangent at A3
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Σtor,irr(A17, A1; 6)

Σirr
1

(A17, A1; 6)
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Σtor,irr(A17, A1; 6)

Σirr
1

(A17, A1; 6)

Σ(A17, A2; 6)�
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Σtor,irr(A17, A1; 6)

Σirr
1

(A17, A1; 6)

Σ(A17, A2; 6)�

Σi(A18, A1; 6) i = 1, 2, 3�



Page 12 •Start •Prev •Next •Go to page ... •Contents •Back •Full Screen •Close •Quit

Σtor,irr(A17, A1; 6)

Σirr
1

(A17, A1; 6)

Σ(A17, A2; 6)�

Σi(A18, A1; 6) i = 1, 2, 3�

Σj(A19; 6)
�

j = 1, 2
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Σtor,irr(A17, A1; 6)

Σirr
1

(A17, A1; 6)

Σ(A17, A2; 6)�

Σi(A18, A1; 6) i = 1, 2, 3�

Σj(A19; 6)
�

j = 1, 2

[ACC02b]
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Σtor,irr(A17, A1; 6)

Σirr
1

(A17, A1; 6)

Σ(A17, A2; 6)�

Σi(A18, A1; 6) i = 1, 2, 3�

Σj(A19; 6)
�

j = 1, 2

[ACC02b]

I Σi(A18, A1; 6): ∃ conjugate representatives with co-
efficents in Q(19s3 + 50s2 + 36s + 8)

I Σj(A19; 6): ∃ conjugate representatives in Q(
√

5)

(see [YOS79] for a more complicated extension)
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• In Yang’s list for µ(C) = 19, a lot of such examples
appear
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• In Yang’s list for µ(C) = 19, a lot of such examples
appear

• Many topological invariants come from algebraic
properties
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• In Yang’s list for µ(C) = 19, a lot of such examples
appear

• Many topological invariants come from algebraic
properties

• Look for other invariants
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5. Braid monodromy for affine curves

Caff := {f (x, y) = 0} ⊂ C2 horizontal of degree d:
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5. Braid monodromy for affine curves

Caff := {f (x, y) = 0} ⊂ C2 horizontal of degree d:

f (x, y) = y
d

+ f1(x)y
d−1

+ · · · + fd−1(x)y + fd(x),

fj(x) ∈ C[x], j = 1, . . . , d.
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5. Braid monodromy for affine curves

Caff := {f (x, y) = 0} ⊂ C2 horizontal of degree d:

f (x, y) = y
d

+ f1(x)y
d−1

+ · · · + fd−1(x)y + fd(x),

fj(x) ∈ C[x], j = 1, . . . , d.

I D(x) := Discy(f (x, y))

I D := {x ∈ C | D(x) = 0} = {x1, . . . , xr}
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5. Braid monodromy for affine curves

Caff := {f (x, y) = 0} ⊂ C2 horizontal of degree d:

f (x, y) = y
d

+ f1(x)y
d−1

+ · · · + fd−1(x)y + fd(x),

fj(x) ∈ C[x], j = 1, . . . , d.

I D(x) := Discy(f (x, y))

I D := {x ∈ C | D(x) = 0} = {x1, . . . , xr}
I V := {p(t) ∈ C[t] | p monic of degree d}, D

discriminant hypersurface

I V \D ≡ {A ⊂ C | #A = d}
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f̃ : C \ D → V \D
x 7→ f (x, t)

∗ := R s. t. D ⊂ {z ∈ C | |z| < R}, y∗ := f̃ (∗)
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f̃ : C \ D → V \D
x 7→ f (x, t)

∗ := R s. t. D ⊂ {z ∈ C | |z| < R}, y∗ := f̃ (∗)

Braid monodromy of Caff:

∇ := f̃∗ : π1(C \ D ; ∗) → π1(V \D; y∗)

:=

By∗
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Geometric bases of the free group π1(C \ D ; ∗)

PSfrag replacements

∗γ1γ2γr

. . .

Figure 1: Geometric basis
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Geometric bases of the free group π1(C \ D ; ∗)

PSfrag replacements

∗γ1γ2γr

. . .

Figure 1: Geometric basis

♠ Each loop is meridian of a point of D

♠ cγ := γr · . . . · γ1 is the boundary of a big geo-

metric disk; c−1
γ is meridian of ∞

♠ (∇(γ1), . . . ,∇(γr)) ∈ (By∗)
r
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y0 := {−1, . . . ,−d}

By0 ≡ Bd := 〈σ1, . . . , σd−1 :

[σi, σj] = 1, |i− j| ≥ 2,

σiσi+1σi = σi+1σiσi+1, i = 1, . . . , d− 2〉

PSfrag replacements

j − 1jj + 1j + 2

t = 0

t = 1

t

1

i

Figure 2: σj
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• τ ∈ B(y∗, y0) braid starting at y∗ and ending at
y0

• Φτ : By∗ → Bd, Φτ (σ) := τ · σ · τ−1
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• τ ∈ B(y∗, y0) braid starting at y∗ and ending at
y0

• Φτ : By∗ → Bd, Φτ (σ) := τ · σ · τ−1

• ∇, (γ1, . . . , γr), τ , ∇τ := Φτ◦∇ determine

(∇τ (γ1), . . . ,∇τ (γr)) ∈ (Bd)
r
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• τ ∈ B(y∗, y0) braid starting at y∗ and ending at
y0

• Φτ : By∗ → Bd, Φτ (σ) := τ · σ · τ−1

• ∇, (γ1, . . . , γr), τ , ∇τ := Φτ◦∇ determine

(∇τ (γ1), . . . ,∇τ (γr)) ∈ (Bd)
r

Braid monodromy + · · ·

⇓

An element of (Bd)r
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• Choice of geometric basis
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• Choice of geometric basis

• G := {Geometric bases of π1(C \ D ; ∗)}
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• Choice of geometric basis

• G := {Geometric bases of π1(C \ D ; ∗)}
• Right action of Br on G :

(γ1, . . . , γr)
σi :=

(γ1, . . . , γi−1, γi+1, γi+1γiγ
−1

i+1
, γi+2, . . . , γr)
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(γ1, . . . , γr)
σi :=

(γ1, . . . , γi−1, γi+1, γi+1γiγ
−1

i+1
, γi+2, . . . , γr)

• It is a free and transitive action, [ARTIN47]
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σi :=

(γ1, . . . , γi−1, γi+1, γi+1γiγ
−1

i+1
, γi+2, . . . , γr)

• It is a free and transitive action, [ARTIN47]

• Choice of τ ∈ B(y∗, y0) and base point ∗
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• Choice of geometric basis

• G := {Geometric bases of π1(C \ D ; ∗)}
• Right action of Br on G :

(γ1, . . . , γr)
σi :=

(γ1, . . . , γi−1, γi+1, γi+1γiγ
−1

i+1
, γi+2, . . . , γr)

• It is a free and transitive action, [ARTIN47]

• Choice of τ ∈ B(y∗, y0) and base point ∗
• Right action of Bd on Br

d by simultaneous con-
jugation.
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• Choice of geometric basis

• G := {Geometric bases of π1(C \ D ; ∗)}
• Right action of Br on G :

(γ1, . . . , γr)
σi :=

(γ1, . . . , γi−1, γi+1, γi+1γiγ
−1

i+1
, γi+2, . . . , γr)

• It is a free and transitive action, [ARTIN47]

• Choice of τ ∈ B(y∗, y0) and base point ∗
• Right action of Bd on Br

d by simultaneous con-
jugation.

• Pseudogeometric basis of π1(C \D ; ∗): c−1
γ is a

meridian of the line at infinity
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Right action of Br ×Bd on (Bd)r:
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Right action of Br ×Bd on (Bd)r:

• Br acts by Hurwitz moves.
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• Br acts by Hurwitz moves.

• Both actions commute

Braid monodromy

≡
An element of Br

d/(Br ×Bd)
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Right action of Br ×Bd on (Bd)r:

• Br acts by Hurwitz moves.

• Both actions commute

Braid monodromy

≡
An element of Br

d/(Br ×Bd)

Braid monodromy does not depend on Jung automor-
phisms as:

(x, y) 7→ (ax + b, cy + p(x))

a, c ∈ C∗, b ∈ C, p(x) ∈ C[x]
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6. An example

#M (E6, A7, A3, A2, A1; 6) = 2
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6. An example

#M (E6, A7, A3, A2, A1; 6) = 2

Representantatives Cβ, β2 = 2, with equations

fβ(x, y, z)gβ(x, y, z) = 0

having coefficients in Q(
√

2)
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6. An example

#M (E6, A7, A3, A2, A1; 6) = 2

Representantatives Cβ, β2 = 2, with equations

fβ(x, y, z)gβ(x, y, z) = 0

having coefficients in Q(
√

2)

fβ(x, y, z) :=y
2
z

3
+ (303 − 216 β) yz

2
x

2
+

+ (−636 + 450 β) yzx
3
+

+ (−234 β + 331) yx
4

+ (−18 β + 27) zx
4
+

+ (18 β − 26) x
5
,

gβ(x, y, z) :=y +

(
10449

196
−

3645

98
β

)
z+

+

(
−

432

7
+

297

7
β

)
x.

(1)
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I Take affine curves for z = 1
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I Take affine curves for z = 1

I Line at infinity: tangent line at E6
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I Take affine curves for z = 1

I Line at infinity: tangent line at E6

I E6, point at infinity of vertical lines
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I Take affine curves for z = 1

I Line at infinity: tangent line at E6

I E6, point at infinity of vertical lines

I Corresponding affine curves of horizontal degree 3
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I Take affine curves for z = 1

I Line at infinity: tangent line at E6

I E6, point at infinity of vertical lines

I Corresponding affine curves of horizontal degree 3

I Corresponding D are subsets of R
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Curve C√
2
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Curve C√
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γ
√
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γ
√
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2
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γ
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3
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γ
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4
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γ
√

2

5
7→
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Curve C−
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7. Braid monodromy of projective curves

N (C, L, P ) triple: C ⊂ P2 projective curve, L 6⊂ C
line , P ∈ L
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7. Braid monodromy of projective curves

N (C, L, P ) triple: C ⊂ P2 projective curve, L 6⊂ C
line , P ∈ L

N Homogeneous coordinates [x : y : z]: L = {z =

0}, P = [0 : 1 : 0]

N C2 := P2 \ L, affine coordinates (x, y), Caff :=

C ∩ C2
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0}, P = [0 : 1 : 0]

N C2 := P2 \ L, affine coordinates (x, y), Caff :=

C ∩ C2

N (C, L, P ) is horizontal of degree d if Caff is

N Braid monodromy of (C, L, P ): the one of Caff
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7. Braid monodromy of projective curves

N (C, L, P ) triple: C ⊂ P2 projective curve, L 6⊂ C
line , P ∈ L

N Homogeneous coordinates [x : y : z]: L = {z =

0}, P = [0 : 1 : 0]

N C2 := P2 \ L, affine coordinates (x, y), Caff :=

C ∩ C2

N (C, L, P ) is horizontal of degree d if Caff is

N Braid monodromy of (C, L, P ): the one of Caff

N Classic case: generic choice of L and P

N Generalization because of computing reasons: use
real curves, or programs (Carmona, Bessis)
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In the example,

• P singular point E6

• L tangent line at P
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In the example,

• P singular point E6

• L tangent line at P

Theorem 1 ([ACC02a]). Braid monodromies of the
triples (C√2, L, P ) and (C−√2, L, P ) are not equiv-
alent
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In the example,

• P singular point E6

• L tangent line at P

Theorem 1 ([ACC02a]). Braid monodromies of the
triples (C√2, L, P ) and (C−√2, L, P ) are not equiv-
alent

Look for topological consequences
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� Zariski-Van Kampen theorem [ZAR29] [VK33]: fun-
damental group of the complement of the curve
(braid monodromy appears implicitely)
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� Zariski-Van Kampen theorem [ZAR29] [VK33]: fun-
damental group of the complement of the curve
(braid monodromy appears implicitely)

� Explicited by O. Chisini (1937) [CHI37]: fascio
charatteristico
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� Zariski-Van Kampen theorem [ZAR29] [VK33]: fun-
damental group of the complement of the curve
(braid monodromy appears implicitely)

� Explicited by O. Chisini (1937) [CHI37]: fascio
charatteristico

� Developed by B. Moishezon (1981) [MOI81] and
in a series of papers with M. Teicher, [MoTeI] a
[MoTeV]
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� A. Libgober (1986) [LIB86]: homotopy type of the
complement of the curve
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� A. Libgober (1986) [LIB86]: homotopy type of the
complement of the curve

� V. Kulikov, M. Teicher (2000) [KT00]: embedding
of the curve in the projective plane (generic case
and the curve only has ordinary nodes y cusps)
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� A. Libgober (1986) [LIB86]: homotopy type of the
complement of the curve

� V. Kulikov, M. Teicher (2000) [KT00]: embedding
of the curve in the projective plane (generic case
and the curve only has ordinary nodes y cusps)

� J. Carmona (2002) [CAR02]: Same result without
the restrictions on the types of singularities



Page 29 •Start •Prev •Next •Go to page ... •Contents •Back •Full Screen •Close •Quit

Cϕ
:= C ∪

r⋃
j=1

Li, Li := {x = xiz}, fibered curve
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Cϕ
:= C ∪

r⋃
j=1

Li, Li := {x = xiz}, fibered curve

Theorem 2 ([ACC02]).

• C1, C2 ⊂ P2 curves, L 6⊂ C1 ∪ C2
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• C1, C2 ⊂ P2 curves, L 6⊂ C1 ∪ C2

• P ∈ L such that (C1, L, P ) and (C2, L, P ) are
horizontal triples of the same degree
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Theorem 2 ([ACC02]).

• C1, C2 ⊂ P2 curves, L 6⊂ C1 ∪ C2

• P ∈ L such that (C1, L, P ) and (C2, L, P ) are
horizontal triples of the same degree

F : P2 → P2 orientation-preserving homeomorphism
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Cϕ
:= C ∪

r⋃
j=1

Li, Li := {x = xiz}, fibered curve

Theorem 2 ([ACC02]).

• C1, C2 ⊂ P2 curves, L 6⊂ C1 ∪ C2

• P ∈ L such that (C1, L, P ) and (C2, L, P ) are
horizontal triples of the same degree

F : P2 → P2 orientation-preserving homeomorphism

(i) F (P ) = P , F (L) = L preserving orientations
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Cϕ
:= C ∪

r⋃
j=1

Li, Li := {x = xiz}, fibered curve

Theorem 2 ([ACC02]).

• C1, C2 ⊂ P2 curves, L 6⊂ C1 ∪ C2

• P ∈ L such that (C1, L, P ) and (C2, L, P ) are
horizontal triples of the same degree

F : P2 → P2 orientation-preserving homeomorphism

(i) F (P ) = P , F (L) = L preserving orientations

(ii) F (Cϕ
1

) = Cϕ
2

preserving orientations.
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Cϕ
:= C ∪

r⋃
j=1

Li, Li := {x = xiz}, fibered curve

Theorem 2 ([ACC02]).

• C1, C2 ⊂ P2 curves, L 6⊂ C1 ∪ C2

• P ∈ L such that (C1, L, P ) and (C2, L, P ) are
horizontal triples of the same degree

F : P2 → P2 orientation-preserving homeomorphism

(i) F (P ) = P , F (L) = L preserving orientations

(ii) F (Cϕ
1

) = Cϕ
2

preserving orientations.

Then, braid monodromies of the triples are equal.
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Corollary 3. Cϕ√
2
∪L and Cϕ

−
√

2
∪L are non-homeomorphic

curves, conjugated in Q(
√

2)
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Sketch of the proof of Theorem 2 Skip
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Sketch of the proof of Theorem 2 Skip

π : C2\Cϕ → C\D, π(x, y) := x locally trivial fiber
bundle with fiber C \ {d points}
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Sketch of the proof of Theorem 2 Skip

π : C2\Cϕ → C\D, π(x, y) := x locally trivial fiber
bundle with fiber C \ {d points}

Long exact sequence of homotopy

1 → π1(C \ y
∗
; M ) → π1(C

2 \ Cϕ
; (∗, M ))

π∗→π1(CC; ∗) → 1

(2)
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Sketch of the proof of Theorem 2 Skip

π : C2\Cϕ → C\D, π(x, y) := x locally trivial fiber
bundle with fiber C \ {d points}

Long exact sequence of homotopy

1 → π1(C \ y
∗
; M ) → π1(C

2 \ Cϕ
; (∗, M ))

π∗→π1(CC; ∗) → 1

(2)

Look for a presentation
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� M � 0 such that f (x, y) = 0 and |x| ≤ R
⇒ |y| < M
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� M � 0 such that f (x, y) = 0 and |x| ≤ R
⇒ |y| < M

� Given τ ∈ B(y∗, y0) we have an automorphism
Ψτ : π1(C \ y∗; M ) → π1(C \ y0; M ); the standard
basis µ0

1
, . . . , µ0

d of π1(C \ y0; M ), see Figure
6, determines a geometric basis µ1, . . . , µd of
π1(C \ y∗; M ), Ψτ (µj) = µ0

j.
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� M � 0 such that f (x, y) = 0 and |x| ≤ R
⇒ |y| < M

� Given τ ∈ B(y∗, y0) we have an automorphism
Ψτ : π1(C \ y∗; M ) → π1(C \ y0; M ); the standard
basis µ0

1
, . . . , µ0

d of π1(C \ y0; M ), see Figure
6, determines a geometric basis µ1, . . . , µd of
π1(C \ y∗; M ), Ψτ (µj) = µ0

j.

� Natural right actions of Bd on π1(C \ y0; M ) and
of By∗ on π1(C \ y∗; M ), see Figure 7

µ
σi
i = µi+1 µ

σi
i+1

= µi+1∗µi a∗b := aba
−1
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� Actions of σ ∈ By∗ and Φτ (σ) ∈ Bd

π1(C \ y∗; M )
σ−→ π1(C \ y∗; M )

Ψτ ↓ ↓ Ψτ

π1(C \ y0; M )
Φτ (σ)−→ π1(C \ y0; M )
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� Actions of σ ∈ By∗ and Φτ (σ) ∈ Bd

π1(C \ y∗; M )
σ−→ π1(C \ y∗; M )

Ψτ ↓ ↓ Ψτ

π1(C \ y0; M )
Φτ (σ)−→ π1(C \ y0; M )

� Recall (2). Lift a pseudo-geometric basis γ1, . . . , γr

of π1(C \ D ; ∗) to γ̃1, . . . , γ̃r in C × {M}, see
Figure 8

� µ
γ̃j

i =?
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π1(C
2\Cϕ

; (∗, M )) =
〈

µ1, . . . , µd, γ̃1, . . . , γ̃r :

µ
γ̃j

i = µ
∇(γj)

i , i = 1, . . . , d, j = 1, . . . , r
〉
∼=〈

µ
0

1
, . . . , µ

0

d, γ̃1, . . . , γ̃r :

(µ
0

i)
γ̃j = (µ

0

i)
∇τ (γj)

, i = 1, . . . , d, j = 1, . . . , r
〉
(3)

� ∇τ (γj) ∈ Bd is determined by the presentation
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; (∗, M )) =
〈

µ1, . . . , µd, γ̃1, . . . , γ̃r :

µ
γ̃j

i = µ
∇(γj)

i , i = 1, . . . , d, j = 1, . . . , r
〉
∼=〈

µ
0

1
, . . . , µ

0

d, γ̃1, . . . , γ̃r :

(µ
0

i)
γ̃j = (µ

0

i)
∇τ (γj)

, i = 1, . . . , d, j = 1, . . . , r
〉
(3)

� ∇τ (γj) ∈ Bd is determined by the presentation

� A priori these data are not topological invariants

� The goal is to prove that the oriented topology of
(Cϕ, L, P ) does determine these data.
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Step 1. Meridians of C are determined by the oriented
topology of (Cϕ, L, P )
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Step 1. Meridians of C are determined by the oriented
topology of (Cϕ, L, P )

Step 2. K := π1(C\y∗; M ) is the subgroup generated
by the meridians of C. In particular, the short exact
sequence (2) does not depend on π∗
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Step 1. Meridians of C are determined by the oriented
topology of (Cϕ, L, P )

Step 2. K := π1(C\y∗; M ) is the subgroup generated
by the meridians of C. In particular, the short exact
sequence (2) does not depend on π∗

Step 3. Let us choose ∗ near one xi; the element
c := µd · . . . · µ1 is well-defined by the oriented
topology of (Cϕ, L, P )
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Step 4. An ordered family µ̂1, . . . , µ̂d of meridians
of C such that c = µ̂d · . . . · µ̂1 is a geometric basis
of K
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Step 4. An ordered family µ̂1, . . . , µ̂d of meridians
of C such that c = µ̂d · . . . · µ̂1 is a geometric basis
of K

Step 5. The element γ̃j is the unique lift of γj ∈ H
such that:
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Step 4. An ordered family µ̂1, . . . , µ̂d of meridians
of C such that c = µ̂d · . . . · µ̂1 is a geometric basis
of K

Step 5. The element γ̃j is the unique lift of γj ∈ H
such that:

J γ̃j is a meridian of the line x = xjz
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Step 4. An ordered family µ̂1, . . . , µ̂d of meridians
of C such that c = µ̂d · . . . · µ̂1 is a geometric basis
of K

Step 5. The element γ̃j is the unique lift of γj ∈ H
such that:

J γ̃j is a meridian of the line x = xjz

J Conjugation by γ̃j induces on K a braid-like auto-
morphism with respect to the family of geometric
bases of K
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Step 4. An ordered family µ̂1, . . . , µ̂d of meridians
of C such that c = µ̂d · . . . · µ̂1 is a geometric basis
of K

Step 5. The element γ̃j is the unique lift of γj ∈ H
such that:

J γ̃j is a meridian of the line x = xjz

J Conjugation by γ̃j induces on K a braid-like auto-
morphism with respect to the family of geometric
bases of K

Step 6. The product (γ̃r · . . . · γ̃1)
−1 is a meridian

of the line L in π1(P2 \ (L1∪ · · · ∪Lr ∪L); (∗, M ))
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Sketch of the proof of Corollary 3
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Sketch of the proof of Corollary 3

N Let us suppose there exists a homeomorphism Φ :

P2 → P2 such that Φ(Cϕ√
2
∪ L) = Cϕ

−
√

2
∪ L
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Sketch of the proof of Corollary 3

N Let us suppose there exists a homeomorphism Φ :

P2 → P2 such that Φ(Cϕ√
2
∪ L) = Cϕ

−
√

2
∪ L

N It is easily seen that Φ(P ) = P , Φ(L) = L and
Φ(Cϕ√

2
) = Cϕ

−
√

2
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N Let us suppose there exists a homeomorphism Φ :

P2 → P2 such that Φ(Cϕ√
2
∪ L) = Cϕ

−
√

2
∪ L

N It is easily seen that Φ(P ) = P , Φ(L) = L and
Φ(Cϕ√

2
) = Cϕ

−
√

2

N By orientation properties of algebraic knots, the
homeomorphism Φ preserves the orientation of P2
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Sketch of the proof of Corollary 3

N Let us suppose there exists a homeomorphism Φ :

P2 → P2 such that Φ(Cϕ√
2
∪ L) = Cϕ

−
√

2
∪ L

N It is easily seen that Φ(P ) = P , Φ(L) = L and
Φ(Cϕ√

2
) = Cϕ

−
√

2

N By orientation properties of algebraic knots, the
homeomorphism Φ preserves the orientation of P2

N Since curves have real equations, eventually apply-
ing complex conjugation, we may suppose that Φ

preserves the orientations of the quintics in C√2

and C−√2
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• From the relationship of intersection and linking
numbers, we deduce that Φ preserves the orienta-
tions of L, Cϕ√

2
and Cϕ

−
√

2
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• From the relationship of intersection and linking
numbers, we deduce that Φ preserves the orienta-
tions of L, Cϕ√

2
and Cϕ

−
√

2

• Φ verifies the conditions stated in Theorem 2
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• From the relationship of intersection and linking
numbers, we deduce that Φ preserves the orienta-
tions of L, Cϕ√

2
and Cϕ

−
√

2

• Φ verifies the conditions stated in Theorem 2

• Contradiction with Theorem 1
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(a) Nodal cu-
bic and line

(b)
Two
conics

Figure 3: Σ(4A1; 4)

Define Σ(Γ) and M (Γ) where Γ is:

• A weighted bi-coloured graph, which is dual to
σ−1(C), σ : Y → P2, minimal embedded reso-
lution of Sing(C).

• Weight ≡ self-intersection number

• Vertices α ≡ exceptional divisor of σ

• Vertices β ≡ strict transform of C
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(a) Nodal cubic and line

PSfrag replacements

−1

−1

−1

−1

0

0

(b) Two conics

Figure 4: Graphs

If d ≤ 5 and Σ(Γ) 6= ∅, Σ(Γ) is irreducible
Go back
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Definition of meridian

PSfrag replacements

∗∗
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δ

Figure 5: Meridian

� X surface, C ⊂ X curve, C1 ⊂ C irreducible component,
∗ ∈ X \ C, G := π1(X \ C; ∗)
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Figure 5: Meridian

� X surface, C ⊂ X curve, C1 ⊂ C irreducible component,
∗ ∈ X \ C, G := π1(X \ C; ∗)

� ∆ small analytic disk t C1, ∗′ ∈ ∂∆, α path from ∗ to ∗′,
δ loop en ∗′ running once and counterclockwise ∂∆
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Definition of meridian
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∗∗
′

C1

C2

α

δ

Figure 5: Meridian

� X surface, C ⊂ X curve, C1 ⊂ C irreducible component,
∗ ∈ X \ C, G := π1(X \ C; ∗)

� ∆ small analytic disk t C1, ∗′ ∈ ∂∆, α path from ∗ to ∗′,
δ loop en ∗′ running once and counterclockwise ∂∆

� α · δ · α−1 is a meridian of C1 in G. The set of meridians

of C1 is a conjugation class. Go back
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Figure 6: Geometric basis in the fiber
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Figure 8: Adapted polydisks and conjugation
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