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> Ty, ..., T, topological types of singularities of
plane curves
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> Ty, ..., T, topological types of singularities of
plane curves

> Y =XkT,, ..., kT, d) space of plane projec-
tive curves of degree d with k; singular points of
topological type T
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Page 3 Qs.: Orev Oner @coto page ... @ @s.cc O ruscreen @cose @ Quit



> Ty, ..., T, topological types of singularities of
plane curves

> Y =XkT,, ..., kT, d) space of plane projec-
tive curves of degree d with k; singular points of
topological type T

> (% = ‘%<k1T17 « e e k'r'Tfr'; d) —
Sk, Ty, . . ., kT d)/ PGL(E3.C)

> Y irreducible curves
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Smoothness of X
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~

> C ¥ connected component C;,C, € ¥ = 3 ori-
ented isotopy h; such that hy = 1p2, h{(C;) = C,.
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> C ¥ connected component C;,C, € ¥ = 3 ori-
ented isotopy h; such that hy = 1p2, h{(C;) = C,.

What about the converse?
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> C ¥ connected component C;,C, € ¥ = 3 ori-
ented isotopy h; such that hy = 1p2, h{(C;) = C,.

What about the converse?

If there exists an oriented isotopy (homeomorphism)
¢ : P — P

such that ¢(C,) = C,, do they belong to the same
connected component of X7
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> Works of Severi | ],Zariski | ], Harris

[ ], Greuel | : ; : :

], Shustin | : ], Lossen about
irreducibility, smoothness, existence,. ..
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> Works of Severi | ],Zariski | ], Harris
[ ], Greuel | : : :

], Shustin | : ], Lossen about
irreducibility, smoothness, existence,. ..

> EXxistence and connectedness have been solved for
d < 5 by Namba | ] and Degtyarev | ],
see
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> 2(6Ay: 6) = X'"(6A,: 6) is reducible and not connected
[ i |l i ]
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> 2(6Ay: 6) = X'"(6A,: 6) is reducible and not connected
[ i |l i ]

2" (6Ay; 6): cusps on a conic
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> 2(6Ay: 6) = X'"(6A,: 6) is reducible and not connected
[ i |l i ]

2" (6Ay; 6): cusps on a conic
2/ (6Ay:6), X' (6A,:6),...other ones (at least one)
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> 2(6Ay: 6) = X'"(6A,: 6) is reducible and not connected
[ i |l i ]

2" (6Ay; 6): cusps on a conic
2/ (6Ay:6), X' (6A,:6),...other ones (at least one)

> Study the case d =6, 1T, = A, Dy, E,
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C €% 7w :Y — P double covering ramified
along C, 7 : ' Y — Y minimal resolution, ¥ K3
surface (see Barth-Peters-Van de Ven | D
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C €% 7w :Y — P double covering ramified
along C, 7 : ' Y — Y minimal resolution, ¥ K3
surface (see Barth-Peters-Van de Ven | D

w(C) sum of Milnor numbers of Sing(C), ¥ K3 =
pn(C) < 19
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C €% 7w :Y — P double covering ramified
along C, 7 : ' Y — Y minimal resolution, ¥ K3

surface (see Barth-Peters-Van de Ven | )
w(C) sum of Milnor numbers of Sing(C), ¥ K3 =
pn(C) < 19

Characterization of ¥ =4 () by Urabe, Yang | ]

using Nikulin's results (intersection form lattice of
a K3 surface)
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Cex n: Y — P? double covering ramified
along C, 7 : Y — Y minimal resolution, ¥ K3

surface (see Barth-Peters-Van de Ven | 1)
w1 (C) sum of Milnor numbers of Sing(C), ¥ K3 =
pn(C) < 19

Characterization of ¥ # () by Urabe, Yang | ]

using Nikulin's results (intersection form lattice of
a K3 surface)

1(C) =19 complete list  w(C) = 18 supplementary list
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Cex n: Y — P? double covering ramified
along C, 7 : Y — Y minimal resolution, ¥ K3

surface (see Barth-Peters-Van de Ven | 1)
w1 (C) sum of Milnor numbers of Sing(C), ¥ K3 =
pn(C) < 19

Characterization of ¥ # () by Urabe, Yang | ]

using Nikulin's results (intersection form lattice of
a K3 surface)

1(C) =19 complete list  w(C) = 18 supplementary list

i = @ if and only if the graph of singular points is a
subgraph of a graph in one on the lists
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C €% 7w :Y — P double covering ramified
along C, 7 : ' Y — Y minimal resolution, ¥ K3
surface (see Barth-Peters-Van de Ven | D

w(C) sum of Milnor numbers of Sing(C), ¥ K3 =
p(C) < 19

Characterization of ¥ & () by Urabe, Yang | ]
using Nikulin's results (intersection form lattice of
a K3 surface)

w(C) = 19 complete list  w(C) = 18 supplementary list

Y # ( if and only if the graph of singular points is a
subgraph of a graph in one on the lists

Yang also studies 3(I'): global irreducible components
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If ¥(I') # (), how many connected components?
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If ¥(I') # (), how many connected components?

Understand adjacencies
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If ¥(I') # (), how many connected components?

Understand adjacencies

Ztor(GAz; 6)

] E(9A2; 6) | ]
Z/(6A2; 6)
2 $1°°(3A3, 3Ay; 6)
T
%" (6A9; 6) % (6As; 6)

Y

55 (3Ag, 345; 6)
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If ¥(I') # (), how many connected components?

Understand adjacencies

Ztor(6Az; 6)

E(9A2; 6) [ ]

Z/(6A2; 6)

S°¢(343, 3As; 6)

T

172

%" (6A9; 6) % (6As; 6)

Y

21(3A3, 3A27 6)
\
-~J
Z2(3A37 3A27 6)

55 (3Ag, 345; 6)
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COnSider Z(A15, Ag, 6) \ Zirr(A15, A37 6)

Page 1 O Qs.: Orev Oner @coto page ... @ O@s.cv Oruiscreen @cose @ Quit



COnSideI’ Z(A15, Ag, 6) \ Zirr(A15, A3, 6)

>1(Aq5, As; 6)

Yo(Ags, Ag; 6)

Y3(Ars, Ag; 6)

Y. tangent line at A; pass through A,
Y. generic

Ys: 4-fold tangent conic to A;; is tangent at A,
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COnSideI’ Z(A15, Ag, 6) \ Zirr(A15, A3, 6)

Y1(Ars, Ag; 6) |- Y1(Ags, Az, Ay; 6)

Yo(Ars, Ag; 6) | Yo(Ars, Ag, Ay; 6)

Y3(Ars, Ag; 6)

Y. tangent line at A;; pass through A,
Yi9. generic

Y5. 4-fold tangent conic to A;; is tangent at A;
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COnSideI’ Z(A15, Ag, 6) \ Zirr(A15, A3, 6)

Y1(Ags, Ag; 6)

E1<A157 Ag, Ay; 6)

Yo(Ars, Ag; 6)

Z2(A157 AS) Al; 6)

Y3(Ars, Ag; 6)

\

Z(Aw, Dy; 6)

Y. tangent line at A;; pass through A,

Yia. generic

Y5: 4-fold tangent conic to A;; is tangent at A;
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Ztor,irr(A”’ Al, 6)

Eilrr(Alh Ay; 6)
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ST (Ary, Ay 6) Y(A7, Ay; 6)

Zilrr(ANa Ay; 6)
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ST (Ary, Ay 6) Y(A7, Ay; 6)

Yi(Ag, A 6) |4 = 1,2,3

Zilrr(Alh Ay; 6)
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ST (Ary, Ay 6) Y (Aq7, Ay; 6)

Yi(Ag, A 6) |4 = 1,2,3

Zilrr(Alh Ay; 6)

Yj(A;6) | 5 =12
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Ztor'irr(An, Ay; 6) (A7, Ay; 6) | ]

Yi(Ag, A 6) |4 = 1,2,3

Zilrr(Alh Ay; 6)

Yj(A;6) | 5 =12
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Ztor'irr(Alm Ay; 6) (A7, Ay; 6) | ]

) Yi(Ag, Ay 6) 1 =1,2,3

Zilrr(Alh Ay; 6)

Yj(A;6) | 5 =12

Yi(Ag, A;6): 3 conjugate representatives with co-
efficents in Q(19s° 4 50s8” + 36s + 8)

Yi(Ag;6): o conjugate representatives in Q(+/5)
(see [ ] for a more complicated extension)
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e In Yang's list for u(C) = 19, a lot of such examples
appear
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e In Yang's list for u(C) = 19, a lot of such examples
appear

e Many topological invariants come from algebraic
properties

Page 1 3 Qs.: Opev Oner @coro page ... @ O@s.cv Oruiscreen @cose @ Quit



e In Yang's list for u(C) = 19, a lot of such examples
appear

e Many topological invariants come from algebraic
properties

e Look for other invariants
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C™ = {f(x, y) = 0} C C? horizontal of degree d:
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C™ = {f(x, y) = 0} C C? horizontal of degree d:
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C™ = {f(x, y) = 0} C C? horizontal of degree d:

D(x) = Discy(f(x, y))
9 ={xe€C| D(x)=0}=4=xy,...,x,.}
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C™ = {f(x, y) = 0} C C? horizontal of degree d:

D(x) = Discy(f(x, y))
9 ={xeC| Dx)=0})={x,...,x,.}

V = {p(t) € C[t] | p monic of degree d}, D
discriminant hypersurface

V\D={ACC|#A=d}
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f:@\.@—> VvV \ D
r = f(x, )

+=Rs. t. 2C{zecC]||z| < R}, y" = f(%
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f:@\.@—> VvV \ D
r = f(x, )

+=Rs. t. 2C{zecC]||z| < R}, y" = f(%

Braid monodromy of C®™:
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of the free group 7,(C \ Z; %)

Figure 1: Geometric basis
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of the free group 7,(C \ Z; *)

U *

Figure 1: Geometric basis

& Each loop is meridian of a point of 2

Nc, =y--... 7 isthe boundary of a big geo-

metric disk: c;1 B of co

N (V(v)s oo VIyr) € (Byx)'
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By = By = (o, y Od—1
[02703]:17 |7’_.7| 227
0i0i+104 = 041040 41, 1= 1, ) d — 2>
S —

7+2 j+1 j j—1

Figure 2: o;
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e T € B(y",y") braid starting at y* and ending at
0
Yy

ed, B+ — By b (o)=T17 -0 -7

Yy
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e T € B(y",y") braid starting at y* and ending at
0
Yy

o0 : B '

v — Bg, & (0) =T -0 -7

oV, (Y1, -+, Yr), T, V=&, 0oV determine
(Vae(v)s - - -5 Va(vr) € (Ba)'
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e T € B(y",y") braid starting at y* and ending at
0

Yy
b . : Byx — By, & (0) =7 -0 - T
oV, (Y1, -+, Yr), T, V=&, 0oV determine

<v7(71)> o o oc 7VT('—YT)) S (Bd)r

Braid monodromy + - - -

U

An element of (Byg)"
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e Choice of geometric basis
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e Choice of geometric basis

¢ .= {Geometric bases of 7(C \ Z; %)}
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e Choice of geometric basis

¢ .= {Geometric bases of 7(C \ Z; %)}
Right action of B, on ¥:

)07; —

(717 s U
—1
(Y1« + o 5 Vim1s Yir1s Vi1 ViYgrqs Yidas - « + 5 Vo)
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e Choice of geometric basis

¢ .= {Geometric bases of 7(C \ Z; %)}
Right action of B, on ¥:

(717 S 777“)07; =
—1
(Y1« + o 5 Vim1s Yir1s Vi1 ViYgrqs Yidas - « + 5 Vo)

It is a free and transitive action, | ]
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e Choice of geometric basis

¢ .= {Geometric bases of 7(C \ Z; %)}
Right action of B, on ¥:

)07; —

(717 s U
—1
(Y1« + o 5 Vim1s Yir1s Vi1 ViYgrqs Yidas - « + 5 Vo)

It is a free and transitive action, | ]

e Choice of 7 € B(y™, y") and base point *
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e Choice of geometric basis

¢ .= {Geometric bases of 7(C \ Z; %)}
Right action of B, on ¥:

(Y1, - - 777“)07; =
—1
(Y1« + o 5 Vim1s Yir1s Vi1 ViYgrqs Yidas - « + 5 Vo)
It is a free and transitive action, | ]

e Choice of 7 € B(y™, y") and base point *

Right action of B4 on B, by simultaneous con-
jugation.
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e Choice of geometric basis

¢ .= {Geometric bases of 7(C \ Z; %)}
Right action of B, on ¥:

(Y1, - - 777“)07; =
—1
(Y1« + o 5 Vim1s Yir1s Vi1 ViYgrqs Yidas - « + 5 Vo)
It is a free and transitive action, | ]

e Choice of 7 € B(y™, y") and base point *

Right action of B4 on B, by simultaneous con-
jugation.

basis of 7,(C\ Z; *): c ' isa
meridian of the line at infinity

Page 1 9 Qs.: Opev Oner @coro page ... @ @s.cc O ruscreen ®coe @ Quit



Right action of B, X B4 on (By)":
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Right action of B, X B4 on (By)":

B, acts by Hurwitz moves.
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Right action of B, X B4 on (By)":
B, acts by Hurwitz moves.

Both actions commute
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Right action of B, X B4 on (By)":
B, acts by Hurwitz moves.

Both actions commute

Braid monodromy

An element of B /(B, X By)
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Right action of B, X B4 on (By)":
B, acts by Hurwitz moves.

Both actions commute

Braid monodromy

An element of B /(B, X By)

Braid monodromy does not depend on Jung automor-
phisms as:

(, y) — (ax + b, cy + p(x))
a,c € C*, b €C, p(x) € Clx]
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#%(E& A?) AS) A27 A156) = 2
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#%(E& A?a AS) A27 AU 6) =2
Representantatives Cg, B° = 2, with equations

fﬁ('ica Y, Z)QB(ma Yy, z)=0
having coefficients in Q(1/2)
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#%(E& A?a AS) A27 AU 6) =2
Representantatives Cg, B° = 2, with equations

fﬁ(ma Y, Z)gg(it, Y, Z) =0
having coefficients in Q(1/2)

folxz,y, z) :=y2,z3 + (303 — 216 B3) yz2x2_|_
+ (—636 + 450 B) yz x>+
+ (=234 B +331) ya' + (=18 B +27) za'+

+ (188 — 26) =, (1)
10449 3645
gpg(x,y, z) =y + — z+

196 98
432 297
+ (-————-+————;3) .
T
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Take affine curves for z =1
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Take affine curves for z =1

Line at infinity: tangent line at Eg
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Take affine curves for z = 1
Line at infinity: tangent line at Eq

Eq, point at infinity of vertical lines
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Take affine curves for z =1
Line at infinity: tangent line at Eg
Eq, point at infinity of vertical lines

Corresponding affine curves of horizontal degree 3
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Take affine curves for z = 1

Line at infinity: tangent line at Eg

Eq, point at infinity of vertical lines
Corresponding affine curves of horizontal degree 3

Corresponding & are subsets of R
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2 2 2

)
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| A

)
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2 2 2
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8

Y g,
4 2
Y o, * O,

2

)
TSTSTSTSTS

| A

)
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SR o,
v o, % O
v o,

7Y

AR
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SR o,
v o, * o,
’73\/5'_> 0';10'1
7Y
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)
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| A

)
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V2 8
"yl —> 0'2
5 4 9
'72\[ — o, * O,
5 4 3
’yg\[ — 0,01 * O,
V2 4
"y4 —> 0'20'1
5
5\/_ —

)
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Y o,

4 2

Y o, * O,

1 3

Y 0,01 % O,

4
0'20'10'2

)
11 11

THTSTESTSTS

)
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8
Y o,

4 2

Y o, * O,

1 3

Y 0,01 % O,

4
0'20'10'20'1 09

)
11 11

THTSTESTSTS

)
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//
V2 8
"yl —> 0'2
V2 4 )
"y2 —> 0'2 % 0'1
) 4 3
’yg\[ — 0,01 * O,
V2 4 — 4
v, = 0,01020, O3 * O,
V2
"YS —

Page 23 Qs.: Opev Oner @coro page ... @ O@s.cv Oruiscreen @cose @ Quit



//
V2 8
v, o,
V2 4 )
v, o, * O,
2 4 3
’yg\[ — 0,01 * O,
V2 4 — 4
v, 0,010,0, O3 % O,
V2 4 —1
"Y5 —> 0'20'10'20'1 (o))
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//
V2 8
"yl — 0'2
V2 4 )
v, o, * O,
2 4 3
’yg\[ — 0,01 * O,
V2 4 — 4
v, 0,010,0, O3 % O,
V2 4 —1 )
"Y5 —> 0'20'10'20'1 0'20'1
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//
V2 8
v, o,
V2 4 )
v, o, * O,
2 4 3
’yg\/ — 0,01 * O,
V2 4 — 4
v, 0,010,0, O3 % O,
V2 4 —1 2 —1
"Y5 —> 0'20'10'20'1 0'20'10'10'2
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. —
V2 8
v, o,
V2 4 2
Yo o, * O,
2 4 3
’Yg,\[ = 0,01 % O,
V2 4 — 4
"y4 —> 0'20'10'20'1 O9 * O-l
V2 4 —1 2 —1
")’5 — 0,0,02,0, 020,0,0, * O9
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ng = Oy * O 1
—\V?2 = 4
fy4 — O 1 * 0-2
~ —V?2 — o =3 % o 2
) 1 %
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(C, L, P) triple: C C P* projective curve, L ¢ C
line, P &€ L
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(C, L, P) triple: C C P* projective curve, L ¢ C
line, P &€ L

Homogeneous coordinates [ : y : z]: L = {z =
0}, P=1[0:1:0]

C* .= P*\ L, affine coordinates (x, y), C*" =
cnNc
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(C, L, P) triple: C C P* projective curve, L ¢ C
line, P &€ L

Homogeneous coordinates [ : y : z]: L = {z =
0}, P=1[0:1:0]

C* .= P*\ L, affine coordinates (x, y), C*" =
cnNc

(C, L, P) is horizontal of degree d if C*" is
Braid monodromy of (C, L, P): the one of C®"
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(C, L, P) triple: C C P* projective curve, L ¢ C
line, P &€ L

Homogeneous coordinates [ : y : z]: L = {z =
0}, P=1[0:1:0]

C* = P* \ L, affine coordinates (x,y), C*" =
cnc

(C, L, P) is horizontal of degree d if C*" is
Braid monodromy of (C, L, P): the one of C*"
Classic case: generic choice of L and P
Generalization because of computing reasons: use

real curves, or programs (Carmona, Bessis)
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In the example,

e P singular point E;
e I tangent line at P
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In the example,

e P singular point E;
e I tangent line at P

Theorem 1 (] 1. Braid monodromies of the
triples (C .5, L, P) and (C_ 5, L, P) are not equiv-
alent
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In the example,

e P singular point E;
e I tangent line at P

Theorem 1 (] 1. Braid monodromies of the
triples (C .5, L, P) and (C_ 5, L, P) are not equiv-
alent

Look for topological consequences
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Zariski-Van Kampen theorem | ][ ]:
of the complement of the curve
(braid monodromy appears implicitely)
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Zariski-Van Kampen theorem | ][ ]:

of the complement of the curve
(braid monodromy appears implicitely)

Explicited by O. Chisini (1937) | ]: fascio
charatteristico
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Zariski-Van Kampen theorem | ][ ]:
of the complement of the curve
(braid monodromy appears implicitely)

Explicited by O. Chisini (1937) | ]: fascio
charatteristico

Developed by B. Moishezon (1981) [ ] and
in a series of papers with M. Teicher, | ] a

| ]
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A. Libgober (1986) | ]: of the
complement of the curve
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A. Libgober (1986) | ]: of the
complement of the curve

V. Kulikov, M. Teicher (2000) | ]:
of the curve in the projective plane (generic case
and the curve only has ordinary )
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A. Libgober (1986) | ]: of the
complement of the curve

V. Kulikov, M. Teicher (2000) | ]:

of the curve in the projective plane (generic case
and the curve only has ordinary )

J. Carmona (2002) | ]: Same result
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-
C? =CU U L;, L;={x=x;z}, fibered curve
j=1

Page 29 Qs.: Orev Oner @coto page ... @ O@s.cv Oruiscreen @cose @ Quit



C? =CU U L;, L;={x=x;z}, fibered curve
j=1
Theorem 2 (| D.

eCy,Cy C P* curves, L ¢ C, U C,
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C? =CU U L;, L;={x=x;z}, fibered curve
j=1
Theorem 2 (| D.
eCy,Cy C P* curves, L ¢ C, U C,

e P € L such that (C,, L, P) and (C,, L., P) are
horizontal triples of the same degree
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C? =CU U L;, L;={x=x;z}, fibered curve
j=1
Theorem 2 (| D.

eCy,Cy C P* curves, L ¢ C, U C,

e P € L such that (C,, L, P) and (C,, L., P) are
horizontal triples of the same degree

F - P* — p? orientation-preserving homeomorphism
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C? =CU U L;, L;={x=x;z}, fibered curve
j=1
Theorem 2 (| D.

eCy,Cy C P* curves, L ¢ C, U C,

e P € L such that (C,, L, P) and (C,, L., P) are
horizontal triples of the same degree

F - P* — p? orientation-preserving homeomorphism

i) F(P)= P, F(L) = L preserving orientations
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C? =CU U L;, L;={x=x;z}, fibered curve
j=1
Theorem 2 (| D.

eCy,Cy C P* curves, L ¢ C, U C,

e P € L such that (C,, L, P) and (C,, L., P) are
horizontal triples of the same degree

F - P* — p? orientation-preserving homeomorphism
i) F(P)= P, F(L) = L preserving orientations

(i) F'(CF) = C7 preserving orientations.
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C? =CU U L;, L;={x=x;z}, fibered curve
j=1
Theorem 2 (| D.

eCy,Cy C P* curves, L ¢ C, U C,

e P € L such that (C,, L, P) and (C,, L., P) are
horizontal triples of the same degree

F - P* — p? orientation-preserving homeomorphism
i) F(P)= P, F(L) = L preserving orientations
(i) F'(CF) = C7 preserving orientations.

T hen, braid monodromies of the triples are equal.
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Corollary 3. CSD UL andC?*
curves, Conjugated in Q(v/2)

\fUL are non-homeomorphic
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Sketch of the proof of Theorem
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Sketch of the proof of Theorem

7 :C°\C¥ — C\ 2, 7(x, y) = x locally trivial fiber
bundle with fiber C \ {d points}
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Sketch of the proof of Theorem

7 :C°\C¥ — C\ 2, 7(x, y) = x locally trivial fiber
bundle with fiber C \ {d points}

Long exact sequence of homotopy

1 — m(C\y"s M) — 7, (C°\ C%; (%, M) 5 m,(Ce: %) — 1
(2)
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Sketch of the proof of Theorem

7 :C°\C¥ — C\ 2, 7(x, y) = x locally trivial fiber
bundle with fiber C \ {d points}

Long exact sequence of homotopy

1 — m(C\y"s M) — 7, (C°\ C%; (%, M) 5 m,(Ce: %) — 1
(2)

Look for a presentation
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M > 0 such that f(x,y) = 0 and |z| < R
= |yl < M
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M > 0 such that f(x,y) = 0 and |z| < R

= |yl < M

Given 7 € B(y*,y") we have an automorphism

U, m(C\y" M) — m(C\y", M), the standard

basis u!, ..., p) of m(C\ y’s M), see Figure
, determines a geometric basis wy, ..., g of
T(C\ vy M), Ur(pj) = p.
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M > 0 such that f(x,y) = 0 and |z| < R
= |yl < M

Given 7 € B(y*,y") we have an automorphism

U, m(C\y" M) — m(C\y", M), the standard

basis u!, ..., p) of m(C\ y’s M), see Figure
, determines a geometric basis wy, ..., g of

T(C\ vy M), Ur(pj) = p.

Natural right actions of B4 on m(C \ y’; M) and

of By« on 7,(C \ y*; M), see Figure

o 1

pi' = K H;;Tfl = Mi* g a*xb = aba

Page 32 ‘ Start . Prev . Next . Go to page ... @ . Back . Full Screen . Close . Quit



Actions of o € By« and ¢.(o) € By

T (C\y" s M) —— m(C\y*5 M)

v, | Lo,
®r(0o)

m(C\y's M) == m(C\y" M)

Page 33 . Start . Prev . Next . Go to page ... [ J ‘ Back . Full Screen . Close ‘ Quit



Actions of o € By« and ¢.(o) € By

T (C\y" s M) —— m(C\y*5 M)

v, | Lo,
dr(0)

m(C\y's M) == m(C\y" M)

Recall (2). Lift a pseudo-geometric basis v, . . ., vV,
of w(C\ Z; %) to Y1, ...,7%,in C X {M}, see
Figure

,-S/.
,UJZ"? =7
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71—1(@2\690;(*7 M)) = <:u‘17 c oy M, ;717 <o 7"3/7"

©)
V- (v;) € By is determined by the presentation
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71—1(@2\690;(*7 M)) = <:u‘17 c oy M, ;717 <o 7"3/7"

Y V(v;5) .~
:u’;,yj::uz’ 7377’_17 7d7.7:17 77n>:
FL(l)a 7/1'(17;717 7’3’7‘
- V.
(M(rz)’yj — (Mg) (’YJ)) 1 =1, ) d7 J = L, ’ ’I">

©)
V- (v;) € By is determined by the presentation
A priori these data are not topological invariants

The goal is to prove that the oriented topology of
(C*, L, P) does determine these data.
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Step 1. Meridians of C are determined by the oriented
topology of (C¥, L, P)
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Step 1. Meridians of C are determined by the oriented
topology of (C¥, L, P)

Step 2. K = m(C\y"; M) is the subgroup generated
by the meridians of C. In particular,
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Step 1. Meridians of C are determined by the oriented
topology of (C¥, L, P)

Step 2. K = m(C\y"; M) is the subgroup generated
by the meridians of C. In particular,

Step 3. Let us choose * near one x;; the element
c = g - ... | IS well-defined by the oriented
topology of (C¥, L, P)
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Step 4. An ordered family (v, . . ., g of meridians
of C such that ¢ = 14 - . . .- [L, iS @ geometric basis
of K
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Step 4. An ordered family (v, . . ., g of meridians
of C such that ¢ = 14 - . . .- [L, iS @ geometric basis
of K

Step 5. The element -y; is the unique
such that:
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Step 4. An ordered family (v, . . ., g of meridians
of C such that ¢ = 14 - . . .- [L, iS @ geometric basis
of K

Step 5. The element -y; is the unique
such that:

v; is a meridian of the line x = x;z
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Step 4. An ordered family (v, . . ., g of meridians

of C such that ¢ = 14 - . . .- [L, iS @ geometric basis
of K

Step 5. The element -y; is the unique
such that:

v; is a meridian of the line x = x;z

Conjugation by -y, induces on K a braid-like auto-
morphism with respect to the family of geometric
bases of K
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Step 4. An ordered family (v, . . ., g of meridians

of C such that ¢ = 14 - . . .- [L, iS @ geometric basis
of K

Step 5. The element -y; is the unique
such that:

v; is @ meridian of the line x = x;z

Conjugation by -y, induces on K a braid-like auto-
morphism with respect to the family of geometric
bases of K

Step 6. The product ( ... - A1) is a meridian

’S/r'
of the line L in (P> \ (L U---UL,U L) (%, M))
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Sketch of the proof of Corollary

Page 39 . Start . Prev . Next . Go to page ... [ J ‘ Back . Full Screen . Close ‘ Quit



Sketch of the proof of Corollary

Let us suppose there exists a homeomorphism & :
P* — P° such that @(Ci‘}i UL)= Cfﬂ U L
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Sketch of the proof of Corollary

Let us suppose there exists a homeomorphism & :
P* — P° such that @(Ci‘}i UL)= Cfﬂ U L

It is easily seen that ®(P) = P, (L) = L and
C N _ P
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Sketch of the proof of Corollary

Let us suppose there exists a homeomorphism & :
P* — P° such that c1>(Cij5 UL)= Cfﬂ U L

It is easily seen that ®(P) = P, (L) = L and
C N _ P

By orientation properties of algebraic knots, the
homeomorphism ¢ preserves the orientation of P?
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Sketch of the proof of Corollary

Let us suppose there exists a homeomorphism & :
P* — P° such that c1>(Cj5 UL)= Cfﬂ U L

It is easily seen that ®(P) = P, (L) = L and
C N _ P

By orientation properties of algebraic knots, the
homeomorphism ¢ preserves the orientation of P?

Since curves have real equations, eventually apply-
ing complex conjugation, we may suppose that ¢
preserves the orientations of the quintics in C\@
and C_\/é
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e From the relationship of intersection and linking
numbers, we deduce that ¢ preserves the orienta-
tions of L, C“D and C‘P\[
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e From the relationship of intersection and linking
numbers, we deduce that ¢ preserves the orienta-

so p
tions of L, C and C C

e O verifies the condltlons stated in Theorem
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e From the relationship of intersection and linking
numbers, we deduce that ¢ preserves the orienta-
: P P
tions of L, C'5and C” ;

e O verifies the conditions stated in Theorem

e Contradiction with Theorem
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<>< )
V4

(a) Nodal cu- (b)
bic and line Two
conics

Figure 3: X(4A;4)
Define X(I') and .Z(I') where T is:

A weighted bi-coloured graph, which is dual to
o '(C), o :' Y — P°, minimal embedded reso-

lution of Sing(C).
Weight = self-intersection number
Vertices v = exceptional divisor of o

Vertices 3 = strict transform of C
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(a) Nodal cubic and line (b) Two conics

Figure 4: Graphs

If d <5 and %(I') 40, X(I) is irreducible
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Definition of meridian

G

Figure 5. Meridian

X surface, C C X curve, C; C C irreducible component,
x* € X \C, G :=m (X \C;x*)
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Definition of meridian

G

Figure 5. Meridian

X surface, C C X curve, C; C C irreducible component,
x* € X \C, G :=m (X \C;x*)

A small analytic disk h C;, *' € OA, o path from *x to *’,
§ loop en ' running once and counterclockwise OA
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Definition of meridian

G

Figure 5. Meridian

X surface, C C X curve, C; C C irreducible component,
x € X \ C, G :=m (X \C;x%)

A small analytic disk h C;, *' € OA, o path from * to *’,
§ loop en *’ running once and counterclockwise OA

a -8 - o 'is a meridian of C; in G. The set of meridians
of C, is a conjugation class.

Page 64 Qs.: Opev Oner @coro page ... @ O@s.cv Oruiscreen @cose @ Quit



[y py o

Figure 6: Geometric basis in the fiber
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Figure 7: Action of o
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Figure 8. Adapted polydisks and conjugation
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