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1. Startup problem

. T1, . . . , Tr topological types of singularities of
plane curves
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1. Startup problem

. T1, . . . , Tr topological types of singularities of
plane curves

. Σ := Σ(k1T1, . . . , krTr; d) Hilbert space of plane
projective curves of degree d with ki singular points
of topological type Ti

. M := M (k1T1, . . . , krTr; d) :=

Σ(k1T1, . . . , krTr; d)/P GL(3; C)

. Σirr: irreducible curves
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M 6= ∅?
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M 6= ∅?

Smoothness of Σ

Irreducibility of Σ

Connectivity of M

��	

Adjacency:Σ ⊂ Σ′?

Σ′ := Σ(k′
1
T ′

1
, . . . , k′rT ′

r; d)

Local irreducibility of M around M ′

?
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Σ̃ ⊂ Σ connected component C1, C2 ∈ Σ̃ ⇒ ∃ ori-
ented isotopy H such that h0 = 1P2, h1(C1) = C2.



Page 5 •Start •Prev •Next •Go to page ... •Contents •Back •Full Screen •Close •Quit

Σ̃ ⊂ Σ connected component C1, C2 ∈ Σ̃ ⇒ ∃ ori-
ented isotopy H such that h0 = 1P2, h1(C1) = C2.

What about the converse?



Page 5 •Start •Prev •Next •Go to page ... •Contents •Back •Full Screen •Close •Quit

Σ̃ ⊂ Σ connected component C1, C2 ∈ Σ̃ ⇒ ∃ ori-
ented isotopy H such that h0 = 1P2, h1(C1) = C2.

What about the converse?

Does there exist an oriented homeomorphism

Φ : P2 → P2

such that Φ(C1) = C2?
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2. Previous results

. Works of Greuel [GLS98, GLS98a, GL99, GLS99,
GLS02], Shustin [SHU97, SHU97a], Lossen about
irreducibility, smoothness, existence,. . .
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2. Previous results

. Works of Greuel [GLS98, GLS98a, GL99, GLS99,
GLS02], Shustin [SHU97, SHU97a], Lossen about
irreducibility, smoothness, existence,. . .

. Existence and connectedness have been solved for
d ≤ 5 by Namba [NMB86] and Degtyarev [DEG90],
see here.
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. Σ(6A2; 6) = Σirr(6A2; 6) is reducible and not connected
[ZAR29]
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. Σ(6A2; 6) = Σirr(6A2; 6) is reducible and not connected
[ZAR29]

• Σtor(6A2; 6): cusps on a conic

• Σ′(6A2; 6), Σ′′(6A2; 6),. . . other ones (at least one)

. Study the case d = 6, Ti = Ak, Dl, Er
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3. Sextics with simple points

I C ∈ Σ, π : Ŷ → P2 double covering ramified
along C, τ : Y → Ŷ minimal resolution, Y K3

surface (see Barth-Peters-Van de Ven [BPV84])
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I C ∈ Σ, π : Ŷ → P2 double covering ramified
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3. Sextics with simple points

I C ∈ Σ, π : Ŷ → P2 double covering ramified
along C, τ : Y → Ŷ minimal resolution, Y K3

surface (see Barth-Peters-Van de Ven [BPV84])

I µ(C) sum of Milnor numbers of Sing(C), Y K3 ⇒
µ(C) ≤ 19

I Characterization of Σ 6= ∅ by Urabe, Yang [YA96]
using Nikulin’s results (intersection form lattice of
a K3 surface)

J Complete list when µ(C) = 19 and supplementary list for
µ(C) = 18

J Σ 6= ∅ if and only if the graph of singular points is a
subgraph of a graph in one on the list

J Yang also studies Σ(Γ)
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4. Open problems about sextics with simple points

I If Σ(Γ) 6= ∅, how many connected components?
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4. Open problems about sextics with simple points

I If Σ(Γ) 6= ∅, how many connected components?

I Understand adjacencies

Σtor(6A2; 6)

[ZAR37]

Σ′(6A2; 6)

Σ(9A2; 6)
�

�
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4. Open problems about sextics with simple points

I If Σ(Γ) 6= ∅, how many connected components?

I Understand adjacencies

Σtor(6A2; 6)

[ZAR37]

Σ′(6A2; 6)

Σ(9A2; 6)
�

�

Σ(6A3; 6)Σ′′(6A2; 6) �

=?
Σloc

1 (3A3, 3A2; 6)

6
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2 (3A3, 3A2; 6)



Page 9 •Start •Prev •Next •Go to page ... •Contents •Back •Full Screen •Close •Quit

4. Open problems about sextics with simple points

I If Σ(Γ) 6= ∅, how many connected components?

I Understand adjacencies

Σtor(6A2; 6)

[ZAR37]

Σ′(6A2; 6)

Σ(9A2; 6)
�

�

Σ(6A3; 6)Σ′′(6A2; 6) �

=?
Σloc

1 (3A3, 3A2; 6)
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2 (3A3, 3A2; 6) Σ
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3,
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2;
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Σ
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3,
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2;
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=?



Page 10 •Start •Prev •Next •Go to page ... •Contents •Back •Full Screen •Close •Quit

Consider Σ(A15, A3; 6) \ Σirr(A15, A3; 6)
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Consider Σ(A15, A3; 6) \ Σirr(A15, A3; 6)

Σ1(A15, A3; 6)

Σ2(A15, A3; 6)

Σ3(A15, A3; 6)

I Σ1: tangent line at A15 pass through A3

I Σ2: generic

I Σ3: 4-fold tangent conic to A15 is tangent at A3
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Consider Σ(A15, A3; 6) \ Σirr(A15, A3; 6)

Σ1(A15, A3; 6)

Σ2(A15, A3; 6)

Σ3(A15, A3; 6)

Σ1(A15, A3, A1; 6)�

Σ2(A15, A3, A1; 6)
�

I Σ1: tangent line at A15 pass through A3

I Σ2: generic

I Σ3: 4-fold tangent conic to A15 is tangent at A3
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Consider Σ(A15, A3; 6) \ Σirr(A15, A3; 6)

Σ1(A15, A3; 6)

Σ2(A15, A3; 6)

Σ3(A15, A3; 6)

Σ1(A15, A3, A1; 6)�

Σ2(A15, A3, A1; 6)
�

PPPPPPPPi

Σ(A15, D4; 6)
�

I Σ1: tangent line at A15 pass through A3

I Σ2: generic

I Σ3: 4-fold tangent conic to A15 is tangent at A3
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Σtor,irr(A17, A1; 6)

Σirr
1

(A17, A1; 6)
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Σtor,irr(A17, A1; 6)

Σirr
1

(A17, A1; 6)

Σ(A17, A2; 6)�
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Σtor,irr(A17, A1; 6)

Σirr
1

(A17, A1; 6)

Σ(A17, A2; 6)�

Σi(A18, A1; 6) i = 1, 2, 3�



Page 11 •Start •Prev •Next •Go to page ... •Contents •Back •Full Screen •Close •Quit

Σtor,irr(A17, A1; 6)

Σirr
1

(A17, A1; 6)

Σ(A17, A2; 6)�

Σi(A18, A1; 6) i = 1, 2, 3�

Σj(A19; 6)
�

j = 1, 2
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Σtor,irr(A17, A1; 6)

Σirr
1

(A17, A1; 6)

Σ(A17, A2; 6)�

Σi(A18, A1; 6) i = 1, 2, 3�

Σj(A19; 6)
�

j = 1, 2

[ACC02b]
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Σtor,irr(A17, A1; 6)

Σirr
1

(A17, A1; 6)

Σ(A17, A2; 6)�

Σi(A18, A1; 6) i = 1, 2, 3�

Σj(A19; 6)
�

j = 1, 2

[ACC02b]

I Σi(A18, A1; 6): ∃ conjugate representatives with co-
efficents in Q(19s3 + 50s2 + 36s + 8)

I Σj(A19; 6): ∃ conjugate representatives in Q(
√

5)

(see [YOS79] for a more complicated extension)
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• In Yang’s list for µ(C) = 19, a lot of such examples
appear
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• In Yang’s list for µ(C) = 19, a lot of such examples
appear

• Many topological invariants come from algebraic
properties
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• In Yang’s list for µ(C) = 19, a lot of such examples
appear

• Many topological invariants come from algebraic
properties

• Look for other invariants
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5. Braid monodromy for affine curves

Caff := {f (x, y) = 0} ⊂ C2 horizontal of degree d:
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5. Braid monodromy for affine curves

Caff := {f (x, y) = 0} ⊂ C2 horizontal of degree d:

f (x, y) = y
d

+ f1(x)y
d−1

+ · · · + fd−1(x)y + fd(x),

fj(x) ∈ C[x], j = 1, . . . , d.
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5. Braid monodromy for affine curves

Caff := {f (x, y) = 0} ⊂ C2 horizontal of degree d:

f (x, y) = y
d

+ f1(x)y
d−1

+ · · · + fd−1(x)y + fd(x),

fj(x) ∈ C[x], j = 1, . . . , d.

I D(x) := Discy(f (x, y))

I D := {x ∈ C | D(x) = 0} = {x1, . . . , xr}
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5. Braid monodromy for affine curves

Caff := {f (x, y) = 0} ⊂ C2 horizontal of degree d:

f (x, y) = y
d

+ f1(x)y
d−1

+ · · · + fd−1(x)y + fd(x),

fj(x) ∈ C[x], j = 1, . . . , d.

I D(x) := Discy(f (x, y))

I D := {x ∈ C | D(x) = 0} = {x1, . . . , xr}
I V := {p(t) ∈ C[t] | p monic of degree d}, D

discriminant hypersurface

I V \D ≡ {A ⊂ C | #A = d}
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f̃ : C \ D → V \D
x 7→ f (x, t)

∗ := R s. t. D ⊂ {z ∈ C | |z| < R}, y∗ := f̃ (∗)
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f̃ : C \ D → V \D
x 7→ f (x, t)

∗ := R s. t. D ⊂ {z ∈ C | |z| < R}, y∗ := f̃ (∗)

Braid monodromy of Caff:

∇ := f̃∗ : π1(C \ D ; ∗) → π1(V \D; y∗)

:=

By∗
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Geometric bases of the free group π1(C \ D ; ∗)

PSfrag replacements

∗γ1γ2γr

. . .

Figure 1: Geometric basis
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Geometric bases of the free group π1(C \ D ; ∗)

PSfrag replacements

∗γ1γ2γr

. . .

Figure 1: Geometric basis

♠ Each loop is meridian of a point of D

♠ cγ := γr · . . . · γ1 is the boundary of a big geo-

metric disk; c−1
γ is meridian of ∞

♠ (∇(γ1), . . . ,∇(γr)) ∈ (By∗)
r
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y0 := {−1, . . . ,−d}

By0 ≡ Bd := 〈σ1, . . . , σd−1 :

[σi, σj] = 1, |i− j| ≥ 2,

σiσi+1σi = σi+1σiσi+1, i = 1, . . . , d− 2〉

PSfrag replacements

j − 1jj + 1j + 2

t = 0

t = 1

t

1

i

Figure 2: σj
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• τ ∈ B(y∗, y0) braid starting at y∗ and ending at
y0

• Φτ : By∗ → Bd, Φτ (σ) := τ · σ · τ−1
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• τ ∈ B(y∗, y0) braid starting at y∗ and ending at
y0

• Φτ : By∗ → Bd, Φτ (σ) := τ · σ · τ−1

• ∇, (γ1, . . . , γr), τ , ∇τ := Φτ◦∇ determine

(∇τ (γ1), . . . ,∇τ (γr)) ∈ (Bd)
r
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• τ ∈ B(y∗, y0) braid starting at y∗ and ending at
y0

• Φτ : By∗ → Bd, Φτ (σ) := τ · σ · τ−1

• ∇, (γ1, . . . , γr), τ , ∇τ := Φτ◦∇ determine

(∇τ (γ1), . . . ,∇τ (γr)) ∈ (Bd)
r

Braid monodromy + · · ·

⇓

An element of (Bd)r
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• Choice of geometric basis
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• Choice of geometric basis

• G := {Geometric bases of π1(C \ D ; ∗)}
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• Choice of geometric basis

• G := {Geometric bases of π1(C \ D ; ∗)}
• Right action of Br on G :

(γ1, . . . , γr)
σi :=

(γ1, . . . , γi−1, γi+1, γi+1γiγ
−1

i+1
, γi+2, . . . , γr)
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• Choice of geometric basis

• G := {Geometric bases of π1(C \ D ; ∗)}
• Right action of Br on G :

(γ1, . . . , γr)
σi :=

(γ1, . . . , γi−1, γi+1, γi+1γiγ
−1

i+1
, γi+2, . . . , γr)

• It is a free and transitive action, [ARTIN47]
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• Choice of geometric basis

• G := {Geometric bases of π1(C \ D ; ∗)}
• Right action of Br on G :

(γ1, . . . , γr)
σi :=

(γ1, . . . , γi−1, γi+1, γi+1γiγ
−1

i+1
, γi+2, . . . , γr)

• It is a free and transitive action, [ARTIN47]

• Choice of τ ∈ B(y∗, y0) and base point ∗
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• Choice of geometric basis

• G := {Geometric bases of π1(C \ D ; ∗)}
• Right action of Br on G :

(γ1, . . . , γr)
σi :=

(γ1, . . . , γi−1, γi+1, γi+1γiγ
−1

i+1
, γi+2, . . . , γr)

• It is a free and transitive action, [ARTIN47]

• Choice of τ ∈ B(y∗, y0) and base point ∗
• Right action of Bd on Br

d by simultaneous con-
jugation.
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• Choice of geometric basis

• G := {Geometric bases of π1(C \ D ; ∗)}
• Right action of Br on G :

(γ1, . . . , γr)
σi :=

(γ1, . . . , γi−1, γi+1, γi+1γiγ
−1

i+1
, γi+2, . . . , γr)

• It is a free and transitive action, [ARTIN47]

• Choice of τ ∈ B(y∗, y0) and base point ∗
• Right action of Bd on Br

d by simultaneous con-
jugation.

• Pseudogeometric basis of π1(C \D ; ∗): c−1
γ is a

meridian of the line at infinity
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Right action of Br ×Bd on (Bd)r:
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Right action of Br ×Bd on (Bd)r:

• Br acts by Hurwitz moves.



Page 19 •Start •Prev •Next •Go to page ... •Contents •Back •Full Screen •Close •Quit

Right action of Br ×Bd on (Bd)r:

• Br acts by Hurwitz moves.

• Both actions commute
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Right action of Br ×Bd on (Bd)r:

• Br acts by Hurwitz moves.

• Both actions commute

Braid monodromy

≡
An element of Br

d/(Br ×Bd)
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Right action of Br ×Bd on (Bd)r:

• Br acts by Hurwitz moves.

• Both actions commute

Braid monodromy

≡
An element of Br

d/(Br ×Bd)

Braid monodromy does not depend on Jung automor-
phisms as:

(x, y) 7→ (ax + b, cy + p(x))

a, c ∈ C∗, b ∈ C, p(x) ∈ C[x]
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6. An example

#M (E6, A7, A3, A2, A1; 6) = 2
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6. An example

#M (E6, A7, A3, A2, A1; 6) = 2

Representantatives Cβ, β2 = 2, with equations

fβ(x, y, z)gβ(x, y, z) = 0

having coefficients in Q(
√

2)
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#M (E6, A7, A3, A2, A1; 6) = 2

Representantatives Cβ, β2 = 2, with equations

fβ(x, y, z)gβ(x, y, z) = 0

having coefficients in Q(
√

2)

fβ(x, y, z) :=y
2
z

3
+ (303 − 216 β) yz

2
x

2
+

+ (−636 + 450 β) yzx
3
+

+ (−234 β + 331) yx
4

+ (−18 β + 27) zx
4
+

+ (18 β − 26) x
5
,

gβ(x, y, z) :=y +

(
10449

196
−

3645

98
β

)
z+

+

(
−

432

7
+

297

7
β

)
x.

(1)
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7. Braid monodromy of projective curves

� (C, L, P ) triple: C ⊂ P2 projective curve, L 6⊂ C
line , P ∈ L
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� (C, L, P ) triple: C ⊂ P2 projective curve, L 6⊂ C
line , P ∈ L

� Homogeneous coordinates [x : y : z]: L = {z =

0}, P = [0 : 1 : 0]

� C2 := P2 \ L, affine coordinates (x, y), Caff :=

C ∩ C2
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7. Braid monodromy of projective curves

� (C, L, P ) triple: C ⊂ P2 projective curve, L 6⊂ C
line , P ∈ L

� Homogeneous coordinates [x : y : z]: L = {z =

0}, P = [0 : 1 : 0]

� C2 := P2 \ L, affine coordinates (x, y), Caff :=

C ∩ C2

� (C, L, P ) is horizontal of degree d if Caff is

� Braid monodromy of (C, L, P ): the one of Caff

� Classic case: generic choice of L and P
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In the example,

• P singular point E6

• L tangent line at P
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In the example,

• P singular point E6

• L tangent line at P

Theorem 1 ([ACC02a]). Braid monodromies of the
triples (C√2, L, P ) and (C−√2, L, P ) are not equiv-
alent
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In the example,

• P singular point E6

• L tangent line at P

Theorem 1 ([ACC02a]). Braid monodromies of the
triples (C√2, L, P ) and (C−√2, L, P ) are not equiv-
alent

Look for topological consequences
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� Zariski-Van Kampen theorem [ZAR29] [VK33]: fun-
damental group of the complement of the curve
(braid monodromy appears implicitely)
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� Zariski-Van Kampen theorem [ZAR29] [VK33]: fun-
damental group of the complement of the curve
(braid monodromy appears implicitely)

� Explicited by O. Chisini (1937) [CHI37]: fascio
charatteristico
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� Explicited by O. Chisini (1937) [CHI37]: fascio
charatteristico

� Developed by B. Moishezon (1981) [MOI81] (and
M. Teicher)
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(braid monodromy appears implicitely)
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� Developed by B. Moishezon (1981) [MOI81] (and
M. Teicher)

� A. Ligbober (1986) [LIB86]: homotopy type of the
complement of the curve

� V. Kulikov, M. Teicher (2000) [KT00]: embedding
of the curve in the projective plane (generic case
and the curve only has ordinary nodes y cusps)



Page 25 •Start •Prev •Next •Go to page ... •Contents •Back •Full Screen •Close •Quit

� Zariski-Van Kampen theorem [ZAR29] [VK33]: fun-
damental group of the complement of the curve
(braid monodromy appears implicitely)

� Explicited by O. Chisini (1937) [CHI37]: fascio
charatteristico

� Developed by B. Moishezon (1981) [MOI81] (and
M. Teicher)

� A. Ligbober (1986) [LIB86]: homotopy type of the
complement of the curve

� V. Kulikov, M. Teicher (2000) [KT00]: embedding
of the curve in the projective plane (generic case
and the curve only has ordinary nodes y cusps)

� J. Carmona (2002) [CAR02]: Same result without
the restrictions
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Cϕ
:= C ∪

r⋃
j=1

Li, Li := {x = xiz}, fibered curve
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Cϕ
:= C ∪

r⋃
j=1

Li, Li := {x = xiz}, fibered curve

Theorem 2 ([ACC02]).

• C1, C2 ⊂ P2 curves, L 6⊂ C1 ∪ C2
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• P ∈ L such that (C1, L, P ) and (C2, L, P ) are
horizontal triples of the same degree
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• P ∈ L such that (C1, L, P ) and (C2, L, P ) are
horizontal triples of the same degree

F : P2 → P2 orientation-preserving homeomorphism
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Cϕ
:= C ∪

r⋃
j=1

Li, Li := {x = xiz}, fibered curve

Theorem 2 ([ACC02]).

• C1, C2 ⊂ P2 curves, L 6⊂ C1 ∪ C2

• P ∈ L such that (C1, L, P ) and (C2, L, P ) are
horizontal triples of the same degree

F : P2 → P2 orientation-preserving homeomorphism

(i) F (P ) = P , F (L) = L preserving orientations
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Cϕ
:= C ∪

r⋃
j=1

Li, Li := {x = xiz}, fibered curve

Theorem 2 ([ACC02]).

• C1, C2 ⊂ P2 curves, L 6⊂ C1 ∪ C2

• P ∈ L such that (C1, L, P ) and (C2, L, P ) are
horizontal triples of the same degree

F : P2 → P2 orientation-preserving homeomorphism

(i) F (P ) = P , F (L) = L preserving orientations

(ii) F (Cϕ
1

) = Cϕ
2

preserving orientations.
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Cϕ
:= C ∪

r⋃
j=1

Li, Li := {x = xiz}, fibered curve

Theorem 2 ([ACC02]).

• C1, C2 ⊂ P2 curves, L 6⊂ C1 ∪ C2

• P ∈ L such that (C1, L, P ) and (C2, L, P ) are
horizontal triples of the same degree

F : P2 → P2 orientation-preserving homeomorphism

(i) F (P ) = P , F (L) = L preserving orientations

(ii) F (Cϕ
1

) = Cϕ
2

preserving orientations.

Then, braid monodromies of the triples are equal.
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Corollary 3. Cϕ√
2
∪L and Cϕ

−
√

2
∪L are non-homeomorphic

curves, conjugated in Q(
√

2)
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Sketch of the proof of Theorem 2 Skip
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Sketch of the proof of Theorem 2 Skip

π : C2\Cϕ → C\D, π(x, y) := x locally trivial fiber
bundle with fiber C \ {d points}
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Sketch of the proof of Theorem 2 Skip

π : C2\Cϕ → C\D, π(x, y) := x locally trivial fiber
bundle with fiber C \ {d points}

Long exact sequence of homotopy

1 → π1(C \ y
∗
; M ) → π1(C

2 \ Cϕ
; (∗, M ))

π∗→π1(CC; ∗) → 1

(2)
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Sketch of the proof of Theorem 2 Skip

π : C2\Cϕ → C\D, π(x, y) := x locally trivial fiber
bundle with fiber C \ {d points}

Long exact sequence of homotopy

1 → π1(C \ y
∗
; M ) → π1(C

2 \ Cϕ
; (∗, M ))

π∗→π1(CC; ∗) → 1

(2)

Look for a presentation
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� M � 0 such that f (x, y) = 0 and |x| ≤ R
⇒ |y| < M
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� M � 0 such that f (x, y) = 0 and |x| ≤ R
⇒ |y| < M

� The geometric basis µ1, . . . , µd of π1(C\y∗; M )

is related by τ with the standard geometric basis
µ0

1
, . . . , µ0

d of π1(C \ y0; M ), see Figure 6
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is related by τ with the standard geometric basis
µ0

1
, . . . , µ0

d of π1(C \ y0; M ), see Figure 6

� With B(y∗, y0) and µ0
1
, . . . , µ0

d one obtains all
geometric bases of π1(C \ y∗; M )
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� M � 0 such that f (x, y) = 0 and |x| ≤ R
⇒ |y| < M

� The geometric basis µ1, . . . , µd of π1(C\y∗; M )

is related by τ with the standard geometric basis
µ0

1
, . . . , µ0

d of π1(C \ y0; M ), see Figure 6

� With B(y∗, y0) and µ0
1
, . . . , µ0

d one obtains all
geometric bases of π1(C \ y∗; M )

� Natural right actions of Bd on π1(C \ y0; M ) and
of By∗ on π1(C \ y∗; M ), see Figure 7

µ
σi
i = µi+1 µ

σi
i+1

= µi+1∗µi a∗b := aba
−1
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⇒ |y| < M
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d one obtains all
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µ
σi
i = µi+1 µ

σi
i+1
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� Automorphism Ψτ : π1(C\y∗; M ) → π1(C\y0; M )

induced by τ ∈ B(y∗, y0)

� Ψτ (µj) = µ0
j
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� Automorphism Ψτ : π1(C\y∗; M ) → π1(C\y0; M )

induced by τ ∈ B(y∗, y0)

� Ψτ (µj) = µ0
j

� Actions of σ ∈ By∗ and Φτ (σ) ∈ Bd

π1(C \ y∗; M )
σ−→ π1(C \ y∗; M )

Ψτ ↓ ↓ Ψτ

π1(C \ y0; M )
Φτ (σ)−→ π1(C \ y0; M )
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� Automorphism Ψτ : π1(C\y∗; M ) → π1(C\y0; M )

induced by τ ∈ B(y∗, y0)

� Ψτ (µj) = µ0
j

� Actions of σ ∈ By∗ and Φτ (σ) ∈ Bd

π1(C \ y∗; M )
σ−→ π1(C \ y∗; M )

Ψτ ↓ ↓ Ψτ

π1(C \ y0; M )
Φτ (σ)−→ π1(C \ y0; M )

� Lift a pseudo-geometric basis γ1, . . . , γr of π1(C\
D ; ∗) to γ̃1, . . . , γ̃r in C × {M}, see Figure 8

� µ
γ̃j

i =?
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π1(C
2\Cϕ

; (∗, M )) =
〈

µ1, . . . , µd, γ̃1, . . . , γ̃r :

µ
γ̃j

i = µ
∇(γj)

i , i = 1, . . . , d, j = 1, . . . , r
〉
∼=〈

µ
0

1
, . . . , µ

0

d, γ̃1, . . . , γ̃r :

(µ
0

i)
γ̃j = (µ

0

i)
∇τ (γj)

, i = 1, . . . , d, j = 1, . . . , r
〉
(3)

� ∇τ (γj) ∈ Bd is determined by the presentation
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π1(C
2\Cϕ

; (∗, M )) =
〈

µ1, . . . , µd, γ̃1, . . . , γ̃r :

µ
γ̃j

i = µ
∇(γj)

i , i = 1, . . . , d, j = 1, . . . , r
〉
∼=〈

µ
0

1
, . . . , µ

0

d, γ̃1, . . . , γ̃r :

(µ
0

i)
γ̃j = (µ

0

i)
∇τ (γj)

, i = 1, . . . , d, j = 1, . . . , r
〉
(3)

� ∇τ (γj) ∈ Bd is determined by the presentation

� A priori these data are not topological invariants

� The goal is to prove that the oriented topology of
(Cϕ, L, P ) does determine these data.
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Step 1. Meridians of C are determined by the oriented
topology of (Cϕ, L, P )
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Step 1. Meridians of C are determined by the oriented
topology of (Cϕ, L, P )

Step 2. K := π1(C\y∗; M ) is the subgroup generated
by the meridians of C. In particular, the short exact
sequence (2) does not depend on π∗
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Step 1. Meridians of C are determined by the oriented
topology of (Cϕ, L, P )

Step 2. K := π1(C\y∗; M ) is the subgroup generated
by the meridians of C. In particular, the short exact
sequence (2) does not depend on π∗

Step 3. Let us choose ∗ near one xi; the element
c := µd · . . . · µ1 is well-defined by the oriented
topology of (Cϕ, L, P )
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Step 4. An ordered family µ̂1, . . . , µ̂d of meridians
of C such that c = µ̂d · . . . · µ̂1 is a geometric basis
of K
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Step 4. An ordered family µ̂1, . . . , µ̂d of meridians
of C such that c = µ̂d · . . . · µ̂1 is a geometric basis
of K

Step 5. The element γ̃j is the unique lift of γj ∈ H,
which is a meridian of the line x = xjz an such
that the conjugation by γ̃j induces on K a braid-like
automorphism with respect to the family of geometric
bases of K
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Step 4. An ordered family µ̂1, . . . , µ̂d of meridians
of C such that c = µ̂d · . . . · µ̂1 is a geometric basis
of K

Step 5. The element γ̃j is the unique lift of γj ∈ H,
which is a meridian of the line x = xjz an such
that the conjugation by γ̃j induces on K a braid-like
automorphism with respect to the family of geometric
bases of K

Step 6. The product (γ̃r · . . . · γ̃1)
−1 is a meridian

of the line L in π1(P2 \ (L1∪ · · · ∪Lr ∪L); (∗, M ))
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Sketch of the proof of Corollary 3
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Sketch of the proof of Corollary 3

� Let us suppose there exists a homeomorphism Φ :

P2 → P2 such that Φ(Cϕ√
2
∪ L) = Cϕ

−
√

2
∪ L
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Sketch of the proof of Corollary 3

� Let us suppose there exists a homeomorphism Φ :

P2 → P2 such that Φ(Cϕ√
2
∪ L) = Cϕ

−
√

2
∪ L

� It is easily seen that Φ(P ) = P , Φ(L) = L and
Φ(Cϕ√

2
) = Cϕ

−
√

2
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Sketch of the proof of Corollary 3

� Let us suppose there exists a homeomorphism Φ :

P2 → P2 such that Φ(Cϕ√
2
∪ L) = Cϕ

−
√

2
∪ L

� It is easily seen that Φ(P ) = P , Φ(L) = L and
Φ(Cϕ√

2
) = Cϕ

−
√

2

� By orientation properties of algebraic knots, the
homeomorphism Φ preserves the orientation of P2
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Sketch of the proof of Corollary 3

� Let us suppose there exists a homeomorphism Φ :

P2 → P2 such that Φ(Cϕ√
2
∪ L) = Cϕ

−
√

2
∪ L

� It is easily seen that Φ(P ) = P , Φ(L) = L and
Φ(Cϕ√

2
) = Cϕ

−
√

2

� By orientation properties of algebraic knots, the
homeomorphism Φ preserves the orientation of P2

� Since curves have real equations, eventually apply-
ing complex conjugation, we may suppose that Φ

preserves the orientations of the quintics in C√2

and C−√2
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• From the relationship of intersection and linking
numbers, we deduce that Φ preserves the orienta-
tions of L, Cϕ√

2
and Cϕ

−
√

2
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• From the relationship of intersection and linking
numbers, we deduce that Φ preserves the orienta-
tions of L, Cϕ√

2
and Cϕ

−
√

2

• Φ verifies the conditions stated in Theorem 2
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• From the relationship of intersection and linking
numbers, we deduce that Φ preserves the orienta-
tions of L, Cϕ√

2
and Cϕ

−
√

2

• Φ verifies the conditions stated in Theorem 2

• Contradiction with Theorem 1
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(a) Nodal cu-
bic and line

(b)
Two
conics

Figure 3: Σ(4A1; 4)

Define Σ(Γ) and M (Γ) where Γ is:

• A weighted bi-coloured graph, which is dual to
σ−1(C), σ : Y → P2, minimal embedded reso-
lution of Sing(C).

• Weight ≡ self-intersection number

• Vertices α ≡ exceptional divisor of σ

• Vertices β ≡ strict transform of C
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(a) Nodal cubic and line
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(b) Two conics

Figure 4: Graphs

If d ≤ 5 and Σ(Γ) 6= ∅, Σ(Γ) is irreducible
Go back
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Definition of meridian

PSfrag replacements

∗∗
′

C1
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α

δ

Figure 5: Meridian

� X surface, C ⊂ X curve, C1 ⊂ C irreducible component,
∗ ∈ X \ C, G := π1(X \ C; ∗)
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Figure 5: Meridian

� X surface, C ⊂ X curve, C1 ⊂ C irreducible component,
∗ ∈ X \ C, G := π1(X \ C; ∗)

� ∆ small analytic disk t C1, ∗′ ∈ ∂∆, α path from ∗ to ∗′,
δ loop en ∗′ running once and counterclockwise ∂∆
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Definition of meridian
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∗∗
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α

δ

Figure 5: Meridian

� X surface, C ⊂ X curve, C1 ⊂ C irreducible component,
∗ ∈ X \ C, G := π1(X \ C; ∗)

� ∆ small analytic disk t C1, ∗′ ∈ ∂∆, α path from ∗ to ∗′,
δ loop en ∗′ running once and counterclockwise ∂∆

� α · δ · α−1 is a meridian of C1 in G. The set of meridians

of C1 is a conjugation class. Go back
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Figure 6: Geometric basis in the fiber
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Figure 7: Action of σj
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Figure 8: Adapted polydisks and conjugation


	Startup problem
	Previous results
	Sextics with simple points
	Open problems about sextics with simple points
	Braid monodromy for affine curves
	An example
	Braid monodromy of projective curves

