
Computational Methods in the Topology of
Algebraic Varieties

Enrique ARTAL BARTOLO

Departamento de Matemáticas
Facultad de Ciencias

Instituto Universitario de Matemáticas y sus Aplicaciones
Universidad de Zaragoza

EACA
Logroño, June 23rd 2016



Experimentation and proofs

Example

I K = C , R = K[[x , y ]], f (x , y) ∈ R
I Tjurina number: τ(f ) := dimK R/〈f , fx , fy 〉

I f4(x , y) = x3 + y4, f13(x , y) = yf 3
4 + x13, f49(x , y) := f 4

13 − f 13
4

x3 .

I g49(x , y) = f49 + f13f 9
4 .

I Problem: Compute τ(g49).
I First try: K = Q, R = Q[x , y ]〈x ,y〉 and use Singular (3Gb of RAM

after 13 minutes of CPU time)
I Second try: K = Fp, τ(f ) = 1727, p � 7, (e.g.

p = 11, 13, . . . , 32003, 1666666649, . . . , 2147483647).
I Proved in arXiv:1511.09254, using free resolution of ideals and

properties of singular plane curves.
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Computation and topology of algebraic varieties

I Experiment to guess formulas, properties

I Try to prove it
I Use computer-aid proofs for combinatorially long problems (human

checkable)
I Provide guaranteed computations (not of human scale).
I Mathematica, Maple, GAP, Singular, Sagemath
I Provide software for computations:

I Bernstein polynomial and D-modules: Martín-Morales (w/
Levandovskyy et al.), ported by them to Singular and to
SIRA/ASIR (by the maintainers).

I Zeta functions: Viu-Sos (based on Hoornaert’s work), ported to
Sagemath

I Fundamental groups of algebraic curves: Carmona and
Marco-Buzunáriz (w/ Rodríguez) ported to Sagemath (work in
progress)

I Sagemath development by Marco-Buzunáriz
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Braid Monodromy and Topology

Theorem (_, Carmona, Cogolludo, Marco)
There is no homeomorphism Φ : (P2,A√5)→ (P2,A−√5), P2 = P2(C).

Comments

I Key argument: braid monodromy.
I No extra information about homeomorphism type of P2 \ A±√5.
I Finite presentations of G± = π1(P2 \ A±√5).
I G± have the same finite quotients.
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Hurwitz moves

I G (finite) group, r ∈ N.

I Left action of G on G r by simultaneous conjugation:

g · (g1, . . . , gr ) 7→ (g · g1 · g−1, . . . , g · gr · g−1)

I Right action of Br on G r by Hurwitz moves:

Br =
〈
σ1, . . . , σr−1

∣∣∣∣∣[σi , σj ] = 1
2≤j−i

, σi · σi+1 · σi = σi+1 · σi · σi+1

〉
(g1, . . . , gr ) · σj 7→ (. . . . . .︸ ︷︷ ︸

j−1

, gj+1, gj+1 · gj · g−1
j+1, . . . . . .︸ ︷︷ ︸

r−j−1

)

I Hurwitz classes: G \ G r/Br .
I c([g1, . . . , gr ]) = gr · . . . · g1: pseudo-Coxeter element.
I C([g1, . . . , gr ]) = 〈g1, . . . , gr 〉: monodromy group. Invariants of

G r/Br .
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Hurwitz moves and braid monodromy

I Braid monodromy of an affine curve of degree d (without vertical
asymptotes) with r non-transversal vertical lines: a Hurwitz class in
Bd \ Br

d/Br .

I B±√5: A±√5 excluding last line and vertical lines: d = 5, r = 4.
I Finite representation:

B5 GL(5;Z[t±1]) t

GL(5;Z/5) 2 mod 5
ρ

Burau

I #ρ(Pure braids) = 58,032× 106, centralizer of pseudo-Coxeter
element has 115,200 elements, monodromy groups of order 30,000:
no compatible conjugation.
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I Finite representation:

B5 GL(5;Z[t±1]) t

GL(5;Z/5) 2 mod 5
ρ
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Fundamental group of algebraic curves

I O. Zariski, On the problem of existence of algebraic functions of two
variables possessing a given branch curve, Amer. J. Math. 51
(1929), 305–328.

I Fundamental group generated by meridians in a vertical line

I Braids induce relations:
I Zariski-van Kampen method: Bessis, Carmona, Berna and Amorós,

Marco and Rodríguez.
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Another arithmetic Zariski pair I

Theorem (_,Cogolludo, Guerville-Ballé, Marco)
There exist two arrangements of 12 lines Ai , i = 1, 2, with equations in
Q(ζ5) (Galois-conjugated but not complex-conjugated) such that
Gi = π1(P2 \ Ai ) are not isomorphic.

Step 1
The combinatorics is homologically rigid:

the two groups Gi come with a
distinguished set of generators of its abelianizations which can be
identified. Any isomorphism G1 → G2 induces ±1 on the abelianizations.
Cumbersome combinatorial problem.

Step 2
Compute the fundamental groups.



Another arithmetic Zariski pair I
Theorem (_,Cogolludo, Guerville-Ballé, Marco)
There exist two arrangements of 12 lines Ai , i = 1, 2, with equations in
Q(ζ5) (Galois-conjugated but not complex-conjugated) such that
Gi = π1(P2 \ Ai ) are not isomorphic.

P1

P2

P3

P4

P5

P6

Q1

Q2

Q3

Q4

L1

L2

L3

L4

L5

L6
L7

L8

L9

L10
L11

L12

Step 1
The combinatorics is homologically rigid:

the two groups Gi come with a
distinguished set of generators of its abelianizations which can be
identified. Any isomorphism G1 → G2 induces ±1 on the abelianizations.
Cumbersome combinatorial problem.

Step 2
Compute the fundamental groups.



Another arithmetic Zariski pair I

Theorem (_,Cogolludo, Guerville-Ballé, Marco)
There exist two arrangements of 12 lines Ai , i = 1, 2, with equations in
Q(ζ5) (Galois-conjugated but not complex-conjugated) such that
Gi = π1(P2 \ Ai ) are not isomorphic.

Step 1
The combinatorics is homologically rigid:

the two groups Gi come with a
distinguished set of generators of its abelianizations which can be
identified. Any isomorphism G1 → G2 induces ±1 on the abelianizations.
Cumbersome combinatorial problem.

Step 2
Compute the fundamental groups.



Another arithmetic Zariski pair I

Theorem (_,Cogolludo, Guerville-Ballé, Marco)
There exist two arrangements of 12 lines Ai , i = 1, 2, with equations in
Q(ζ5) (Galois-conjugated but not complex-conjugated) such that
Gi = π1(P2 \ Ai ) are not isomorphic.

Step 1
The combinatorics is homologically rigid: the two groups Gi come with a
distinguished set of generators of its abelianizations which can be
identified.

Any isomorphism G1 → G2 induces ±1 on the abelianizations.
Cumbersome combinatorial problem.

Step 2
Compute the fundamental groups.



Another arithmetic Zariski pair I

Theorem (_,Cogolludo, Guerville-Ballé, Marco)
There exist two arrangements of 12 lines Ai , i = 1, 2, with equations in
Q(ζ5) (Galois-conjugated but not complex-conjugated) such that
Gi = π1(P2 \ Ai ) are not isomorphic.

Step 1
The combinatorics is homologically rigid: the two groups Gi come with a
distinguished set of generators of its abelianizations which can be
identified. Any isomorphism G1 → G2 induces ±1 on the abelianizations.

Cumbersome combinatorial problem.

Step 2
Compute the fundamental groups.



Another arithmetic Zariski pair I

Theorem (_,Cogolludo, Guerville-Ballé, Marco)
There exist two arrangements of 12 lines Ai , i = 1, 2, with equations in
Q(ζ5) (Galois-conjugated but not complex-conjugated) such that
Gi = π1(P2 \ Ai ) are not isomorphic.

Step 1
The combinatorics is homologically rigid: the two groups Gi come with a
distinguished set of generators of its abelianizations which can be
identified. Any isomorphism G1 → G2 induces ±1 on the abelianizations.
Cumbersome combinatorial problem.

Step 2
Compute the fundamental groups.



Another arithmetic Zariski pair I

Theorem (_,Cogolludo, Guerville-Ballé, Marco)
There exist two arrangements of 12 lines Ai , i = 1, 2, with equations in
Q(ζ5) (Galois-conjugated but not complex-conjugated) such that
Gi = π1(P2 \ Ai ) are not isomorphic.

Step 1
The combinatorics is homologically rigid: the two groups Gi come with a
distinguished set of generators of its abelianizations which can be
identified. Any isomorphism G1 → G2 induces ±1 on the abelianizations.
Cumbersome combinatorial problem.

Step 2
Compute the fundamental groups.



Another arithmetic Zariski pair II

L10
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L4 L12 L9 L1

Step 3
Compute the truncated Alexander invariants from the presentations:
special Abelian groups associated to Gi .

Step 4
A necessary condition for the existence of an isomorphism G1 → G2
inducing the identity on abelianizations is the existence of solutions of a
linear system of 2912 equations with 253 unknowns with integer
coefficients:

there are solutions in 1
5Z but not in Z

.

Step 5
Repeat the computations to dismiss the existence of an isomorphism
G1 → G2 inducing minus the identity on abelianizations

Links
https://github.com/enriqueartal/ZariskiPair12Lines.git

https://github.com/enriqueartal/ZariskiPair12Lines.git
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