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K=C, R=K][[x,y]]. f(x,y) € R
Tjurina number: 7(f) :=dimg R/(f, f, f,)

f4 _ f13
ﬂl(Xay) = X3 +y41 f;|.3(Xuy) = yf;l?’ +X131 ﬁlg(X,y) = 13)(734
gao(x,y) = fag + fisfy.
Problem: Compute 7(gag).

First try: K= Q, R = Q[x, y](x,y) and use Singular (3Gb of RAM
after 13 minutes of CPU time)

Second try: K =TF,, 7(f) = 1727, p > 7, (e.g.
p=11,13,...,32003, 1666666649, . .., 2147483647).
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K=C, R=K][x,y]]. f(x,y) € R
Tjurina number: 7(f) :=dimg R/(f, f, f,)

f4 _ f13
fa(x,y) = x> +y*, fiz(x,y) = yf + x'3, fag(x,y) := BT
guo(x,y) = fag + fizfy.
Problem: Compute 7(gag).
First try: K= Q, R = Q[x, y](x,y) and use Singular (3Gb of RAM
after 13 minutes of CPU time)
Second try: K=F,, 7(f) = 1727, p > 7, (e.g.
p=11,13,...,32003, 1666666649, . .., 2147483647).
Proved in arXiv:1511.09254, using free resolution of ideals and
properties of singular plane curves.
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Computation and topology of algebraic varieties

» Experiment to guess formulas, properties
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Try to prove it

» Use computer-aid proofs for combinatorially long problems (human
checkable)

> Provide guaranteed computations (not of human scale).

» Mathematica, Maple, GAP, Singular, Sagemath

» Provide software for computations:

» Bernstein polynomial and D-modules: Martin-Morales (w/
Levandovskyy et al.), ported by them to Singular and to
SIRA/ASIR (by the maintainers).

> Zeta functions: Viu-Sos (based on Hoornaert's work), ported to
Sagemath

» Fundamental groups of algebraic curves: Carmona and
Marco-Buzunériz (w/ Rodriguez) ported to Sagemath (work in
progress)

» Sagemath development by Marco-Buzunariz
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Braid Monodromy and Topology

Theorem (_, Carmona, Cogolludo, Marco)

There is no homeomorphism ® : (P2, A ) — (P2, A_ z), P? = P*(C).

Comments
» Key argument: braid monodromy.
» No extra information about homeomorphism type of P?\ AL s
> Finite presentations of G = m1(P?\ A, ).

» G. have the same finite quotients.
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G (finite) group, r € N.
Left action of G on G" by simultaneous conjugation:

Right

B, = <O—17"',O—r—1

g (g,-...&)~ (g &gt .68 8 ")

action of B, on G" by Hurwitz moves:

[Ui,Uj] =1, 0i-0i}1-0;/=0j41-0;" 0i+1>

2<j—i
(g1;---8) g (... ,gj+1,gj+1~gj-gj_+11, ...... )
j—1 r—j—1
Hurwitz classes: G\ G'/B,.
c(lg1,---,&]) =& ... g pseudo-Coxeter element.
C(lg1,---,8&]) = (g1,...,8): monodromy group. Invariants of
G"/B,.
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Hurwitz moves and braid monodromy

» Braid monodromy of an affine curve of degree d (without vertical
asymptotes) with r non-transversal vertical lines: a Hurwitz class in
Bq \ B,/B,.

> Bi\/g: Ai\/g excluding last line and vertical lines: d =5, r = 4.

» Finite representation:

Bs Bug*muf’;z[tﬂ]) :
GL(5;Z/5) 2 mod 5

» -+ p(Pure braids) = 58,032 x 10°, centralizer of pseudo-Coxeter
element has 115,200 elements, monodromy groups of order 30,000:
no compatible conjugation.
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Fundamental group of algebraic curves

» O. Zariski, On the problem of existence of algebraic functions of two
variables possessing a given branch curve, Amer. J. Math. 51
(1929), 305-328.

» Fundamental group generated by meridians in a vertical line

» Braids induce relations:

» Zariski-van Kampen method: Bessis, Carmona, Berna and Amords,
Marco and Rodriguez.
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Theorem (_,Cogolludo, Guerville-Ballé, Marco)

There exist two arrangements of 12 lines A;, i = 1,2, with equations in
Q(¢s) (Galois-conjugated but not complex-conjugated) such that
G; = m(P?\ A;) are not isomorphic.

Step 1
The combinatorics is homologically rigid: the two groups G; come with a
distinguished set of generators of its abelianizations which can be

identified. Any isomorphism G; — G, induces £1 on the abelianizations.
Cumbersome combinatorial problem.

Step 2

Compute the fundamental groups.
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Step 3

Compute the truncated Alexander invariants from the presentations:
special Abelian groups associated to G;.

Step 4

A necessary condition for the existence of an isomorphism G; — G
inducing the identity on abelianizations is the existence of solutions of a
linear system of 2912 equations with 253 unknowns with integer
coefficients: there are solutions in %Z but not in Z.

Step 5

Repeat the computations to dismiss the existence of an isomorphism
G; — Gy inducing minus the identity on abelianizations

Links
https://github.com/enriqueartal/ZariskiPairi2Lines.git
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Thank you



